Amenability of actions and Crossed Products

joint work with

Alcides Buss and Rufus Willett

Groupoids and Operator Algebras.

(The Jean Fest)

Orléans, 23 May, 2019.

Siegfried Echterhoff

Westfälische Wilhelms-Universität Münster
Motivation

Amenability of actions of groupoids on spaces or C*-algebras has been a central theme in the (partially joint) work of Jean Renault and Claire Anantharaman-Delaroche.
Motivation

Amenability of actions of groupoids on spaces or C^*-algebras has been a central theme in the (partially joint) work of Jean Renault and Claire Anantharaman-Delaroche.

Theorem (Hulanicki) Let G be a locally compact group. Then

$$G \text{ is amenable} \iff C^*_{\max}(G) = C^*_r(G).$$
Motivation

Amenability of actions of groupoids on spaces or C*-algebras has been a central theme in the (partially joint) work of Jean Renault and Claire Anantharaman-Delaroche.

Theorem (Hulanicki) Let G be a locally compact group. Then

$$G \text{ is amenable} \iff C^*_\text{max}(G) = C^*_r(G).$$

Question: Does a similar characterization of amenability hold for locally compact groupoids or crossed products by actions of groups or groupoids?

$$A \rtimes_{\text{max}} G = A \rtimes_r G \iff \alpha : G \to \text{Aut}(A) \text{ amenable}.$$
Motivation

Amenability of actions of groupoids on spaces or C*-algebras has been a central theme in the (partially joint) work of Jean Renault and Claire Anantharaman-Delaroche.

Theorem (Hulanicki) Let G be a locally compact group. Then

$$G \text{ is amenable } \iff C^*_\text{max}(G) = C^*_r(G).$$

Question: Does a similar characterization of amenability hold for locally compact groupoids or crossed products by actions of groups or groupoids?

$$A \rtimes_{\text{max}} G = A \rtimes_r G \iff \alpha : G \to \text{Aut}(A) \text{ amenable.}$$

In this talk we only consider actions of discrete groups G (which includes the case of the groupoids $X \rtimes G$)!
Outline of this lecture

- Definition of amenability (after Anantharaman-Delaroche)
Outline of this lecture

- Definition of amenability (after Anantharaman-Delaroche)
- Matsumura’s theorem for $X \rtimes G$
Outline of this lecture

- Definition of amenability (after Anantharaman-Delaroche)
- Matsumura’s theorem for $X \rtimes G$
- The injective crossed product $A \rtimes_{\text{inj}} G$.
Outline of this lecture

- Definition of amenability (after Anantharaman-Delaroche)
- Matsumura’s theorem for $X \rtimes G$
- The injective crossed product $A \rtimes_{\text{inj}} G$
- Characterization of $A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G$
Outline of this lecture

• Definition of amenability (after Anantharaman-Delaroche)
• Matsumura’s theorem for $X \rtimes G$
• The injective crossed product $A \rtimes_{\text{inj}} G$.
• Characterization of $A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G$
• Commutant amenable actions
Outline of this lecture

• Definition of amenability (after Anantharaman-Delaroche)
• Matsumura’s theorem for $X \rtimes G$
• The injective crossed product $A \rtimes_{\text{inj}} G$
• Characterization of $A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G$
• Commutant amenable actions
• Matsumura’s theorem revisited
Outline of this lecture

- Definition of amenability (after Anantharaman-Delaroche)
- Matsumura’s theorem for $X \rtimes G$
- The injective crossed product $A \rtimes_{\text{inj}} G$.
- Characterization of $A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G$
- Commutant amenable actions
- Matsumura’s theorem revisited
- The Kaminker-Ozawa theorem on exact groups
Outline of this lecture

- Definition of amenability (after Anantharaman-Delaroche)
- Matsumura’s theorem for $X \rtimes G$
- The injective crossed product $A \rtimes_{inj} G$
- Characterization of $A \rtimes_{max} G = A \rtimes_{inj} G$
- Commutant amenable actions
- Matsumura’s theorem revisited
- The Kaminker-Ozawa theorem on exact groups
- G-injectivity and the G-WEP
Outline of this lecture

- Definition of amenability (after Anantharaman-Delaroche)
- Matsumura’s theorem for $X \rtimes G$
- The injective crossed product $A \rtimes_{\text{inj}} G$.
- Characterization of $A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G$
- Commutant amenable actions
- Matsumura’s theorem revisited
- The Kaminker-Ozawa theorem on exact groups
- G-injectivity and the G-WEP
- On a conjecture of Ozawa.
Let $\alpha : G \to \text{Aut}(A)$ be an action. A function $\theta : G \to A$ is called of positive type, if for all $g_1, \ldots, g_l \in G$ we have

$$(\alpha_{g_i}(\theta(g_i^{-1}g_j)))_{i,j} \in M_l(A)^+. $$
Amenable actions (after Anantharaman-Delaroche)

Let \(\alpha : G \to \text{Aut}(A) \) be an action. A function \(\theta : G \to A \) is called \textit{of positive type}, if for all \(g_1, \ldots, g_l \in G \) we have

\[
(\alpha_{g_i}(\theta(g_i^{-1}g_j)))_{i,j} \in M_l(A)^+.
\]

