Psuedodifferential operators from groupoids

Robert Yuncken
(joint work with Erik van Erp)

Université Clermont Auvergne

Conference in honour of Jean Renault
23 May 2019
The work of Connes & Debord-Skandalis

\[TM = (M \times M) \times \mathbb{R}^\times \sqcup TM \times \{0\} \]
Connes ’90s: ΨDOs & their symbols live on this picture.
The work of Connes & Debord-Skandalis

\[TM = (M \times M) \times \mathbb{R}^x \quad \mathcal{D} \quad TM \times \{0\} \]

Connes ’90s: \(\Psi \text{DOs} \) & their symbols live on this picture.

Debord-Skandalis ’14: \(\Psi \text{DOs} \) are characterized by this picture.
Ellipticity and Fredholmness

M — closed manifold,
P — differential operator on M,
$H^s(M)$ — Sobolev space of order s.

Theorem P: H^s_pM \rightarrow $H_{s'}^{-p}M$ Fredholm (P) elliptic.

BUT... the definition of H^s_pM is biased towards ellipticity.
Ellipticity and Fredholmness

\(M \) — closed manifold,

\(P \) — differential operator on \(M \),

\(H^s(M) \) — Sobolev space of order \(s \).

Theorem

\[P : H^s(M) \rightarrow H^{s-m}(M) \text{ Fredholm} \iff P \text{ elliptic.} \]
Ellipticity and Fredholmness

\(M \) — closed manifold,
\(P \) — differential operator on \(M \),
\(H^s(M) \) — Sobolev space of order \(s \).

Theorem

\[P : H^s(M) \rightarrow H^{s-m}(M) \] Fredholm \iff \(P \) elliptic.

BUT... the definition of \(H^s(M) \) is biased towards ellipticity.
Fredholm Operators

Definition

\(P \) — unbounded self-adjoint operator on a Hilbert space \(H \).

\(P \) is Fredholm if the bounded operator \(P/(1 + P^2)^{1/2} : H \to H \) is Fredholm.
Fredholm Operators

Definition

P — unbounded self-adjoint operator on a Hilbert space H.

P is Fredholm if the bounded operator $P/(1 + P^2)^{1/2} : H \to H$ is Fredholm.

There are many non-elliptic differential operators which are Fredholm in this sense.
Fredholm Operators

Definition

P — unbounded self-adjoint operator on a Hilbert space H.

P is Fredholm if the bounded operator $P/(1 + P^2)^{1/2} : H \to H$ is Fredholm.

∃ many non-elliptic differential operators which are Fredholm in this sense.

Theorem (Dave-Haller ’17)

Let P be a Rockland operator on a compact filtered manifold M. Then P is Fredholm.
Filtered manifolds

Definition

A Lie filtration on a manifold M is a filtration of TM by sub-bundles

$$0 = T^0M \leq T^1M \leq \cdots \leq T^N M = TM$$

such that

$$[\Gamma^{\infty}(T^i M), \Gamma^{\infty}(T^j M)] \subseteq \Gamma^{\infty}(T^{i+j} M) \quad \forall i, j.$$
A Lie filtration on a manifold M is a filtration of TM by sub-bundles $0 = T^0 M \leq T^1 M \leq \cdots \leq T^N M = TM$ such that

$$[\Gamma^\infty(T^i M), \Gamma^\infty(T^j M)] \subseteq \Gamma^\infty(T^{i+j} M) \quad \forall i, j.$$

Fundamental calculation: $X \in \Gamma^\infty(T^i M)$, $Y \in \Gamma^\infty(T^j M)$, $f, g \in C^\infty(M)$,

$$r(fX + gY) = r(fX) + g(r(fX) - f(r(X))) \mod \Gamma^\infty(T^i M).$$
Filtered manifolds

Definition

A Lie filtration on a manifold M is a filtration of TM by sub-bundles $0 = T^0 M \leq T^1 M \leq \cdots \leq T^N M = TM$ such that

$$[\Gamma^\infty(T^i M), \Gamma^\infty(T^j M)] \subseteq \Gamma^\infty(T^{i+j} M) \quad \forall i, j.$$

Fundamental calculation: $X \in \Gamma^\infty(T^i M), \ Y \in \Gamma^\infty(T^j M), \ f, g \in C^\infty(M), \ [fX, gY] = fg[X, Y] + f(X.g)Y - g(Y.f)X$

$$\cong fg[X, Y] \mod \Gamma^\infty(T^{i+j-1} M).$$
Definition

A *Lie filtration* on a manifold M is a filtration of TM by sub-bundles $0 = T^0M \leq T^1M \leq \cdots \leq T^NM = TM$ such that

$$[\Gamma^\infty(T^iM), \Gamma^\infty(T^jM)] \subseteq \Gamma^\infty(T^{i+j}M) \quad \forall i, j.$$

Fundamental calculation: $X \in \Gamma^\infty(T^iM)$, $Y \in \Gamma^\infty(T^jM)$, $f, g \in C^\infty(M)$,

$$[fX, gY] = fg[X, Y] + f(X.g)Y - g(Y.f)X$$

$$\cong fg[X, Y] \mod \Gamma^\infty(T^{i+j-1}M).$$

\leadsto The associated graded bundle $tM := \text{gr}(TM)$ inherits a Lie bracket which is $C^\infty(M)$-bilinear \Rightarrow pointwise.
Filtered manifolds

Definition

A Lie filtration on a manifold M is a filtration of TM by sub-bundles $0 = T^0M \leq T^1M \leq \cdots \leq T^N M = TM$ such that

$$[\Gamma^\infty(T^iM), \Gamma^\infty(T^jM)] \subseteq \Gamma^\infty(T^{i+j}M) \quad \forall i, j.$$

Fundamental calculation: $X \in \Gamma^\infty(T^iM)$, $Y \in \Gamma^\infty(T^jM)$, $f, g \in C^\infty(M)$,

$$[fX, gY] = fg[X, Y] + f(X.g)Y - g(Y.f)X$$

$$\cong fg[X, Y] \mod \Gamma^\infty(T^{i+j-1}M).$$

\Rightarrow The associated graded bundle $\mathfrak{t}M := \text{gr}(TM)$ inherits a Lie bracket which is $C^\infty(M)$-bilinear \Rightarrow pointwise.

\Rightarrow $\mathfrak{t}M$ is a bundle of nilpotent Lie algebras (Lie algebroid with trivial anchor).
Filtered manifolds

Definition

A *Lie filtration* on a manifold M is a filtration of TM by sub-bundles $0 = T^0 M \leq T^1 M \leq \cdots \leq T^N M = TM$ such that

$$[\Gamma^\infty(T^i M), \Gamma^\infty(T^j M)] \subseteq \Gamma^\infty(T^{i+j} M) \quad \forall i, j.$$

Fundamental calculation: $X \in \Gamma^\infty(T^i M)$, $Y \in \Gamma^\infty(T^j M)$, $f, g \in C^\infty(M)$,

$$[fX, gY] = fg[X, Y] + f(X.g)Y - g(Y.f)X$$

$$\cong fg[X, Y] \mod \Gamma^\infty(T^{i+j-1} M).$$

\implies The associated graded bundle $tM := \text{gr}(TM)$ inherits a Lie bracket which is $C^\infty(M)$-bilinear \Rightarrow pointwise.

\implies tM is a bundle of nilpotent Lie algebras (Lie algebroid with trivial anchor).

