A groupoid approach to classifiable C*-algebras

Xin Li
A groupoid approach to classifiable C*-algebras
A groupoid approach to classifiable C*-algebras
A groupoid approach to classifiable C*-algebras

Goal: Construct Cartan subalgebras in all classifiable C*-algebras.
What does “classifiable” mean?

Classification programme for C*-algebras

Classify all simple, nuclear C*-algebras by

\[\text{Ell}(A) = (K_0(A) \ (\&\ldots),\ T(A),\ r_A,\ K_1(A)). \]
What does “classifiable” mean?

Classification programme for C*-algebras

Classify all simple, nuclear C*-algebras by

\[\text{Ell}(A) = (K_0(A) \ (\& \ldots), \ T(A), \ r_A, \ K_1(A)). \]

- But: There are counterexamples (Villadsen, Rørdam, Toms)
What does “classifiable” mean?

Classification programme for C*-algebras

Classify all simple, nuclear C*-algebras by

\[\text{Ell}(A) = (K_0(A) \ (\& \ldots), \ T(A), \ r_A, \ K_1(A)). \]

- But: There are counterexamples (Villadsen, Rørdam, Toms)
- So: We need regularity (Toms-Winter): \(\mathcal{Z} \)-stability \((A \cong \mathcal{Z} \otimes A) \)
What does “classifiable” mean?

Classification programme for C*-algebras

Classify all simple, nuclear C*-algebras by

\[\text{Ell}(A) = (K_0(A) \& \ldots, T(A), r_A, K_1(A)). \]

- But: There are counterexamples (Villadsen, Rørdam, Toms)
- So: We need regularity (Toms-Winter): \(\mathcal{Z} \)-stability \((A \cong \mathcal{Z} \otimes A) \)

Big Classification Theorem

(Unital) Separable simple nuclear \(\mathcal{Z} \)-stable UCT C*-algebras are classified by \(\text{Ell}(\cdot) \).
What is a Cartan subalgebra?

Definition:
Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if
(i) B is a maximal abelian sub-C*-algebra;
(ii) B is regular: $N_A(B) := \{ n \in A : nBn^* \subseteq B$ and $n^*Bn \subseteq B \}$ generates A as a C*-algebra;
(iii) B contains an approximate identity of A;
(iv) There exists a faithful conditional expectation $P : A \twoheadrightarrow B$.

Examples:
• $D_n \subseteq M_n$• Given a topological dynamical system $\Gamma \curvearrowright X$, $C_0(X) \subseteq C_0(X) \rtimes_r \Gamma$ is Cartan $\iff \Gamma \curvearrowright X$ is topologically free: For all $e \neq g \in \Gamma$, $\{ x \in X : g.x \neq x \} \subseteq X$ dense.

Theorem (Kumjian, Renault): Every Cartan pair (A, B) is of the form $(C_\ast r(G, \Sigma), C_0(G(0)))$, where (G, Σ) is a twist over an étale locally compact Hausdorff effective groupoid.
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if
Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular:

$$N_A(B) := \{ n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B \}$$

generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \twoheadrightarrow B$.

Examples:

• $D_n \subseteq M_n$;

• Given a topological dynamical system $\Gamma \curvearrowright X$, $C_0(X) \subseteq C_0(X) \rtimes_r \Gamma$ is Cartan $\iff \Gamma \curvearrowright X$ is topologically free:

$$\{ x \in X : g.x \neq x \} \subseteq X \text{ dense}.$$
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{ n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B \}$ generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \twoheadrightarrow B$.

Examples:

- $D_n \subseteq M_n$ for all n.
- Given a topological dynamical system $\Gamma \curvearrowright X$, $C_0(X) \subseteq C_0(X)^r \curvearrowright_r \Gamma$ is Cartan if and only if $\Gamma \curvearrowright X$ is topologically free:

 For all $e \neq g \in \Gamma$,
 $$\{ x \in X : g \cdot x \neq x \} \subseteq X \text{ dense.}$$

Theorem (Kumjian, Renault): Every Cartan pair (A, B) is of the form $(C^*(r(G, \Sigma)), C_0(G(0)))$, where (G, Σ) is a twist over an étale locally compact Hausdorff effective groupoid G.