Definition (Anantharaman-Delaroche ’87) A \(G \)-algebra \(A \) is called \textit{amenable} if there exists a net \(\{\theta_i : G \to \mathbb{Z}(A^{**})\}_{i \in I} \) of \textit{finitely supported positive type} functions such that

1. \(\theta_i(e) \leq 1_{A^{**}} \) \(\forall i \in I \)
2. \(\theta_i(g) \to 1_{A^{**}} \) ultraweakly \(\forall g \in G \),
Amenable actions (after Anantharaman-Delaroche)

Let $\alpha : G \to \text{Aut}(A)$ be an action. A function $\theta : G \to A$ is called of positive type, if for all $g_1, \ldots, g_l \in G$ we have

$$(\alpha_{g_i}(\theta(g_i^{-1}g_j)))_{i,j} \in M_l(A)^+.$$

Definition (Anantharaman-Delaroche ’87) A G-algebra A is called amenable if there exists a net $\{\theta_i : G \to \mathbb{Z}(A^{**})\}_{i \in I}$ of finitely supported positive type functions such that

1. $\theta_i(e) \leq 1_{A^{**}} \quad \forall i \in I$
2. $\theta_i(g) \to 1_{A^{**}}$ ultraweakly $\forall g \in G,$

We call A strongly amenable if there exists a net of finitely supported positive type functions $\theta_i : G \to ZM(A)$ such that

1. $\theta_i(e) \leq 1_{M(A)} \quad \forall i \in I$
2. $\theta_i(g) \to 1_{M(A)}$ strictly $\forall g \in G.$
Amenable actions

The following results are all due to Anantharaman-Delaroche:

- If $A = C_0(X)$ is commutative, then
 A strongly amenable $\iff A$ amenable $\iff X \rtimes G$ amenable.
Amenable actions

The following results are all due to Anantharaman-Delaroche:

- If $A = C_0(X)$ is commutative, then
 A strongly amenable $\iff A$ amenable $\iff X \rtimes G$ amenable.

- A is amenable
 $\iff \exists$ norm one G-projection $P : \ell^\infty(G, A^{**}) \to A^{**}$
 $\iff \exists$ norm one G-projection $P : \ell^\infty(G, Z(A^{**})) \to Z(A^{**})$.
Amenable actions

The following results are all due to Anantharaman-Delaroche:

• If $A = C_0(X)$ is commutative, then A strongly amenable \iff A amenable $\iff X \rtimes G$ amenable.

• A is amenable $\iff \exists$ norm one G-projection $P : \ell^\infty(G, A^{**}) \to A^{**}$ $\iff \exists$ norm one G-projection $P : \ell^\infty(G, Z(A^{**})) \to Z(A^{**})$.

• If A is amenable, then $A \rtimes_{\max} G = A \rtimes_r G$.
Amenable actions

The following results are all due to Anantharaman-Delaroche:

- If $A = C_0(X)$ is commutative, then
 A strongly amenable $\iff A$ amenable $\iff X \rtimes G$ amenable.

- A is amenable
 $\iff \exists$ norm one G-projection $P : \ell^\infty(G, A^{**}) \to A^{**}$
 $\iff \exists$ norm one G-projection $P : \ell^\infty(G, Z(A^{**})) \to Z(A^{**})$.

- If A is amenable, then $A \rtimes_{\text{max}} G = A \rtimes_{\text{r}} G$.

- If A is nuclear, then
 A is amenable $\iff A \rtimes_{\text{max}} G$ is nuclear $\iff A \rtimes_{\text{r}} G$ is nuclear.
Amenable actions

The following results are all due to Anantharaman-Delaroche:

- If $A = C_0(X)$ is commutative, then A strongly amenable $\iff A$ amenable $\iff X \rtimes G$ amenable.

- A is amenable
 $\iff \exists$ norm one G-projection $P : \ell^\infty(G, A^{**}) \to A^{**}$
 $\iff \exists$ norm one G-projection $P : \ell^\infty(G, Z(A^{**})) \to Z(A^{**})$.

- If A is amenable, then $A \rtimes_{\text{max}} G = A \rtimes_{r} G$.

- If A is nuclear, then A is amenable $\iff A \rtimes_{\text{max}} G$ is nuclear $\iff A \rtimes_{r} G$ is nuclear.

Example (Suzuki, 2018) For every non-amenable, exact, discrete group G there exists a unital, simple, nuclear G-algebra A such that $A \rtimes_{\text{max}} G = A \rtimes_{r} G$ is nuclear.

Thus: A is amenable but not strongly amenable!
Matsumura’s theorem

Question: Does \(A \rtimes_{\text{max}} G = A \rtimes_r G \) imply amenability of \(A \)?
Matsumura’s theorem

Question: Does \(A \rtimes_{\text{max}} G = A \rtimes_{r} G \) imply amenability of \(A \)?

Theorem (Matsumura 2014) Suppose \(G \) exact and \(A \) is a unital \(G \)-algebra.

- If \(A = C(X) \), then \(A \rtimes_{\text{max}} G = A \rtimes_{r} G \iff A \) amenable.
- If \(A \) is nuclear, then
 \[
 (A \otimes A^{op}) \rtimes_{\text{max}} G = (A \otimes A^{op}) \rtimes_{r} G \iff A \) amenable.
Matsumura’s theorem

Question: Does $A \rtimes_{\text{max}} G = A \rtimes_r G$ imply amenability of A?