\implies TM the associated bundle of simply connected nilpotent Lie groups: “osculating groupoid”.

Robert Yuncken (UCA) Psuedodifferential operators from groupoids Conference J. Renault 5 / 26
Example 1: *CR*-manifolds.

\[X \subset \mathbb{C}^n \text{ — strongly pseudoconvex domain (eg, the unit ball).} \]
Example 1: \(CR \)-manifolds.

\[X \subset \mathbb{C}^n \] — strongly pseudoconvex domain (eg, the unit ball).

\[M = \partial X. \]
Example 1: CR-manifolds.

\(X \subset \mathbb{C}^n \) — strongly pseudoconvex domain (e.g., the unit ball).

\(M = \partial X. \)

Notons :

- \(T^1M = \{ \xi \in TM \mid i\xi \in TM \} \)
Example 1: \(CR \)-manifolds.

\[X \subset \mathbb{C}^n \] — strongly pseudoconvex domain (e.g., the unit ball).
\[M = \partial X. \]

Notons :

- \(T^1M = \{ \xi \in TM \mid i\xi \in TM \} \)
- \(T^2M = TM. \)
Example 1: CR-manifolds.

\[X \subset \mathbb{C}^n \] — strongly pseudoconvex domain (eg, the unit ball).

\[M = \partial X. \]

Notons:

- \(T^1M = \{ \xi \in TM \mid i\xi \in TM \} \)
- \(T^2M = TM. \)

Then \(M \) is a filtered manifold, and for every \(x \in M \),

\[TM_x \cong H^{2n-1} \] — Heisenberg group.
Example 1: CR-manifolds.

\(X \subset \mathbb{C}^n\) — strongly pseudoconvex domain (e.g., the unit ball).

\(M = \partial X\).

Notons:
- \(T^1M = \{\xi \in TM \mid i\xi \in TM\}\)
- \(T^2M = TM\).

Then \(M\) is a filtered manifold, and for every \(x \in M\),

\[\mathcal{T}M_x \cong H^{2n-1}\] — Heisenberg group.

CR-manifolds admit natural subelliptic analogues of \(\bar{\partial}\) and \(\Delta\).
Example I: CR-manifolds.

\(\mathcal{X} \subset \mathbb{C}^n \) — strongly pseudoconvex domain (e.g., the unit ball).

\(M = \partial \mathcal{X} \).

Notons :

- \(T^1M = \{ \xi \in TM \mid i\xi \in TM \} \)
- \(T^2M = TM \).

Then \(M \) is a filtered manifold, and for every \(x \in M \),

\[T^1M_x \simeq H^{2n-1} \] — Heisenberg group.

CR-manifolds admit natural subelliptic analogues of \(\bar{\partial} \) and \(\Delta \).

They are of Rockland type, so Fredholm [Kohn, Folland-Stein, ...].
Example II: M^5 with generic distribution of rank 2

M — closed manifold of dimension 5.

$H \subset TM$ — rank 2 distribution.
Example II: M^5 with generic distribution of rank 2

M — closed manifold of dimension 5.

$H \subset TM$ — rank 2 distribution.

Locally, $H = \text{Vect}\{X_1, X_2\}$ for some $X_1, X_2 \in \Gamma^\infty(TM)$.

T_M^x — nilpotent radical of a parabolic subgroup of G.

The sublaplacian $\Delta \mid \mathcal{X}_2 \mid \mathcal{X}_2$ is Rockland, so Fredholm.
Example II : M^5 with generic distribution of rank 2

M — closed manifold of dimension 5.

$H \subset TM$ — rank 2 distribution.

Locally, $H = \text{Vect}\{X_1, X_2\}$ for some $X_1, X_2 \in \Gamma^\infty(TM)$.

Consider the Lie brackets:

- $Y = [X_1, X_2],$
- $Z_1 = [X_1, Y], Z_2 = [X_2, Y].$
Example II: M^5 with generic distribution of rank 2

M — closed manifold of dimension 5.

$H \subset TM$ — rank 2 distribution.

Locally, $H = \text{Vect}\{X_1, X_2\}$ for some $X_1, X_2 \in \Gamma^\infty(TM)$.

Consider the Lie brackets:

- $Y = [X_1, X_2]$,
- $Z_1 = [X_1, Y]$, $Z_2 = [X_2, Y]$.

Definition

The distribution H is **generic** if X_1, X_2, Y, Z_1, Z_2 span TM_x at all $x \in M$.
Example II: M^5 with generic distribution of rank 2

M — closed manifold of dimension 5.

$H \subset TM$ — rank 2 distribution.

Locally, $H = \text{Vect}\{X_1, X_2\}$ for some $X_1, X_2 \in \Gamma^\infty(TM)$.

Consider the Lie brackets:

- $Y = [X_1, X_2],
- Z_1 = [X_1, Y], Z_2 = [X_2, Y].$

Definition

The distribution H is **generic** if X_1, X_2, Y, Z_1, Z_2 span TM_x at all $x \in M$.

In this case, M is a filtered manifold with

- $T^1M = \text{Vect}\{X_1, X_2\}$,
- $T^2M = \text{Vect}\{X_1, X_2, Y\}$,
- $T^3M = TM$.

$TM_x \cong$ nilpotent radical of a parabolic subgroup of G_2.

Robert Yuncken (UCA) Psuedodifferential operators from groupoids Conference J. Renault 7 / 26
Example II: M^5 with generic distribution of rank 2

M — closed manifold of dimension 5.

$H \subset TM$ — rank 2 distribution.

Locally, $H = \text{Vect}\{X_1, X_2\}$ for some $X_1, X_2 \in \Gamma^\infty(TM)$.

Consider the Lie brackets:
- $Y = [X_1, X_2]$,
- $Z_1 = [X_1, Y], Z_2 = [X_2, Y]$.

Definition

The distribution H is **generic** if X_1, X_2, Y, Z_1, Z_2 span TM_x at all $x \in M$.

In this case, M is a filtered manifold with

$$T^1M = \text{Vect}\{X_1, X_2\}, \quad T^2M = \text{Vect}\{X_1, X_2, Y\}, \quad T^3M = TM.$$

$TM_x \cong$ nilpotent radical of a parabolic subgroup of G_2.

The sublaplacian $\Delta = -X_1^2 - X_2^2$ is Rockland, so Fredholm.
Example III : Flag varieties

\[G = \text{semisimple Lie group} \ (\text{eg, } G = SL(n, \mathbb{C})) \]

\[B_- = \text{Borel subgroup} \ (\text{eg, } B_- = \{ \text{lower } \Delta^r \text{ matrices} \}) \]

\[M = G/B_- \text{ — flag manifold.} \]
Example III: Flag varieties

\[G = \text{semisimple Lie group (eg, } G = SL(n, \mathbb{C})) \]

\[B_- = \text{Borel subgroup (eg, } B_- = \{\text{lower } \Delta^r \text{ matrices}\}) \]

\[M = G/B_- \text{ — flag manifold.} \]

\[N = \text{opposite nilpotent subgroup (eg, } N = \{\text{unipotent upper } \Delta^r\}) \].
Example III: Flag varieties

\[G = \text{semisimple Lie group (eg, } G = SL(n, \mathbb{C})) \]

\[B_- = \text{Borel subgroup (eg, } B_- = \{ \text{lower } \Delta^r \text{ matrices} \}) \]

\[M = G/B_- \text{ — flag manifold.} \]

\[N = \text{opposite nilpotent subgroup (eg, } N = \{ \text{unipotent upper } \Delta^r \}) \]

\[\text{NB. } n = \bigoplus_{\alpha \in \Delta^+} g_{\alpha} \text{ is a graded Lie algebra:} \]
Example III: Flag varieties

\(G \) = semisimple Lie group (eg, \(G = SL(n, \mathbb{C}) \))

\(B_- \) = Borel subgroup (eg, \(B_- = \{ \text{lower } \Delta^r \text{ matrices} \} \))

\(M = G/B_- \) — flag manifold.