What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B\}$ generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

Examples:

- $D_n \subseteq M_n$
- Given a topological dynamical system $\Gamma \curvearrowright X$, $C_0(X) \subseteq C_0(X) \rtimes_r \Gamma$ is Cartan $\iff \Gamma \curvearrowright X$ is topologically free: for all $e \neq g \in \Gamma$, \{x \in X : g.x \neq x\} \subseteq X$ dense.

Theorem (Kumjian, Renault): Every Cartan pair (A, B) is of the form $(C^*_r(G, \Sigma), C_0(G(0)))$, where (G, Σ) is a twist over an étale locally compact Hausdorff effective groupoid G.
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{n \in A : nBn^* \subseteq B$ and $n^*Bn \subseteq B\}$ generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \twoheadrightarrow B$.

Examples:

- $D_n \subseteq M_n$
- Given a topological dynamical system $\Gamma \curvearrowright X$, $C_0(X) \subseteq C_0(X)^\Gamma$ is Cartan $\iff \Gamma \curvearrowright X$ is topologically free: for all $e \neq g \in \Gamma$, $\{x \in X : g.x \neq x\}$ is dense.

Theorem (Kumjian, Renault): Every Cartan pair (A, B) is of the form $(C^* r(G, \Sigma), C_0(G(0)))$, where (G, Σ) is a twist over an étale locally compact Hausdorff effective groupoid G.

4
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{ n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B \}$ generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \rightarrow B$.

Examples:
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{ n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B \}$
 generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \to B$.

Examples: • $D_n \subseteq M_n$
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{ n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B \}$ generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \to B$.

Examples:

- $D_n \subseteq M_n$
- Given a topological dynamical system $\Gamma \curvearrowright X$,
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{n \in A : nBn^* \subseteq B$ and $n^*Bn \subseteq B\}$ generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \rightarrow B$.

Examples:

- $D_n \subseteq M_n$
- Given a topological dynamical system $\Gamma \curvearrowright X$, $C_0(X) \subseteq C_0(X) \rtimes_r \Gamma$ is Cartan $\iff \Gamma \curvearrowright X$ is topologically free:
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;
(ii) B is regular: $N_A(B) := \{n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B\}$ generates A as a C*-algebra;
(iii) B contains an approximate identity of A;
(iv) There exists a faithful conditional expectation $P : A \twoheadrightarrow B$.

Examples:

• $D_n \subseteq M_n$
• Given a topological dynamical system $\Gamma \curvearrowleft X$, $C_0(X) \subseteq C_0(X) \rtimes_r \Gamma$ is Cartan $\iff \Gamma \curvearrowleft X$ is topologically free:
 For all $e \neq g \in \Gamma$, $\{x \in X : g \cdot x \neq x\} \subseteq X$ dense.
What is a Cartan subalgebra?

Definition: Let A be a C*-algebra. $B \subseteq A$ is a Cartan subalgebra if

(i) B is a maximal abelian sub-C*-algebra;

(ii) B is regular: $N_A(B) := \{ n \in A : nBn^* \subseteq B \text{ and } n^*Bn \subseteq B \}$ generates A as a C*-algebra;

(iii) B contains an approximate identity of A;

(iv) There exists a faithful conditional expectation $P : A \twoheadrightarrow B$.

Examples:

- $D_n \subseteq M_n$
- Given a topological dynamical system $\Gamma \act X$, $C_0(X) \subseteq C_0(X) \rtimes \Gamma$ is Cartan $\iff \Gamma \act X$ is topologically free:
 For all $e \neq g \in \Gamma$, \(\{ x \in X : g.x \neq x \} \subseteq X \) dense.

Theorem (Kumjian, Renault): Every Cartan pair (A, B) is of the form $(C^*_r(G, \Sigma), C_0(G^{(0)}))$, where (G, Σ) is a twist over an étale locally compact Hausdorff effective groupoid G.

Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra. More precisely, given data E which could possibly be the Elliott invariant of a classifiable C*-algebra (i.e., E is weakly unperforated), there is a Cartan pair (A, B), with A classifiable, such that $\text{Ell}(A) \sim = E$.

In the purely infinite case (i.e., for Kirchberg algebras), this follows from work of Spielberg, Katsura, Exel-Pardo ...

In the stably finite case, there are partial results by Deeley-Putnam-Strung, Putnam, Austin-Mitra.