Theorem (Matsumura 2014) Suppose G exact and A is a unital G-algebra.

- If $A = C(X)$, then $A \rtimes_{\text{max}} G = A \rtimes_r G \iff A$ amenable.
- If A is nuclear, then $(A \otimes A^{op}) \rtimes_{\text{max}} G = (A \otimes A^{op}) \rtimes_r G \iff A$ amenable.

Idea of proof: It suffices to show nuclearity of

$$A \rtimes_r G \xrightarrow{\pi} (A \rtimes_r G)^{**}$$

This implies that $A \rtimes_r G$ is nuclear and A amenable!
Matsumura’s theorem

Question: Does \(A \rtimes_{\text{max}} G = A \rtimes_r G \) imply amenability of \(A \)?

Theorem (Matsumura 2014) Suppose \(G \) exact and \(A \) is a unital \(G \)-algebra.

- If \(A = C(X) \), then \(A \rtimes_{\text{max}} G = A \rtimes_r G \iff A \) amenable.
- If \(A \) is nuclear, then
 \[
 (A \otimes A^{op}) \rtimes_{\text{max}} G = (A \otimes A^{op}) \rtimes_r G \iff A \) amenable.

Idea of proof: Matsumura shows the existence of the diagram

\[
\begin{array}{ccc}
A \rtimes_r G & \xrightarrow{\pi} & A^{**} \rtimes_r G \\
& & \downarrow \psi \\
& & (A \rtimes_r G)^{**}
\end{array}
\]
Matsumura’s theorem

Question: Does $A \rtimes_{\max} G = A \rtimes_{r} G$ imply amenability of A?

Theorem (Matsumura 2014) Suppose G exact and A is a unital G-algebra.

- If $A = C(X)$, then $A \rtimes_{\max} G = A \rtimes_{r} G \iff A$ amenable.
- If A is nuclear, then $(A \otimes A^{op}) \rtimes_{\max} G = (A \otimes A^{op}) \rtimes_{r} G \iff A$ amenable.

Idea of proof: He then extends it to a diagram

\[
\begin{array}{ccc}
A \rtimes_{r} G & \xrightarrow{\pi} & (\ell^\infty(G) \otimes A) \rtimes_{r} G \\
\downarrow & & \downarrow \phi & \xrightarrow{A'^{*}} A'^{*} \rtimes_{r} G \\
(\ell^\infty(G) \otimes A) \rtimes_{r} G & \xrightarrow{\psi} & (A \rtimes_{r} G)^{*}
\end{array}
\]

This implies that $\pi : A \rtimes_{r} G \to (A \rtimes_{r} G)^{*}$ is nuclear!
The injective crossed product

Definition For a G-algebra A the *injective crossed product* is defined as

$$A \rtimes_{\text{inj}} G := \overline{C_c(G, A)}_{\| \cdot \|_{\text{inj}}}$$

$$\| f \|_{\text{inj}} = \inf \{ \| \phi \circ f \|_{B \rtimes_{\text{max}} G} \mid \phi : A \hookrightarrow B \text{ a } G\text{-embedding.} \}.$$
The injective crossed product

Definition For a G-algebra A the *injective crossed product* is defined as

$$A
times_{\text{inj}} G := C_c(G, A)_{\|\cdot\|_{\text{inj}}}$$

$$\|f\|_{\text{inj}} = \inf \{\|\phi \circ f\|_{B \rtimes_{\text{max}} G} \mid \phi : A \hookrightarrow B \text{ a } G\text{-embedding.}\}.$$

Theorem (Buss-E-Willett, 2018) $(A, \alpha) \mapsto A \rtimes_{\text{inj}} G$ is the largest (exotic) crossed-product functor which is injective in the sense

$$\phi : A \hookrightarrow B \text{ (G-embedding)} \quad \Rightarrow \quad \phi \rtimes G : A \rtimes_{\text{inj}} G \hookrightarrow B \rtimes_{\text{inj}} G.$$

Moreover, if G is exact, then $A \rtimes_{\text{inj}} G = A \rtimes r G.$
The injective crossed product

Definition For a G-algebra A the *injective crossed product* is defined as

$$A \rtimes_{\text{inj}} G := C_c(G, A) \| \cdot \|_{\text{inj}}$$

$$\| f \|_{\text{inj}} = \inf \{ \| \phi \circ f \|_{B \rtimes_{\max} G} \mid \phi : A \hookrightarrow B \text{ a } G\text{-embedding.} \}.$$

Theorem (Buss-E-Willett, 2018) $(A, \alpha) \mapsto A \rtimes_{\text{inj}} G$ is the largest (exotic) crossed-product functor which is injective in the sense

$$\phi : A \hookrightarrow B \ (G\text{-embedding}) \Rightarrow \phi \rtimes G : A \rtimes_{\text{inj}} G \hookrightarrow B \rtimes_{\text{inj}} G.$$

Moreover, if G is exact, then $A \rtimes_{\text{inj}} G = A \rtimes_r G$.