\(N = \) opposite nilpotent subgroup (eg, \(N = \{ \text{unipotent upper } \Delta^r \} \)).

NB. \(n = \bigoplus_{\alpha \in \Delta^+} g_\alpha \) is a graded Lie algebra:

- \(\text{ht}(\alpha) := \sum n_i \) where \(\alpha = \sum_i n_i \alpha_i \) sum of simple roots.
Example III: Flag varieties

\[G = \text{semisimple Lie group (eg, } G = SL(n, \mathbb{C})) \]
\[B__ = \text{Borel subgroup (eg, } B__ = \{\text{lower } \Delta^r \text{ matrices}\}) \]
\[M = G/B__ \text{ — flag manifold.} \]
\[N = \text{opposite nilpotent subgroup (eg, } N = \{\text{unipotent upper } \Delta^r\}). \]

NB. \(n = \bigoplus_{\alpha \in \Delta^+} g_\alpha \) is a graded Lie algebra:
- \(\text{ht}(\alpha) := \sum n_i \) where \(\alpha = \sum_i n_i \alpha_i \) sum of simple roots.
- \(n_k := \bigoplus_{\text{ht}(\alpha)=k} g_\alpha \).
Example III : Flag varieties

\[G = \text{semisimple Lie group (eg, } G = SL(n, \mathbb{C})) \]

\[B_- = \text{Borel subgroup (eg, } B_- = \{\text{lower } \Delta^r \text{ matrices}\}) \]

\[M = G/B_- \text{ — flag manifold.} \]

\[N = \text{opposite nilpotent subgroup (eg, } N = \{\text{unipotent upper } \Delta^r\}). \]

NB. \(n = \bigoplus_{\alpha \in \Delta^+} g_\alpha \) is a graded Lie algebra:

- \(\text{ht}(\alpha) := \sum n_i \) where \(\alpha = \sum_i n_i \alpha_i \) sum of simple roots.

- \(n_k := \bigoplus_{\text{ht}(\alpha)=k} g_\alpha \).

\[\implies N \text{ is a filtered manifold.} \]
Example III: Flag varieties

\[G = \text{semisimple Lie group} \ (eg, \ G = SL(n, \mathbb{C})) \]

\[B_- = \text{Borel subgroup} \ (eg, \ B_- = \{\text{lower } \Delta^r \text{ matrices}\}) \]

\[M = G/B_- \text{ — flag manifold.} \]

\[N = \text{opposite nilpotent subgroup} \ (eg, \ N = \{\text{unipotent upper } \Delta^r\}). \]

\textbf{NB.} \ n = \bigoplus_{\alpha \in \Delta^+} g_\alpha \text{ is a graded Lie algebra:}

- \(\text{ht}(\alpha) := \sum n_i \) where \(\alpha = \sum_i n_i \alpha_i \) sum of simple roots.
- \(n_k := \bigoplus_{\text{ht}(\alpha) = k} g_\alpha. \)

\[\implies N \text{ is a filtered manifold.} \]

\(\forall x \in G, \text{ we have a local diffeomorphism:} \)

\[N \leftrightarrow M = G/B_-; \quad n \leftrightarrow xnB. \]
Example III: Flag varieties

\[G = \text{semisimple Lie group (eg, } G = SL(n, \mathbb{C})) \]

\[B_- = \text{Borel subgroup (eg, } B_- = \{\text{lower } \Delta^r \text{ matrices}\}) \]

\[M = G/B_- \text{ — flag manifold.} \]

\[N = \text{opposite nilpotent subgroup (eg, } N = \{\text{unipotent upper } \Delta^r\}). \]

NB. \(n = \bigoplus_{\alpha \in \Delta^+} g_\alpha \) is a graded Lie algebra:

- \(\text{ht}(\alpha) := \sum n_i \) where \(\alpha = \sum_i n_i \alpha_i \) sum of simple roots.
- \(n_k := \bigoplus_{\text{ht}(\alpha)=k} g_\alpha. \)

\[\implies \quad N \text{ is a filtered manifold.} \]

\[\forall x \in G, \text{ we have a local diffeomorphism:} \]

\[N \leftrightarrow M = G/B_-; \quad n \leftrightarrow xnB. \]

\[\implies \quad M \text{ is a filtered manifold with } TM_x \cong N \text{ for all } x. \]
\(TM: \)
Diff. Ops: The groupoid view

<table>
<thead>
<tr>
<th>Lie groupoid</th>
<th>Diff. op. $M \times M$</th>
<th>Princ. part TM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie algebroid</td>
<td>TM</td>
<td>tM</td>
</tr>
</tbody>
</table>

Diff. op.: filtered DNC

Robert Yuncken (UCA)
Diff. Ops: The groupoid view

<table>
<thead>
<tr>
<th>Lie groupoid</th>
<th>Diff. op. (M \times M)</th>
<th>filtered (\text{DNC})</th>
<th>Princ. part (\mathcal{T}M)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lie algebroid</td>
<td>(\mathcal{T}M)</td>
<td>associated graded</td>
<td>(tM)</td>
</tr>
<tr>
<td>Sections</td>
<td>(\chi^\bullet(M))</td>
<td>associated graded</td>
<td>(\Gamma^\infty(tM))</td>
</tr>
<tr>
<td>(C^\infty(M))-env. algebra</td>
<td>(\text{DO}^\bullet(M))</td>
<td>frozen coefficients</td>
<td>(\Gamma^\infty(U(tM)))</td>
</tr>
</tbody>
</table>
Diff. Ops: The groupoid view

<table>
<thead>
<tr>
<th>Lie groupoid</th>
<th>Diff. op.</th>
<th>Princ. part</th>
</tr>
</thead>
<tbody>
<tr>
<td>$M \times M$</td>
<td>filtered DNC</td>
<td>TM</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Lie algebroid</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>TM</td>
<td>associated graded</td>
</tr>
<tr>
<td>tM</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sections</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$\chi^\bullet(M)$</td>
<td>associated graded</td>
</tr>
<tr>
<td>$\Gamma^\infty(tM)$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>$C^\infty(M)$-env. algebra</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$DO^\bullet(M)$</td>
<td>frozen coefficients</td>
</tr>
<tr>
<td>$\Gamma^\infty(U(tM))$</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>P</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>$(P_x)_{x \in M}$</td>
<td></td>
</tr>
</tbody>
</table>
The Rockland Condition

M — filtered manifold,

P — diff. op. on M,

$P_x \in \mathcal{U}(tM_x)$ — frozen coefficient operator at $x \in M$.

Definition (Rockland Condition)

P is called a Rockland operator if for all $x \in M$ we have:

$\partial \pi P z T M x z t 0 u$ nontrivial unitary representation of $T M x$,

$\pi P x$ is invertible on $H 8 \pi$.