Idea of proof: Thomsen, Elliott, Gong-Lin-Niu, ... already constructed $\lim \rightarrow$ models exhausting the Elliott invariant. So we need to construct Cartan subalgebras in $\lim \rightarrow$ C*-algebras.
Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra.
Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra. More precisely, given data \mathcal{E} which could possibly be the Elliott invariant of a classifiable C*-algebra (i.e., \mathcal{E} is weakly unperforated), there is a Cartan pair (A, B), with A classifiable, such that $\text{Ell}(A) \cong \mathcal{E}$.
Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra. More precisely, given data \mathcal{E} which could possibly be the Elliott invariant of a classifiable C*-algebra (i.e., \mathcal{E} is weakly unperforated), there is a Cartan pair (A, B), with A classifiable, such that $\text{Ell}(A) \cong \mathcal{E}$.

- In the purely infinite case (i.e., for Kirchberg algebras), this follows from work of Spielberg, Katsura, Exel-Pardo ...
- In the stably finite case, there are partial results by Deeley-Putnam-Strung, Putnam, Austin-Mitra.
Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra. More precisely, given data \mathcal{E} which could possibly be the Elliott invariant of a classifiable C*-algebra (i.e., \mathcal{E} is weakly unperforated), there is a Cartan pair (A, B), with A classifiable, such that $\text{Ell}(A) \cong \mathcal{E}$.

- In the purely infinite case (i.e., for Kirchberg algebras), this follows from work of Spielberg, Katsura, Exel-Pardo ...
- In the stably finite case, there are partial results by Deeley-Putnam-Strung, Putnam, Austin-Mitra.

- Idea of proof: Thomsen, Elliott, Gong-Lin-Niu, ... already constructed $\operatorname{lim}^{-} \models$ models exhausting the Elliott invariant.
Theorem (L): Every classifiable C*-algebra has a Cartan subalgebra. More precisely, given data \mathcal{E} which could possibly be the Elliott invariant of a classifiable C*-algebra (i.e., \mathcal{E} is weakly unperforated), there is a Cartan pair (A, B), with A classifiable, such that $\text{Ell}(A) \cong \mathcal{E}$.

- In the purely infinite case (i.e., for Kirchberg algebras), this follows from work of Spielberg, Katsura, Exel-Pardo ...
- In the stably finite case, there are partial results by Deeley-Putnam-Strung, Putnam, Austin-Mitra.

- Idea of proof: Thomsen, Elliott, Gong-Lin-Niu, ... already constructed \varprojlim models exhausting the Elliott invariant. So we need to construct Cartan subalgebras in \varprojlim C*-algebras.
Theorem (Barlak-L): Let \((A_n, B_n)\) be Cartan pairs with normalizers \(N_n := N_{A_n}(B_n)\) and faithful conditional expectations \(P_n : A_n ↠ B_n\). Let \(ϕ_n : A_n ↠ A_{n+1}\) be injective \(*\)-homomorphisms with \(ϕ_n(B_n) ⊆ B_{n+1}\), \(ϕ_n(N_n) ⊆ N_{n+1}\) and \(P_{n+1} \circ ϕ_n = ϕ_n \circ P_n\) for all \(n\).

Then \(\lim_{→} \{B_n; ϕ_n\}\) is a Cartan subalgebra of \(\lim_{→} \{A_n; ϕ_n\}\).

What does condition (1) mean?

Proposition (L): Let \((G_n, Σ_n)\) be twisted groupoid of \((A_n, B_n)\). \(ϕ_n : A_n ↠ A_{n+1}\) satisfies (1) if and only if there exists \((G_n, Σ_n)\) \(π ↹ (H, T)\) \(ι ↹ (G_{n+1}, Σ_{n+1})\), where \(ι\) has open image, and \(π\) is proper and fibrewise bijective, such that \(ϕ_n = ι^* \circ π^*\).
Theorem (Barlak-L): Let \((A_n, B_n)\) be Cartan pairs with normalizers \(N_n := N_{A_n}(B_n)\) and faithful conditional expectations \(P_n : A_n \twoheadrightarrow B_n\).
Theorem (Barlak-L): Let (A_n, B_n) be Cartan pairs with normalizers $N_n := N_{A_n}(B_n)$ and faithful conditional expectations $P_n : A_n \twoheadrightarrow B_n$.

Let $\varphi_n : A_n \hookrightarrow A_{n+1}$ be injective $*$-homomorphisms with

$$\varphi_n(B_n) \subseteq B_{n+1}, \ varphi_n(N_n) \subseteq N_{n+1} \ and \ P_{n+1} \circ \varphi_n = \varphi_n \circ P_n \quad (1)$$

for all n.