Proof:

$$A \rtimes_{\text{inj}} G \hookrightarrow (\ell^\infty(G) \otimes A) \rtimes_{\text{inj}} G = (\ell^\infty(G) \otimes A) \rtimes_r G$$
The injective crossed product

Definition For a G-algebra A the injective crossed product is defined as

$$A \rtimes_{\text{inj}} G := \overline{C_c(G, A)}^{\|\cdot\|_{\text{inj}}}$$

$$\|f\|_{\text{inj}} = \inf\{\|\phi \circ f\|_{B \rtimes_{\text{max}} G} \mid \phi : A \hookrightarrow B \text{ a } G\text{-embedding.}\}.$$

Theorem (Buss-E-Willett, 2018) $(A, \alpha) \mapsto A \rtimes_{\text{inj}} G$ is the largest (exotic) crossed-product functor which is injective in the sense

$$\phi : A \hookrightarrow B \text{ (} G\text{-embedding) } \Rightarrow \phi \rtimes G : A \rtimes_{\text{inj}} G \hookrightarrow B \rtimes_{\text{inj}} G.$$

Moreover, if G is exact, then $A \rtimes_{\text{inj}} G = A \rtimes_r G$.

Proof: $A \rtimes_{\text{inj}} G \hookrightarrow (\ell^\infty(G) \otimes A) \rtimes_{\text{inj}} G = (\ell^\infty(G) \otimes A) \rtimes_r G$.

Notice:

$$A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G \iff [A \hookrightarrow B \Rightarrow A \rtimes_{\text{max}} G \hookrightarrow B \rtimes_{\text{max}} G].$$
Injective covariant representations

Definition A covariant rep. \((\pi, u) : (A, G) \to \mathcal{B}(H)\) is injective if:

\[
\forall \phi : A \hookrightarrow B \text{ (}G\text{-hom.}) \exists \begin{cases} \text{ccp map } \sigma : B \to \mathcal{B}(H) \text{ s.t. } \sigma \circ \phi = \pi \\ \text{and } (\sigma, u) \text{ is covariant for } (B, G). \end{cases}
\]
Injective covariant representations

Definition A covariant rep. \((\pi, u) : (A, G) \to \mathcal{B}(H)\) is injective if:

$$\forall \phi : A \hookrightarrow B \ (G\text{-hom.}) \exists \left\{ \begin{array}{l}
\text{ccp map } \sigma : B \to \mathcal{B}(H) \text{ s.t. } \sigma \circ \phi = \pi \\
\text{and } (\sigma, u) \text{ is covariant for } (B, G).
\end{array} \right\}$$

Theorem (BEW) Let \(A\) be a \(G\)-algebra. TFAE:

(a) \(A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G\).

(b) Every covariant rep \((\pi, u)\) of \((A, G)\) is injective.

(c) \(\exists\) an injective covariant rep. \((\pi, u)\) of \((A, G)\) such that \(\pi \rtimes u : A \rtimes_{\text{max}} G \to \mathcal{B}(H)\) is faithful.
Injective covariant representations

Definition A covariant rep. \((\pi, u) : (A, G) \rightarrow \mathcal{B}(H)\) is injective if:

\[\forall \phi : A \hookrightarrow B \ (G\text{-hom.}) \exists \left\{ \begin{array}{l}
\text{ccp map } \sigma : B \rightarrow \mathcal{B}(H) \text{ s.t. } \sigma \circ \phi = \pi \\
\text{and } (\sigma, u) \text{ is covariant for } (B, G).
\end{array} \right.\]

Theorem (BEW) Let \(A\) be a \(G\)-algebra. TFAE:

(a) \(A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G\).

(b) Every covariant rep \((\pi, u)\) of \((A, G)\) is injective.

(c) \(\exists\) an injective covariant rep. \((\pi, u)\) of \((A, G)\) such that \(\pi \rtimes u : A \rtimes_{\text{max}} G \rightarrow \mathcal{B}(H)\) is faithful.

\((c) \Rightarrow (a)\)

\[
\begin{array}{ccc}
A \rtimes_{\text{max}} G & \xrightarrow{\pi \rtimes u} & \mathcal{B}(H)
\end{array}
\]

\[
\begin{array}{ccc}
A \rtimes_{\text{max}} G & \xrightarrow{\phi \rtimes G} & B \rtimes_{\text{max}} G \\
& \xrightarrow{\sigma \rtimes u} & \\
& \xrightarrow{\sigma \rtimes G} &
\end{array}
\]
Injective covariant representations

Definition A covariant rep. \((\pi, u) : (A, G) \to \mathcal{B}(H)\) is injective if:

\[
\forall \phi : A \hookrightarrow B \text{ (}\, G\text{-hom.)} \exists \left\{ \text{ccp map } \sigma : B \to \mathcal{B}(H) \text{ s.t. } \sigma \circ \phi = \pi \right\}
\text{ and } (\sigma, u) \text{ is covariant for } (B, G).
\]

Theorem (BEW) Let \(A\) be a \(G\)-algebra. TFAE:

(a) \(A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G\).

(b) Every covariant rep \((\pi, u)\) of \((A, G)\) is injective.