Theorem (Helffer-Nourrigat, ... Melin, ... Dave-Haller)

For M closed, Rockland \subset Fredholm.
The Rockland Condition

\(M \) — filtered manifold,
\(P \) — diff. op. on \(M \),
\(P_x \in \mathcal{U}(tM_x) \) — frozen coefficient operator at \(x \in M \).

Definition (Rockland Condition)

\(P \) is called a Rockland operator if for all \(x \in M \) we have:

\[
\forall \pi \in \overline{T M_x \setminus \{0\}} \text{ nontrivial unitary representation of } \mathcal{T} M_x, \\
\pi(P_x) \text{ is invertible on } H^\infty_{\pi}.
\]
The Rockland Condition

\(M \) — filtered manifold,
\(P \) — diff. op. on \(M \),
\(P_x \in \mathcal{U}(tM_x) \) — frozen coefficient operator at \(x \in M \).

Definition (Rockland Condition)

\(P \) is called a Rockland operator if for all \(x \in M \) we have:

\[\forall \pi \in \overline{T M_x} \setminus \{0\} \text{ nontrivial unitary representation of } T M_x, \]

\[\pi(P_x) \text{ is invertible on } H^\infty_\pi. \]

Theorem (Helffer-Nourrigat, ... Melin, ... Dave-Haller)

For \(M \) closed, Rockland \(\Rightarrow \) Fredholm.
Rockland Theorem

Theorem (Helffer-Nourrigat,... Melin,... Dave-Haller)

For M closed, Rockland \Rightarrow Fredholm.
Theorem (Helffer-Nourrigat,... Melin,... Dave-Haller)

For M closed, Rockland \Rightarrow Fredholm.

Sketch of proof:
Theorem (Helffer-Nourrigat,… Melin,… Dave-Haller)
For M closed, Rockland \Rightarrow Fredholm.

Sketch of proof:

1. $P \in \mathcal{U}(\mathfrak{g})$ left-inv. diff. op. on a graded nilpotent Lie group N:

 P Rockland $\Rightarrow \exists$ parametrix Q s.t. $PQ - I, \; QP - I$ smoothing.
 [Helffer-Nourrigat ’70s]
Rockland Theorem

Theorem (Helffer-Nourrigat,... Melin,... Dave-Haller)

For M closed, Rockland \Rightarrow Fredholm.

Sketch of proof:

1. $P \in \mathcal{U}(g)$ left-inv. diff. op. on a graded nilpotent Lie group N:

 P Rockland \Rightarrow \exists parametrix Q s.t. $PQ - I$, $QP - I$ smoothing.
 [Helffer-Nourrigat '70s]

2. Construct a pseudodiff. calculus $\Psi^\bullet(M) \supset DO^\bullet(M)$ adapted to the filtration.
 [Beals-Greiner,... Melin, Van Erp-Y.]

Robert Yuncken (UCA) Psuedodifferential operators from groupoids Conference J. Renault 13 / 26
Rockland Theorem

Theorem (Helffer-Nourrigat, . . . Melin, . . . Dave-Haller)

For M closed, Rockland \Rightarrow Fredholm.

Sketch of proof:

1. $P \in \mathcal{U}(g)$ left-inv. diff. op. on a graded nilpotent Lie group N:

 P Rockland \Rightarrow \exists parametrix Q s.t. $PQ - I$, $QP - I$ smoothing.

 [Helffer-Nourrigat ’70s]

2. Construct a pseudodiff. calculus $\Psi^\bullet(M) \supset \text{DO}^\bullet(M)$ adapted to the filtration.

 [Beals-Greiner, . . . Melin, Van Erp-Y.]

3. P Rockland $\Rightarrow P$ admits a parametrix $Q \in \Psi^{-m}(M)$ s.t.

 $PQ - I$, $QP - I \in \Psi^{-1}(M)$.
Rockland Theorem

Theorem (Helffer-Nourrigat,... Melin,... Dave-Haller)

For M closed, Rockland \Rightarrow Fredholm.

Sketch of proof:

1. $P \in \mathcal{U}(\mathfrak{g})$ left-inv. diff. op. on a graded nilpotent Lie group N:

 P Rockland $\Rightarrow \exists$ parametrix Q s.t. $PQ - I$, $QP - I$ smoothing.

 [Helffer-Nourrigat ’70s]

2. Construct a pseudodiff. calculus $\Psi^\bullet(M) \supset \mathcal{DO}^\bullet(M)$ adapted to the filtration.

 [Beals-Greiner,... Melin, Van Erp-Y.]

3. P Rockland $\Rightarrow P$ admits a parametrix $Q \in \Psi^{-m}(M)$ s.t.

 $PQ - I$, $QP - I \in \Psi^{-1}(M)$.

4. Show that $\Psi^{-1}(M) \subset \mathcal{K}(L^2(M))$.

 [Folland-Stein,Ponge, Dave-Haller]
Classical pseudodifferential operators
Recall: Definition via symbols...
Recall: Definition via symbols...

Definition (Hörmander)

A pseudodifferential operator on \mathbb{R}^n is

$$P : C^\infty(\mathbb{R}^n) \to C^\infty(\mathbb{R}^n)$$

$$Pu(x) = \int_{\mathbb{R}^n} e^{i\langle \xi, x \rangle} a(x, \xi) \hat{u}(\xi) d\xi,$$

where $a \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ belongs to a good ”symbol class”...
Recall: Definition via symbols...

Definition (Hörmander)

A pseudodifferential operator on \mathbb{R}^n is

$$P : C^\infty(\mathbb{R}^n) \rightarrow C^\infty(\mathbb{R}^n)$$

$$Pu(x) = \int_{\mathbb{R}^n} e^{i\langle \xi, x \rangle} a(x, \xi) \hat{u}(\xi) d\xi,$$

where $a \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ belongs to a good "symbol class"...

NB. P is a diff. op.

$\iff a(x, \xi)$ is polynomial in ξ
Classical pseudodifferential operators

Recall: Definition via symbols…

Definition (Hörmander)

A pseudodifferential operator on \mathbb{R}^n is

$$P : C^\infty(\mathbb{R}^n) \rightarrow C^\infty(\mathbb{R}^n)$$

$$Pu(x) = \int_{\mathbb{R}^n} e^{i\langle \xi, x \rangle} a(x, \xi) \hat{u}(\xi) d\xi,$$

where $a \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ belongs to a good ”symbol class”…

NB. P is a diff. op.