What does condition (1) mean?

Proposition (L): Let (G_n, Σ_n) be twisted groupoid of (A_n, B_n).

$\varphi_n : A_n \hookrightarrow A_{n+1}$ satisfies (1) if and only if there exists $(G_n, \Sigma_n) \xrightarrow{\pi} (H, \mathcal{T}) \xrightarrow{\iota} (G_{n+1}, \Sigma_{n+1})$, where ι has open image, and π is proper and fibrewise bijective, such that

$$\varphi_n = \iota^* \circ \pi^*.$$
Constructing Cartan subalgebras in inductive limits

Theorem (Barlak-L): Let \((A_n, B_n)\) be Cartan pairs with normalizers \(N_n := N_{A_n}(B_n)\) and faithful conditional expectations \(P_n : A_n \twoheadrightarrow B_n\).

Let \(\varphi_n : A_n \hookrightarrow A_{n+1}\) be injective \(*\)-homomorphism with

\[
\varphi_n(B_n) \subseteq B_{n+1}, \quad \varphi_n(N_n) \subseteq N_{n+1} \quad \text{and} \quad P_{n+1} \circ \varphi_n = \varphi_n \circ P_n \quad (1)
\]

for all \(n\). Then \(\lim \{B_n; \varphi_n\}\) is a Cartan subalgebra of \(\lim \{A_n; \varphi_n\}\).
Constructing Cartan subalgebras in inductive limits

Theorem (Barlak-L): Let \((A_n, B_n)\) be Cartan pairs with normalizers \(N_n := N_{A_n}(B_n)\) and faithful conditional expectations \(P_n : A_n \to B_n\). Let \(\varphi_n : A_n \hookrightarrow A_{n+1}\) be injective \(*\)-homomorphisms with

\[
\varphi_n(B_n) \subseteq B_{n+1}, \quad \varphi_n(N_n) \subseteq N_{n+1} \quad \text{and} \quad P_{n+1} \circ \varphi_n = \varphi_n \circ P_n
\]

for all \(n\). Then \(\lim \{B_n; \varphi_n\}\) is a Cartan subalgebra of \(\lim \{A_n; \varphi_n\}\).

What does condition (1) mean?
Theorem (Barlak-L): Let \((A_n, B_n)\) be Cartan pairs with normalizers \(N_n := N_{A_n}(B_n)\) and faithful conditional expectations \(P_n : A_n \twoheadrightarrow B_n\). Let \(\varphi_n : A_n \hookrightarrow A_{n+1}\) be injective *-homomorphisms with

\[
\varphi_n(B_n) \subseteq B_{n+1}, \quad \varphi_n(N_n) \subseteq N_{n+1} \quad \text{and} \quad P_{n+1} \circ \varphi_n = \varphi_n \circ P_n \quad (1)
\]

for all \(n\). Then \(\lim \{B_n; \varphi_n\}\) is a Cartan subalgebra of \(\lim \{A_n; \varphi_n\}\).

▶ What does condition (1) mean?

Proposition (L): Let \((G_n, \Sigma_n)\) be twisted groupoid of \((A_n, B_n)\). \(\varphi_n : A_n \hookrightarrow A_{n+1}\) satisfies (1) if and only if there exists

\[
(G_n, \Sigma_n) \overset{\pi}{\leftarrow} (H, T) \overset{\iota}{\hookrightarrow} (G_{n+1}, \Sigma_{n+1}),
\]
Constructing Cartan subalgebras in inductive limits

Theorem (Barlak-L): Let \((A_n, B_n)\) be Cartan pairs with normalizers \(N_n := N_{A_n}(B_n)\) and faithful conditional expectations \(P_n : A_n \rightarrow B_n\).

Let \(\varphi_n : A_n \hookrightarrow A_{n+1}\) be injective \(*\)-homomorphisms with

\[
\varphi_n(B_n) \subseteq B_{n+1}, \quad \varphi_n(N_n) \subseteq N_{n+1} \quad \text{and} \quad P_{n+1} \circ \varphi_n = \varphi_n \circ P_n \quad \text{(1)}
\]

for all \(n\). Then \(\lim \{B_n; \varphi_n\}\) is a Cartan subalgebra of \(\lim \{A_n; \varphi_n\}\).

What does condition (1) mean?