(c) \(\exists\) an injective covariant rep. \((\pi, u)\) of \((A, G)\) such that \(\pi \rtimes u : A \rtimes_{\text{max}} G \to \mathcal{B}(H)\) is faithful.

\[(c) \Rightarrow (a)\hspace{1cm} (a) \Rightarrow (b)\hspace{1cm} \sigma := \pi \rtimes u|_B\]

\[
\begin{array}{ccc}
A \rtimes_{\text{max}} G & \xrightarrow{\pi \ltimes u} & \mathcal{B}(H) \\
\phi \rtimes G & \downarrow & \sigma \rtimes u \\
A \rtimes_{\text{max}} G & \xrightarrow{\pi \ltimes u} & \mathcal{B}(H)
\end{array}
\]

\[
\begin{array}{ccc}
A \rtimes_{\text{max}} G & \xrightarrow{\pi \ltimes u} & \mathcal{B}(H) \\
\phi \rtimes G & \downarrow & \pi \rtimes u \\
A \rtimes_{\text{max}} G & \xrightarrow{\pi \ltimes u} & \mathcal{B}(H)
\end{array}
\]
Lemma. Let \((\pi, u) : (A, G) \rightarrow \mathcal{B}(H)\) be injective with \(\pi\) nondeg.
Let \(C\) be any unital \(G\)-algebra.

Then there exists a ucp map

\[\phi : C \rightarrow \pi(A)' \subseteq \mathcal{B}(H) \quad \text{s.t.} \quad (\phi, u) \text{ is covariant for } (C, G). \]

This applies in particular to \(C = \ell^\infty(G)\).
Injective covariant representations

Lemma. Let \((\pi, u) : (A, G) \to \mathcal{B}(H)\) be injective with \(\pi\) nondeg.. Let \(C\) be any unital \(G\)-algebra. Then there exists a ucp map

\[\phi : C \to \pi(A)' \subseteq \mathcal{B}(H) \quad \text{s.t.} \quad (\phi, u) \text{ is covariant for } (C, G). \]

This applies in particular to \(C = \ell^\infty(G)\).

Proof: Consider \(\iota_A, \iota_C : A, C \hookrightarrow M(C \otimes A)\). Injectivity of \((\pi, u)\) implies:

\[\exists \ \text{ucp map } \sigma : M(C \otimes A) \to \mathcal{B}(H) \quad \text{s.t.} \quad \sigma \circ \iota_A = \pi \quad \text{and} \quad (\sigma, u) \text{ covariant.} \]

Put \(\phi = \sigma \circ \iota_C\). Then \((\phi, u)\) is covariant and \(\phi(C') \subseteq \pi(A)'

(notice that \(\iota_A(A)\) lies in the multiplicative domain of \(\sigma\)!)
Commutant amenability

Definition \((\pi, u) : (A, G) \to \mathcal{B}(H)\) is commutant amenable if there exists a net of finitely supported positive type functions \(\theta_i : G \to \pi(A)'\) (with resp. to \(\beta = \text{Ad} u\)) such that

(i) \(\theta_i(e) \leq 1\), and

(ii) \(\forall g \in G : \theta_i(g) \to 1\) ultraweakly as \(i \to \infty\)

\[\theta_i : G \to \pi(A)'\]
Commutant amenability

Definition \((\pi, u) : (A, G) \rightarrow \mathcal{B}(H)\) is commutant amenable if there exists a net of finitely supported positive type functions \(\theta_i : G \rightarrow \pi(A)'\) (with resp. to \(\beta = \text{Ad} u\)) such that

(i) \(\theta_i(e) \leq 1\), and

(ii) \(\forall g \in G : \theta_i(g) \rightarrow 1\) ultraweakly as \(i \rightarrow \infty\)

We say \(A\) is commutant amenable if this holds for all \((\pi, u)\).
Commutant amenability

Definition \((\pi, u) : (A, G) \to \mathcal{B}(H)\) is commutant amenable if there exists a net of finitely supported positive type functions \(\theta_i : G \to \pi(A)'\) (with resp. to \(\beta = \text{Ad } u\)) such that

(i) \(\theta_i(e) \leq 1\), and

(ii) \(\forall g \in G : \theta_i(g) \to 1\) ultraweakly as \(i \to \infty\)

We say \(A\) is commutant amenable if this holds for all \((\pi, u)\).

Remark (a) \(A\) amenable \(\Rightarrow\) \(A\) commutant amenable.
Commutant amenability

Definition $(\pi, u) : (A, G) \to B(H)$ is **commutant amenable** if there exists a net of finitely supported positive type functions

$$\theta_i : G \to \pi(A)'$$ (with resp. to $\beta = \text{Ad } u$)

such that

(i) $\theta_i(e) \leq 1$, and

(ii) $\forall g \in G : \theta_i(g) \to 1$ ultraweakly as $i \to \infty$

We say A is commutant amenable if this holds for all (π, u).

Remark (a) A amenable $\Rightarrow A$ commutant amenable.

(b) wlog \exists finitely supported functions $\xi_i \in \ell^2(G, \pi(A)')$ s.t,

$$\theta_i(g) = \langle \xi_i, \tilde{\beta}_g(\xi_i) \rangle_{\pi(A)'}, \quad \forall g \in G.$$
Commutant amenability

Theorem (BEW) If the G-algebra A is commutant amenable, then

$$A
times_{\text{max}} G = A
times_{\text{inj}} G = A
times_r G.$$

If G is **exact**, the converse holds as well!