\iff $a(x, \xi)$ is polynomial in ξ

\iff $a(x, \xi) = \sum_{i=0}^m a_m(x, \xi)$ with $a(x, \xi)$ homogeneous in ξ:

$$a(x, s\xi) = s^m a(x, \xi) \text{ for all } s \in \mathbb{R}_+^\times.$$
Symbol class

Denote by $S_{m,p_1,0}^{q}$ the set of functions a in $\mathcal{S}_p \mathbb{R}^n \hat{\otimes} \mathbb{R}^n$ verifying:

$$\partial_{\alpha,\beta} a, b \in N \text{ multi-index, } D_{\mathcal{C}} a, b \approx 0 \text{ s.t. } |B_{\alpha,\beta} \xi B_{\alpha,\beta} x a^p x, \xi q| \lesssim C_{\alpha,\beta} p_1 \|\xi\|^q m \|a\|.$$

Polyhomogeneous symbols

Denote by $S_{m,phg}^{p}$ the set of functions a in $\mathcal{S}_m^{p_1,0} \mathbb{R}^n \hat{\otimes} \mathbb{R}^n$ which admit an asymptotic expansion $a_{\mathbb{R}^n \hat{\otimes} \mathbb{R}^n}$, i.e.,

$$\partial_{k} a_{\mathbb{R}^n \hat{\otimes} \mathbb{R}^n} \approx \sum_{j=0}^{\infty} a_j$$

with a_j homogeneous of order m_j in ξ outside a compact set:

$$\partial_{s} a_{\mathbb{R}^n \hat{\otimes} \mathbb{R}^n} \approx s_{m_j} a_{\mathbb{R}^n \hat{\otimes} \mathbb{R}^n} \text{ has compact support in } \xi.$$
Symbol class

Symbols of type $(1, 0)$:

Denote by $S_{(1,0)}^m(\mathbb{R}^n \times \mathbb{R}^n)$ the set of $a \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ verifying:

$\forall \alpha, \beta \in \mathbb{N}^n$ multi-index, $\exists C_{\alpha, \beta} > 0$ s.t.

$$|\partial^\alpha_x \partial^\beta_\xi a(x, \xi)| \leq C_{\alpha, \beta} (1 + |\xi|)^{m-|\alpha|}.$$
Symbol class

Symbols of type $(1, 0)$:

Denote by $S^m_{(1,0)}(\mathbb{R}^n \times \mathbb{R}^n)$ the set of $a \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ verifying:

\[\forall a, b \in \mathbb{N}^n \text{ multi-index, } \exists C_{a,b} > 0 \text{ s.t.} \]

\[|\partial^a_x \partial^b_\xi a(x, \xi)| \leq C_{a,b} (1 + |\xi|)^{m-|a|}. \]

Polyhomogeneous symbols

Denote by $S^m_{\text{phg}}(\mathbb{R}^n \times \mathbb{R}^n)$ the set of $a \in S^m_{(1,0)}(\mathbb{R}^n \times \mathbb{R}^n)$ which admit an asymptotic expansion $a(x, \xi) \sim \sum_{j=0}^\infty a_j(x, \xi)$, i.e.,
Symbol class

Symbols of type $(1, 0)$:

Denote by $S^m_{(1,0)}(\mathbb{R}^n \times \mathbb{R}^n)$ the set of $a \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ verifying:

$\forall a, b \in \mathbb{N}^n$ multi-index, $\exists C_{a,b} > 0$ s.t.

$$|\partial_\xi^a \partial_x^b a(x, \xi)| \leq C_{a,b}(1 + |\xi|)^{m-|a|}.$$

Polyhomogeneous symbols

Denote by $S^m_{phg}(\mathbb{R}^n \times \mathbb{R}^n)$ the set of $a \in S^m_{(1,0)}(\mathbb{R}^n \times \mathbb{R}^n)$ which admit an asymptotic expansion $a(x, \xi) \sim \sum_{j=0}^{\infty} a_j(x, \xi)$, i.e., $\forall k$

$$a(x, \xi) - \sum_{j=0}^{k-1} a_j(x, \xi) \in S^{m-k}(\mathbb{R}^n \times \mathbb{R}^n)$$

with a_j homogeneous of order $m-j$ in ξ outside a compact set: $\forall s \in \mathbb{R}_+^\times$.
Symbol class

Symbols of type $(1, 0)$:

Denote by $S_{(1, 0)}^m(\mathbb{R}^n \times \mathbb{R}^n)$ the set of $a \in C^\infty(\mathbb{R}^n \times \mathbb{R}^n)$ verifying:

$\forall a, b \in \mathbb{N}^n$ multi-index, $\exists C_{a, b} > 0$ s.t.

$$|\partial^{a}_{\xi} \partial^{b}_x a(x, \xi)| \leq C_{a, b} (1 + |\xi|)^{m-|a|}.$$

Polyhomogeneous symbols

Denote by $S_{phg}^m(\mathbb{R}^n \times \mathbb{R}^n)$ the set of $a \in S_{(1, 0)}^m(\mathbb{R}^n \times \mathbb{R}^n)$ which admit an asymptotic expansion $a(x, \xi) \sim \sum_{j=0}^{\infty} a_j(x, \xi)$, i.e., $\forall k$

$$a(x, \xi) - \sum_{j=0}^{k-1} a_j(x, \xi) \in S^{m-k}(\mathbb{R}^n \times \mathbb{R}^n)$$

with a_j homogeneous of order $m - j$ in ξ outside a compact set: $\forall s \in \mathbb{R}_+^\times$, $a(x, s\xi) - s^{m-j}a(x, \xi)$ has compact support in ξ.
Lemma (van Erp-Y.)

The following are equivalent:

\[a \in \mathcal{P}^c_{\mathcal{S}^p} \mathbb{R}^n \]

\[a = a_p \pi^\dagger_{1, q} \]

for some function \(a \in \mathcal{P}^c_{\mathcal{S}^p} \mathbb{R}^n \)

homogeneous of degree \(m \) modulo Schwartz.

Homogeneous modulo Schwartz means:

\[a_p(s, \xi) \pi_{1, q} \]

\[a_p(\xi, t) \pi_{\mathbb{R}^n} \]

\[a_p(\xi, t) \pi_\mathbb{R}^\wedge \]

\[a_p(\xi) \pi_{1, q} \]

homogeneous mod \(\mathcal{S}^p \mathbb{R}^n \).
Lemma (van Erp-Y.)

The following are equivalent:

- $a \in C^\infty(\mathbb{R}^n)$ is polyhomogeneous of order m,
- $a = a(\cdot, 1)$ for some function $a \in C^\infty(\mathbb{R}^{n+1})$ homogeneous of degree m modulo Schwartz.
Polyhomogeneous functions

Lemma (van Erp-Y.)

The following are equivalent:

- \(a \in C^\infty(\mathbb{R}^n) \) is polyhomogeneous of order \(m \),
- \(a = a(\cdot, 1) \) for some function \(a \in C^\infty(\mathbb{R}^{n+1}) \) homogeneous of degree \(m \) modulo Schwartz.

Homogeneous modulo Schwartz means:

- \(a(s\xi, st) - s^ma(\xi, t) \in \mathcal{S}(\mathbb{R}^{n+1}), \quad \forall s \in \mathbb{R}_+^\times \).
Polyhomogeneous functions

Lemma (van Erp-Y.)

The following are equivalent:

- \(a \in C^\infty(\mathbb{R}^n) \) is polyhomogeneous of order \(m \),
- \(a = a(\cdot, 1) \) for some function \(a \in C^\infty(\mathbb{R}^{n+1}) \) homogeneous of degree \(m \) modulo Schwartz.

Homogeneous modulo Schwartz means:

- \(a(s\xi, st) = s^m a(\xi, t) \in \mathcal{S}(\mathbb{R}^{n+1}), \quad \forall s \in \mathbb{R}_+^\times. \)
Classical pseudodifferential operators

To begin with, consider $M = \mathbb{R}^n$.
To begin with, consider \(M = \mathbb{R}^n \). Let \(P \in \Psi^m_{\text{cl}}(M) \) and write
Classical pseudodifferential operators

To begin with, consider $M = \mathbb{R}^n$. Let $P \in \Psi^m_{\text{cl}}(M)$ and write

- $a(x, \xi)$ — symbol of P,

- $a(x, \xi, 1)$ — homog mod S.