Proof of converse:
Assume that G is exact and $A
times_{\text{max}} G = A
times_{\text{inj}} G$. Then every cov. rep. (π, u) is injective. Thus there exists a G-ucp map

$$\phi : \ell^\infty(G) \to \pi(A)^{'}$$

G being exact, $\ell^\infty(G)$ is amenable. Hence, there exist fin. sup. positive type functions

$$\eta_i : G \to \ell^\infty(G) \quad \text{satisfying (i) and (ii)}.$$

Put

$$\theta_i = \phi \circ \eta_i : G \to \pi(A)^{'}. $$
Haagerup’s standard form

Theorem (Haagerup) Let A be a G-algebra. Then there exist normal, unital, and faithful reps.

$$\pi : A^{**} \to \mathcal{B}(H), \quad \pi^{op} : (A^{op})^{**} \to \mathcal{B}(H)$$

and a unitary rep $u : G \to U(H)$ such that

(i) (π, u) and (π^{op}, u) are covariant;

(ii) $\pi(A)' = \pi^{op}((A^{op})^{**}) \cong (A^{op})^{**}$, \quad $\pi^{op}(A^{op})' = \pi(A^{**}) \cong A^{**}$;

(iii) if A is commutative, then $\pi(A)' \cong A^{**} = Z(A^{**})$.

Amenability of actions and Crossed Products joint work with Alcides Buss and Rufus Willett – p.14/25
Haagerup’s standard form

Theorem (Haagerup) Let A be a G-algebra. Then there exist normal, unital, and faithful reps.

$$
\pi : A^{**} \to \mathcal{B}(H), \quad \pi^{op} : (A^{op})^{**} \to \mathcal{B}(H)
$$

and a unitary rep $u : G \to U(H)$ such that

(i) (π, u) and (π^{op}, u) are covariant;

(ii) $\pi(A)' = \pi^{op}((A^{op})^{**}) \cong (A^{op})^{**}$,

(iii) if A is commutative, then $\pi(A)' \cong A^{**} = Z(A^{**})$.

Corollary (a) A amenable $\iff A \otimes_{\text{max}} A^{op}$ commutant amenable.

(since (ii) implies $Z(A^{**}) = \pi \otimes \pi^{op}(A \otimes_{\text{max}} A^{op})'$).

(b) If A is commutative, then (since $\pi(A)' \cong A^{**} = Z(A^{**})$)

A amenable $\iff A$ commutant amenable.
Matsumura’s theorem revisited

Theorem (BEW) Suppose that G is *exact* and A is a G-algebra. Then the following are equivalent:

(i) A is amenable.

(ii) $A \otimes_{\max} A^{op}$ is amenable.

(iii) $A \otimes_{\max} A^{op}$ is commutant amenable.

(iv) $(A \otimes_{\max} A^{op}) \rtimes_{\max} G = (A \otimes_{\max} A^{op}) \rtimes_{r} G.$
Matsumura’s theorem revisited

Theorem (BEW) Suppose that G is exact and A is a G-algebra. Then the following are equivalent:

(i) A is amenable.
(ii) $A \otimes_{\max} A^{\text{op}}$ is amenable.
(iii) $A \otimes_{\max} A^{\text{op}}$ is commutant amenable.
(iv) $(A \otimes_{\max} A^{\text{op}}) \rtimes_{\max} G = (A \otimes_{\max} A^{\text{op}}) \rtimes_r G$.

Assume, in addition, that A is commutative. Then the following are equivalent:

(a) A is (strongly) amenable.
(b) A is commutant amenable.
(c) $A \rtimes_{\max} G = A \rtimes_r G$.

In particular: $C^*_\max(X \rtimes G) \cong C^*_r(X \rtimes G) \iff X \rtimes G$ is amenable.
Theorem (BEW) Let A be unital and commutant amenable. Then:

(i) A nuclear $\Rightarrow A \rtimes_r G \hookrightarrow (A \otimes A^{op}) \rtimes_r G$ is nuclear.

(ii) A exact $\Rightarrow A \rtimes_r G$ exact.

(iii) G is exact.
The Kaminker-Ozawa theorem

Theorem (BEW) Let A be unital and commutant amenable. Then:

(i) A nuclear \Rightarrow $A \rtimes_r G \hookrightarrow (A \otimes A^{op}) \rtimes_r G$ is nuclear.
(ii) A exact \Rightarrow $A \rtimes_r G$ exact.
(iii) G is exact.

Proof: Use $\pi(A)' = \pi^{op}((A^{op})^{**})$ in Haagerup’s rep. to show:

$\exists \xi_i : G \rightarrow A^{op}$ with finite supp. s.t. $\theta_i(g) = \langle \xi_i, \tilde{\alpha}^{op}_g(\xi_i) \rangle \rightarrow 1_{A^{op}}$
The Kaminker-Ozawa theorem

Theorem (BEW) Let A be unital and commutant amenable. Then:

(i) A nuclear $\Rightarrow A \rtimes_r G \hookrightarrow (A \otimes A^{op}) \rtimes_r G$ is nuclear.

(ii) A exact $\Rightarrow A \rtimes_r G$ exact.

(iii) G is exact.