Kernels ($F^{-1}_1 \xi$):
To begin with, consider $M = \mathbb{R}^n$. Let $P \in \Psi^m_\text{cl}(M)$ and write

- $a(x, \xi) \mid$ symbol of P,
- $p(x, y) = \mathcal{F}_\xi^{-1} a(x, y)$ Schwartz kernel of P.
Classical pseudodifferential operators

To begin with, consider $M = \mathbb{R}^n$. Let $P \in \Psi^m_{\text{cl}}(M)$ and write

- $a(x, \xi)$ — symbol of P,
- $p(x, y) = \mathcal{F}_{\xi}^{-1} a(x, y)$ Schwartz kernel of P.

Symbols:

$$a(x, \xi) = a(x, \xi, 1)$$

homog mod S
Classical pseudodifferential operators

To begin with, consider $M = \mathbb{R}^n$. Let $P \in \Psi^m_{\text{cl}}(M)$ and write
- $a(x, \xi)$ — symbol of P,
- $p(x, y) = \mathcal{F}_\xi^{-1} a(x, y)$ Schwartz kernel of P.

Symbols:

Kernels (\mathcal{F}_ξ^{-1}):
Pseudodifferential operators from the tangent groupoid

For $G \Rightarrow M$ a Lie groupoid, we write

$$\mathcal{E}^r(G) = \{ r\text{-fibred distributions with proper support} \} = \{ u : C^\infty(G) \to C^\infty(M) \mid C^\infty(M)\text{-linear} \}.$$
For $G \rightrightarrows M$ a Lie groupoid, we write
\[E'_r(G) = \{ r\text{-fibred distributions with proper support} \} = \{ u : C^\infty(G) \to C^\infty(M) \mid C^\infty(M)\text{-linear} \}. \]

Definition

1. $\Psi^m(M) = \{ p \in E'_r(TM) \mid \alpha_s^* p - s^m p \in C_c^\infty(TM) \quad \forall s \in \mathbb{R}_+^\times \}. $
For $G \rightrightarrows M$ a Lie groupoid, we write
\[\mathcal{E}'_r(G) = \{ r\text{-fibred distributions with proper support} \} = \{ u : C^\infty(G) \to C^\infty(M) \mid C^\infty(M)\text{-linear} \}. \]

Definition

1. \[\Psi^m(M) = \{ p \in \mathcal{E}'_r(TM) \mid \alpha_s^* p - s^m p \in C^\infty_c(TM) \quad \forall s \in \mathbb{R}_+^\times \}. \]

Theorem (van Erp-Y.)

\[\Psi^m(M)|_{t=1} = \Psi^m_{cl}(M) \]
For $G \rightrightarrows M$ a Lie groupoid, we write

$$\mathcal{E}_r'(G) = \{ r\text{-fibred distributions with proper support} \}$$

$$= \{ u : C^\infty(G) \to C^\infty(M) \mid C^\infty(M)\text{-linear} \}.$$

Definition

1. $\Psi^m(M) = \{ p \in \mathcal{E}_r'(TM) \mid \alpha_s^* p - s^m p \in C_c^\infty(TM) \quad \forall s \in \mathbb{R}_+^\times \}$.

2. $\Psi^m(M) = \Psi^m(M)|_{t=1}$.

Theorem (van Erp-Y.)

$$\Psi^m(M)|_{t=1} = \Psi^m_{cl}(M)$$
Pseudodifferential operators from the tangent groupoid

For $G \rightarrowtail M$ a Lie groupoid, we write

$$\mathcal{E}_r'(G) = \{ r\text{-fibred distributions with proper support} \} = \{ u : C^\infty(G) \rightarrow C^\infty(M) \mid C^\infty(M)\text{-linear} \}.$$

Definition

1. $\Psi^m(M) = \{ p \in \mathcal{E}_r'(TM) \mid \alpha_{s \ast} p - s^m p \in C^\infty_c(TM) \ \forall s \in \mathbb{R}_+^\times \}$.
2. $\Psi^m(M) = \Psi^m(M)|_{t=1}$.
3. $\Sigma^m(M) = \Psi^m(M)|_{t=0} \cup C^\infty_p(TM)$

Theorem (van Erp-Y.)

$$\Psi^m(M)|_{t=1} = \Psi^m_{cl}(M)$$
Pseudodifferential operators from the tangent groupoid

For $G \Rightarrow M$ a Lie groupoid, we write

$$E'_r(G) = \{ r\text{-fibred distributions with proper support} \}$$

$$= \{ u : C^\infty(G) \to C^\infty(M) \mid C^\infty(M)\text{-linear} \}.$$

Definition

1. $\Psi^m(M) = \{ p \in E'_r(TM) \mid \alpha_{s*}p - s^mp \in C^\infty_c(TM) \quad \forall s \in \mathbb{R}_+^* \}.$
2. $\Psi^m(M) = \Psi^m(M)|_{t=1}.$
3. $\Sigma^m(M) = \Psi^m(M)|_{t=0} / C^\infty_p(TM)$

Theorem (van Erp-Y.)

$$\Psi^m(M)|_{t=1} = \Psi^m_{cl}(M)$$

Philosophy: In order to construct a pseudodifferential calculus, it suffices to construct an appropriate tangent groupoid.
Pseudodifferential operators from the tangent groupoid

The exact sequence

\[0 \rightarrow \mathcal{E}_r'(TM) \xrightarrow{\times t} \mathcal{E}_r'(TM) \xrightarrow{\text{rest}=0} \mathcal{E}_r'(TM) \rightarrow 0 \]
Pseudodifferential operators from the tangent groupoid

The exact sequence

$$0 \longrightarrow \mathcal{E}'_r(TM) \xrightarrow{\times t} \mathcal{E}'_r(TM) \xrightarrow{\text{rest} = 0} \mathcal{E}'_r(TM) \longrightarrow 0$$

gives

$$0 \longrightarrow \Psi^{m-1}(M) \longrightarrow \Psi^m(M) \xrightarrow{\sigma^m} \Sigma^m(M) \longrightarrow 0.$$
The exact sequence

\[0 \longrightarrow \mathcal{E}'_r(\mathbb{T}M) \xrightarrow{\times t} \mathcal{E}'_r(\mathbb{T}M) \xrightarrow{\text{rest}=0} \mathcal{E}'_r(TM) \longrightarrow 0 \]

gives

\[0 \longrightarrow \Psi^{m-1}(M) \longrightarrow \Psi^m(M) \xrightarrow{\sigma^m} \Sigma^m(M) \longrightarrow 0. \]

Corollary

\[\sigma^m(P) \in \Sigma^m(M) \text{ invertible} \Rightarrow P \text{ has a parametrix mod } \Psi^{-1}(M) \]
Variations: Other pseudodifferential calculi
Example I: Pseudodifferential calculus on a filtered manifold

M — closed filtered manifold,
$tM = \text{gr}(TM)$ — osculating Lie algebroid,
TM — osculating groupoid.
Example I: Pseudodifferential calculus on a filtered manifold

\[M \] — closed filtered manifold,
\[tM = \text{gr}(TM) \] — osculating Lie algebroid,
\[\mathcal{T}M \] — osculating groupoid.
\[\delta_s \] — graded dilations on \(tN = \mathcal{T}N \):
\[\delta_s(\xi) = s^k \xi \quad \text{if } \deg \xi = k. \]
Example I: Pseudodifferential calculus on a filtered manifold

\[M \] — closed filtered manifold,
\[tM = \text{gr}(TM) \] — osculating Lie algebroid,
\[TM \] — osculating groupoid.
\[\delta_s \] — graded dilations on \(tN = TN: \delta_s(\xi) = s^k \xi \) if \(\text{deg} \xi = k \).

Theorem (Choi-Ponge, van Erp-Y, Higson-Sadegh, Mohsen)

\[\exists! \text{ smooth structure on the groupoid } \mathbb{T}M = (M \times M) \times \mathbb{R}^\times \sqcup TM \times \{0\} \text{ s.t. } \forall X \in \Gamma^\infty(T^kM) \text{ the sections} \]

\[X_t = \begin{cases} t^k X & \in \Gamma^\infty(TM), \quad t \neq 0 \\ \text{gr}_k X & \in \Gamma^\infty(tM), \quad t = 0 \end{cases} \]

define \(\mathcal{C}^\infty \) sections of the Lie algebroid.
Example I: Pseudodifferential calculus on a filtered manifold

\(M \) — closed filtered manifold,
\(tM = \text{gr}(TM) \) — osculating Lie algebroid,
\(TM \) — osculating groupoid.
\(\delta_s \) — graded dilations on \(tN = TN: \delta_s(\xi) = s^k\xi \) if \(\deg \xi = k \).

Theorem (Choi-Ponge, van Erp-Y, Higson-Sadegh, Mohsen)

\(\exists! \) smooth structure on the groupoid \(TM = (M \times M) \times \mathbb{R}^\times \sqcup TM \times \{0\} \) s.t.
forall \(X \in \Gamma^\infty(T^kM) \) the sections

\[
X_t = \begin{cases}
 t^kX & \in \Gamma^\infty(TM), \quad t \neq 0 \\
 \text{gr}_kX & \in \Gamma^\infty(tM), \quad t = 0
\end{cases}
\]

define \(C^\infty \) sections of the Lie algebroid.

We again have an action of \(\mathbb{R}^\times_+ \):
\(\alpha_s(x, y, t) = (x, y, s^{-1}t), \quad t \neq 0 \)
\(\alpha_s(x, \xi, 0) = (x, \delta_s\xi, 0), \quad t = 0 \).
Example I: Pseudodiff. calculus on a filtered manifold

Def’n.

$$\Sigma^m(M) \xrightarrow{\sigma^m \text{ rest}=0} \Psi^m(M) \xrightarrow{\text{ rest}=1} \Psi^m(M) \subseteq \mathcal{E}'(TM) - \text{ hmg. mod } C^\infty_c(M)$$
Example I: Pseudodiff. calculus on a filtered manifold

Def’n. \(\Sigma^m(M) \xrightarrow{\sigma^m} \Psi^m(M) \xrightarrow{\text{rest}=0} \Psi^m(M) \xrightarrow{\text{rest}=1} \Sigma^m(M) \subseteq \mathcal{E}'(\mathbb{T}M) \rightarrow \text{hmg. mod } C_c^\infty(M) \)

\(\Rightarrow \) \(\Psi^D \) calculus for filtered manifolds (cf. [Beals-Greiner, . . . , Melin]).
Example I: Pseudodiff. calculus on a filtered manifold

Def’n. $\Psi^m(M) \subseteq \mathcal{E}'(TM) \rightleftharpoons \text{hmg. mod } C_c^\infty(M)$

$\Sigma^m(M) \xrightarrow{\sigma^m} \Psi^m(M)$

$\Rightarrow \Psi D$ calculus for filtered manifolds (cf. [Beals-Greiner, . . . , Melin]).

Theorem (van Erp-Y ’17)

$\sigma^m(P) \in \Sigma^m(M) \text{ invertible } \Rightarrow P \text{ admits a parametrix } Q \in \Psi^{-m}(M).$
Variations: Other pseudodifferential calculi

Example I: Pseudodiff. calculus on a filtered manifold

Def’n. \[\Sigma^m(M) \xleftarrow{\sigma^m} \Psi^m(M) \xrightarrow{\text{rest}=1} \subseteq \mathcal{E}'_r(TM) \text{ — hmg. mod } C^\infty_c(M) \]

\[\Rightarrow \) \Psi D calculus for filtered manifolds (cf. [Beals-Greiner, . . . , Melin]).

Theorem (van Erp-Y ’17)

\[\sigma^m(P) \in \Sigma^m(M) \text{ invertible } \Rightarrow \) \(P \) admits a parametrix \(Q \in \Psi^{-m}(M) \).

Theorem (Dave-Haller ’17)

Let \(M \) be a filtered manifold and let \(P \in DO^m \subseteq \Psi^m(M) \). Then \(\sigma^m(P) \) is invertible in \(\Sigma^m(M) \iff P_x \) satisfies the Rockland condition \(\forall x \in M \).
Example I : Pseudodiff. calculus on a filtered manifold

Def’n.

\[\Sigma^m(M) \xleftarrow{\sigma^m} \Psi^m(M) \xrightarrow{\text{rest}=1} \Psi^m(M) \]

\[\subseteq \mathcal{E}'(\mathbb{T}M) \quad \text{hmg. mod } C_c^\infty(M) \]

\(\Rightarrow \) \(\Psi \)D calculus for filtered manifolds (cf. [Beals-Greiner, . . . , Melin]).

Theorem (van Erp-Y ’17)

\(\sigma^m(P) \in \Sigma^m(M) \) invertible \(\Rightarrow P \) admits a parametrix \(Q \in \Psi^{-m}(M) \).

Theorem (Dave-Haller ’17)

Let \(M \) be a filtered manifold and let \(P \in DO^m \subseteq \Psi^m(M) \). Then \(\sigma^m(P) \) is invertible in \(\Sigma^m(M) \) \(\iff P_x \) satisfies the Rockland condition \(\forall x \in M \).

Corollary

Pointwise Rockland condition \(\Rightarrow \) Fredholm.
Example II: Melrose’s b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.
Example II: Melrose’s b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.

Melrose: $\Gamma^\infty(\mathcal{b}TM) = \{ X \in \Gamma^\infty(M) \mid X|_{\partial M} \text{ is tangent to } \partial M \}$.
Example II: Melrose’s b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.

Melrose: $\Gamma^\infty(bTM) = \{ X \in \Gamma^\infty(M) \mid X|_{\partial M} \text{ is tangent to } \partial M \}$.

It is the space of sections of a Lie algebroid bTM.
Example II: Melrose’s b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.

Melrose: $\Gamma^\infty(\mathcal{b}TM) = \{ X \in \Gamma^\infty(M) \mid X|_{\partial M} \text{ is tangent to } \partial M \}$.

It is the space of sections of a Lie algebroid $\mathcal{b}TM$.

Monthubert: $\mathcal{b}G(M) = \text{associated Lie groupoid.}$
Example II: Melrose's b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.

Melrose: $\Gamma^\infty(b \, TM) = \{ X \in \Gamma^\infty(M) \mid X|_{\partial M} \text{ is tangent to } \partial M \}$.

It is the space of sections of a Lie algebroid bTM.

Monthubert: $bG(M) =$ associated Lie groupoid.