Proof: Use $\pi(A)' = \pi^{op}((A^{op})^{**})$ in Haagerup’s rep. to show:

$\exists \xi_i : G \rightarrow A^{op}$ with finite supp. s.t. $\theta_i(g) = \langle \xi_i, \tilde{\alpha}_g^{op}(\xi_i) \rangle \rightarrow 1_{A^{op}}$

We then get

$$A \rtimes_r G \xrightarrow{(\iota_A \otimes 1) \times G} (A \otimes_{\text{max}} A^{op}) \rtimes_r G$$

$$\psi_F \downarrow \quad \phi_F$$

$$A \otimes M_F$$

for $F \subseteq G$ finite, such that $\phi_f \circ \psi_F$ approximates $(\iota_A \otimes 1) \times G$.
The Kaminker-Ozawa theorem

Theorem (BEW) Let A be unital and commutant amenable. Then:

(i) A nuclear $\Rightarrow A \rtimes_r G \hookrightarrow (A \otimes A^{op}) \rtimes_r G$ is nuclear.
(ii) A exact $\Rightarrow A \rtimes_r G$ exact.
(iii) G is exact.

Proof: If A is exact, we consider the extended diagram:

$$
\begin{array}{c}
A \rtimes_r G^C \\
\downarrow \psi_F \\
A \otimes M_F \\
\downarrow \phi_F \\
(A \otimes_{max} A^{op}) \rtimes_r G^C \\
\downarrow \\
B(H \otimes \ell^2(G'))
\end{array}
$$

Hence $A \rtimes_r G$ is exact!
The Kaminker-Ozawa theorem

Theorem (BEW) Let A be unital and commutant amenable. Then:

(i) A nuclear $\Rightarrow A \rtimes_r G \hookrightarrow (A \otimes A^{op}) \rtimes_r G$ is nuclear.

(ii) A exact $\Rightarrow A \rtimes_r G$ exact.

(iii) G is exact.

Proof: If G is exact, restrict the diagram to $C^*_r(G) \subseteq A \rtimes_r G$:

$$
\begin{array}{c}
C^*_r(G) \subseteq A \rtimes_r G \xrightarrow{(\iota A \otimes 1) \times G} (A \otimes_{\text{max}} A^{op}) \rtimes_r G \xrightarrow{\phi_F} \mathcal{B}(H \otimes \ell^2(G))
\end{array}
$$

Hence $C^*_r(G)$ (and therefore G) is exact!
The Kaminker-Ozawa theorem

Corollary (cf Kaminker-Ozawa theorem) TFAE

(a) G is exact.
(b) There exists a compact amenable G-space X.
(c) There exists a (strongly) amenable, unital G-algebra A.
(d) There exists a commutant amenable, unital G-algebra A.
Injective G-algebras and the G-WEP

Definition Let A be a G-algebra, $\iota : A \hookrightarrow A^{**}$ the canonical map.

(a) A is called G-injective, if

$$\forall \psi : A \hookrightarrow B \text{ (}G\text{-emb.)} \exists \text{ cond. exp. } P : B \to A \text{ s.t. } P \circ \psi = \text{id}_A.$$

(b) A has the G-WEP, if

$$\forall \psi : A \hookrightarrow B \text{ (}G\text{-emb.)} \exists \text{ ccp map } P : B \to A^{**} \text{ s.t. } P \circ \psi = \iota.$$
Injective G-algebras and the G-WEP

Definition Let A be a G-algebra, $\iota : A \hookrightarrow A^{**}$ the canonical map.

(a) A is called G-injective, if

$\forall \psi : A \hookrightarrow B$ (G-emb.) \exists cond. exp. $P : B \to A$ s.t. $P \circ \psi = \text{id}_A$.

(b) A has the G-WEP, if

$\forall \psi : A \hookrightarrow B$ (G-emb.) \exists ccp map $P : B \to A^{**}$ s.t. $P \circ \psi = \iota$.

Examples

(1) $\ell^\infty(G, B)$ is G-injective for any injective B (e.g., $B = B(H)$).
Injective G-algebras and the G-WEP

Definition Let A be a G-algebra, $\iota : A \hookrightarrow A^{**}$ the canonical map.

(a) A is called G-injective, if

$$\forall \psi : A \hookrightarrow B \ (G\text{-emb.}) \ \exists \ \text{cond. exp.} \ P : B \to A \ \text{s.t.} \ P \circ \psi = \text{id}_A.$$

(b) A has the G-WEP, if

$$\forall \psi : A \hookrightarrow B \ (G\text{-emb.}) \ \exists \ \text{ccp map} \ P : B \to A^{**} \ \text{s.t.} \ P \circ \psi = \iota.$$

Examples

(1) $\ell^\infty(G, B)$ is G-injective for any injective B (e.g., $B = \mathcal{B}(H)$).

(2) A has the G-WEP if \exists G-injective C such that $A \hookrightarrow C \hookrightarrow A^{**}$.
Injective G-algebras and the G-WEP

Definition Let A be a G-algebra, $\iota : A \hookrightarrow A^{**}$ the canonical map.

(a) A is called G-injective, if

$$\forall \psi : A \hookrightarrow B \text{ (G-emb.) } \exists \text{ cond. exp. } P : B \to A \text{ s.t. } P \circ \psi = \text{id}_A.$$

(b) A has the G-WEP, if

$$\forall \psi : A \hookrightarrow B \text{ (G-emb.) } \exists \text{ ccp map } P : B \to A^{**} \text{ s.t. } P \circ \psi = \iota.$$

Examples

1. $\ell^\infty(G, B)$ is G-injective for any injective B (e.g., $B = B(H)$).