Adiabatic groupoid:

$$\mathbb{A}^bG(M) = bG(M) \times \mathbb{R} \bigtimes \setminus bTM \times \{0\}.$$
Example II: Melrose’s b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.

Melrose: $\Gamma^\infty(^bTM) = \{ X \in \Gamma^\infty(M) \mid X|_{\partial M} \text{ is tangent to } \partial M \}$. It is the space of sections of a Lie algebroid bTM.

Monthubert: $^bG(M) = \text{associated Lie groupoid}$.

Adiabatic groupoid:

$$\mathbb{A}^bG(M) = ^bG(M) \times \mathbb{R}^\times \sqcup ^bTM \times \{0\}.$$

Define:

- $\Psi^m(^bG(M)) = \{ p \in \mathcal{E}'_r(\mathbb{A}^bG(M)) \mid \alpha_{s*}p - s^m p \in C^\infty_c(TM) \}$.
Example II: Melrose’s b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.

Melrose: $\Gamma^\infty(\mathring{b}TM) = \{ X \in \Gamma^\infty(M) \mid X|_{\partial M} \text{ is tangent to } \partial M \}$. It is the space of sections of a Lie algebroid $\mathring{b}TM$.

Monthubert: $\mathring{b}G(M)$ = associated Lie groupoid.

Adiabatic groupoid:

$$\mathbb{A}^{\mathring{b}}G(M) = \mathring{b}G(M) \times \mathbb{R}^\times \sqcup \mathring{b}TM \times \{0\}.$$

Define:

- $\Psi^m(\mathring{b}G(M)) = \{ p \in \mathcal{E}'(\mathbb{A}^{\mathring{b}}G(M)) \mid \alpha_s*p - s^m p \in C^\infty_c(\mathbb{T}M) \}$.
- $\Psi^m(\mathring{b}G(M)) = \Psi^m(\mathring{b}G(M))|_{t=1}$.

Robert Yuncken (UCA)
Example II: Melrose’s b-calculus

M — manifold with boundary $\partial M \neq \emptyset$.

Melrose: $\Gamma^\infty(bTM) = \{ X \in \Gamma^\infty(M) \mid X|_{\partial M} \text{ is tangent to } \partial M \}$.

It is the space of sections of a Lie algebroid bTM.

Monthubert: $bG(M) = \text{associated Lie groupoid}$.

Adiabatic groupoid:

$$A^bG(M) = bG(M) \times \mathbb{R}^\times \sqcup bTM \times \{0\}.$$

Define:

- $\Psi^m(bG(M)) = \{ p \in \mathcal{E}'_r(A^bG(M)) \mid \alpha_s*p - s^m p \in C^\infty_c(TM) \}$.
- $\Psi^m(bG(M)) = \Psi^m(bG(M))|_{t=1}$.

Theorem

$\Psi^m(bG(M)) = b$-calculus.
Example III: Rodino’s bisingular calculus

Consider $M = M_1 \times M_2$.
Example III: Rodino’s bisingular calculus

Consider $M = M_1 \times M_2$.

$\Rightarrow C^\infty(M) = C^\infty(M_1) \otimes C^\infty(M_2)$.
Example III: Rodino’s bisingular calculus

Consider $M = M_1 \times M_2$.

$\Rightarrow C^\infty(M) = C^\infty(M_1) \otimes C^\infty(M_2)$.

We want to be able to treat operators of the form

$$P_1 \otimes 1 + 1 \otimes P_2 \text{ avec } P_i \in \Psi^m_{\text{cl}}(M_i).$$

Motivation: Multiplicativity of the index.
Example III: Rodino’s bisingular calculus

Consider $M = M_1 \times M_2$.

$\Rightarrow C^\infty(M) = C^\infty(M_1) \otimes C^\infty(M_2)$.

We want to be able to treat operators of the form

$P_1 \otimes 1 + 1 \otimes P_2 \quad \text{avec } P_i \in \Psi^m_{cl}(M_i)$.

Motivation: Multiplicativity of the index.

Definition

$T_{\text{bising}}(M) := T M_1 \times T M_2 \Rightarrow M_1 \times M_2 \times \mathbb{R}^2$.
Example III: Rodino’s bisingular calculus

Consider \(M = M_1 \times M_2 \).

\[\Rightarrow C^\infty(M) = C^\infty(M_1) \otimes C^\infty(M_2). \]

We want to be able to treat operators of the form

\[P_1 \otimes 1 + 1 \otimes P_2 \quad \text{avec} \quad P_i \in \Psi^m_{cl}(M_i). \]

Motivation: Multiplicativity of the index.

Definition

\[T_{bising}(M) := TM_1 \times TM_2 \Rightarrow M_1 \times M_2 \times \mathbb{R}^2. \]

It admits an action \(\alpha \) of \((\mathbb{R}_+^\times)^2 \) by automorphisms.
Example III: Rodino’s bisingular calculus

Definition

- $\Psi^{m_1,m_2}(M) = \text{the set of } p \in \mathcal{E}'_r(M) \text{ s.t. }$
 - $\WF(\alpha_{(s,0)} * p - s^{m_1} p) \subseteq \text{conormal to the Lie algebroid of } TM_1 \times (M_2 \times \mathbb{R}) \subseteq T_{\text{bising}}(M)$.
 - $\WF(\alpha_{(0,s)} * p - s^{m_2} p) \subseteq \text{conormal to the Lie algebroid of } (M_1 \times \mathbb{R}) \times (TM_2) \subseteq T_{\text{bising}}(M)$.
Example III: Rodino’s bisingular calculus

Definition

\(\Psi^{m_1,m_2}(M) \) = the set of \(\mathbf{p} \in \mathcal{E}'_r(M) \) s.t.

\(\text{WF}(\alpha(s,0) \ast \mathbf{p} - s^{m_1} \mathbf{p}) \subset \text{conormal to the Lie algebroid of} \quad \mathbb{T}M_1 \times (M_2 \times \mathbb{R}) \subset T_{\text{bising}}(M). \)

\(\text{WF}(\alpha(0,s) \ast \mathbf{p} - s^{m_2} \mathbf{p}) \subset \text{conormal to the Lie algebroid of} \quad (M_1 \times \mathbb{R}) \times (TM_2) \subset T_{\text{bising}}(M). \)

\(\Psi^{m_1,m_2}(M) = \Psi^{m_1,m_2}(M)|_{(1,1)}. \)
Example III: Rodino’s bisingular calculus

Definition

- $\mathbf{\Psi}^{m_1,m_2}(M) = \text{the set of } p \in \mathcal{E}'_r(M) \text{ s.t. }$
 - $\WF(\alpha(s,0) \ast p - s^{m_1}p) \subset \text{conormal to the Lie algebroid of } TM_1 \times (M_2 \times \mathbb{R}) \subset T_{\text{bising}}(M)$.
 - $\WF(\alpha(0,s) \ast p - s^{m_2}p) \subset \text{conormal to the Lie algebroid of } (M_1 \times \mathbb{R}) \times (TM_2) \subset T_{\text{bising}}(M)$.
- $\mathbf{\Psi}^{m_1,m_2}(M) = \mathbf{\Psi}^{m_1,m_2}(M)|_{(1,1)}$.

Theorem

$\mathbf{\Psi}^{m_1,m_2}(M) = \text{Rodino’s bisingular calculus.}$