2. A has the G-WEP if \exists G-injective C such that $A \hookrightarrow C \hookrightarrow A^{**}$

3. If A has the G-WEP (or A is G-injective), then

$$A \rtimes_{\text{max}} G = A \rtimes_{\text{inj}} G.$$
Injective G-algebras and the G-WEP

Theorem (BEW) Let A be a G-algebra.

(a) If G is exact TFAE:

(i) A is amenable and has the WEP.

(ii) A has the G-WEP.
Injective G-algebras and the G-WEP

Theorem (BEW) Let A be a G-algebra.

(a) If G is exact TFAE:

(i) A is amenable and has the WEP.

(ii) A has the G-WEP.

(b) For a G-algebra A TFAE

(i) A is amenable and A^{**} is injective.

(ii) A^{**} is G-injective.
Injective G-algebras and the G-WEP

Theorem (BEW) Let A be a G-algebra.

(a) If G is exact TFAE:
 (i) A is amenable and has the WEP.
 (ii) A has the G-WEP.

(b) For a G-algebra A TFAE
 (i) A is amenable and A^{**} is injective.
 (ii) A^{**} is G-injective.

(ii) \Rightarrow (i) Consider the inclusion $\iota : A^{**} \hookrightarrow \ell^{\infty}(G, A^{**})$. By G-injectivity of A^{**} we obtain a G-conditional exp.

$$P : \ell^{\infty}(G, A^{**}) \rightarrow A^{**}$$

hence one of the equivalent characterizations of amenability.
The G-injective envelope

For a G-algebra A let $I_G(A)$ denote Hamana’s G-injective envelope of A, i.e., If $A \hookrightarrow B$ and B is G-injective, then

$$A \hookrightarrow I_G(A) \hookrightarrow B.$$

Note that $I_G(A)$ is always unital!
The G-injective envelope

For a G-algebra A let $I_G(A)$ denote Hamana’s G-injective envelope of A, i.e., If $A \hookrightarrow B$ and B is G-injective, then

$$A \hookrightarrow I_G(A) \hookrightarrow B.$$

Note that $I_G(A)$ is always unital!

Theorem (BEW) For a discrete group G TFAE:

(i) G is exact.

(ii) $I_G(A)$ is (strongly) amenable for every G-algebra A.

(iii) $I_G(A)$ is (strongly) amenable for some G-algebra A.
The G-injective envelope

For a G-algebra A let $I_G(A)$ denote Hamana’s G-injective envelope of A, i.e., If $A \hookrightarrow B$ and B is G-injective, then

$$A \hookrightarrow I_G(A) \hookrightarrow B.$$

Note that $I_G(A)$ is always unital!

Theorem (BEW) For a discrete group G TFAE:

(i) G is exact.

(ii) $I_G(A)$ is (strongly) amenable for every G-algebra A.

(iii) $I_G(A)$ is (strongly) amenable for some G-algebra A.

Idea for (i) \Rightarrow (ii): Use G-injectivity of $I_G(A)$ to the inclusion

$$A \hookrightarrow \ell^\infty(G) \otimes A$$

to obtain a ucp map $\ell^\infty(G) \rightarrow Z(I_G(A))$.

Amenability of actions and Crossed Products joint work with Alcides Buss and Rufus Willett – p.22/25
Ozawa’s conjecture

Conjecture (Ozawa) For every exact C*-algebra B there exists a nuclear C*-algebra $N(B)$ such that

$$B \subseteq N(B) \subseteq I(B) \quad (I(B) \text{ inj. env. of } B)$$

Kalantar & Kennedy 2017 The conjecture holds for $C^*_r(G)$.
Ozawa’s conjecture

Conjecture (Ozawa) For every exact C*-algebra B there exists a nuclear C*-algebra $N(B)$ such that

$$B \subseteq N(B) \subseteq I(B) \quad (I(B) \text{ inj. env. of } B)$$

Kalantar & Kennedy 2017 The conjecture holds for $C^*_r(G)$.

Corollary (BEW-Suzuki) Suppose G is exact and A is nuclear.
Then Ozawa’s conjecture holds for $A \rtimes_r G$.
Ozawa’s conjecture

Conjecture (Ozawa) For every exact C^*-algebra B there exists a nuclear C^*-algebra $N(B)$ such that

$$B \subseteq N(B) \subseteq I(B) \quad (I(B) \text{ inj. env. of } B)$$

Kalantar & Kennedy 2017 The conjecture holds for $C^*_r(G)$.

Corllary (BEW-Suzuki) Suppose G is exact and A is nuclear. Then Ozawa’s conjecture holds for $A \rtimes_r G$.

Proof: $I_G(A)$ strongly amenable $\Rightarrow Z(I_G(A))$ amenable. Then

$$D := C^*(A \cup Z(I_G(A))) \subseteq I_G(A)$$

is nuclear and amenable. Hence $N(B) := D \rtimes_r G$ is nuclear, and

$$A \rtimes_r G \subseteq N(B) = D \rtimes_r G \subseteq I_G(A) \rtimes_r G^{Hamana} \subseteq I(A \rtimes_r G).$$
References

My best wishes to Jean!
Thank you for your friendship!