Proposition (L): Let \((G_n, \Sigma_n)\) be twisted groupoid of \((A_n, B_n)\).

\(\varphi_n : A_n \hookrightarrow A_{n+1}\) satisfies (1) if and only if there exists

\[(G_n, \Sigma_n) \xleftarrow{\pi} (H, T) \xrightarrow{\iota} (G_{n+1}, \Sigma_{n+1}),\]

where \(\iota\) has open image, and \(\pi\) is proper and fibrewise bijective,
Constructing Cartan subalgebras in inductive limits

Theorem (Barlak-L): Let \((A_n, B_n)\) be Cartan pairs with normalizers \(N_n := N_{A_n}(B_n)\) and faithful conditional expectations \(P_n : A_n \rightarrow B_n\).

Let \(\varphi_n : A_n \hookrightarrow A_{n+1}\) be injective \(*\)-homomorphisms with

\[
\varphi_n(B_n) \subseteq B_{n+1}, \varphi_n(N_n) \subseteq N_{n+1} \quad \text{and} \quad P_{n+1} \circ \varphi_n = \varphi_n \circ P_n \tag{1}
\]

for all \(n\). Then \(\lim \{B_n; \varphi_n\}\) is a Cartan subalgebra of \(\lim \{A_n; \varphi_n\}\).

What does condition (1) mean?

Proposition (L): Let \((G_n, \Sigma_n)\) be twisted groupoid of \((A_n, B_n)\).

\(\varphi_n : A_n \hookrightarrow A_{n+1}\) satisfies (1) if and only if there exists

\[
(G_n, \Sigma_n) \xleftarrow{\pi} (H, T) \xrightarrow{\iota} (G_{n+1}, \Sigma_{n+1}),
\]

where \(\iota\) has open image, and \(\pi\) is proper and fibrewise bijective, such that \(\varphi_n = \iota_* \circ \pi^*\).
Constructing Cartan subalgebras in the Jiang-Su algebra

The Jiang-Su algebra is given by

\[Z = \lim_{n \to -\infty} \{ A_n; \phi_n \} \]

where

\[A_n = \{ f \in C([0,1], M_{p_n} \otimes M_{q_n}) : f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n} \} \]

with \(p_n, q_n \in \mathbb{N} \), \(\gcd(p_n, q_n) = 1, p_n | p_n + 1, q_n | q_n + 1 \). \(\phi_n(f) = u_n^{+1} \cdot (f \circ \lambda_y) y \cdot u_n^{+1} \), with \(\lambda_y \in \{ t_2^2, 1_2^2, t_2^2+1 \} \), and \(u_n^{+1} \) is a path of unitaries.

\(A_n \) has a canonical Cartan subalgebra:

\[\{ f \in A_n : f(t) \in D_{p_n} \otimes D_{q_n} \} \]

But: These Cartan subalgebras are not preserved by \(\phi_n \) because of \(u_n^{+1} \).

We only need \(u_n^{+1} \) to ensure the boundary conditions at \(t = 0, 1 \).

So only the permutation matrices \(u_n^{+1}(0) \) and \(u_n^{+1}(1) \) matter.

So we can modify the building blocks to \(\bar{A}_n \) so that the new connecting maps are given by \(\bar{\phi}_n(f) = (f \circ \lambda_y) y \).

Now, these new connecting maps preserve the Cartan subalgebras \(B_n := \{ f \in \bar{A}_n : f(t) \in D_{p_n} \otimes D_{q_n} \} \).

So we get a Cartan subalgebra \(B := \lim_{n \to -\infty} \{ B_n; \bar{\phi}_n \} \in Z \).
Constructing Cartan subalgebras in the Jiang-Su algebra

The Jiang-Su algebra is given by $\mathcal{Z} = \varprojlim \{A_n; \varphi_n\}$, where
The Jiang-Su algebra is given by $\mathcal{Z} = \lim_{\rightarrow} \{A_n; \varphi_n\}$, where

- $A_n = \{f \in C([0, 1], M_{p_n} \otimes M_{q_n}) : f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n}\}$,

with $p_n, q_n \in \mathbb{N}$: $\gcd(p_n, q_n) = 1$, $p_n \mid p_{n+1}$, $q_n \mid q_{n+1}$...;
The Jiang-Su algebra is given by $\mathcal{Z} = \varinjlim \{ A_n; \varphi_n \}$, where

- $A_n = \{ f \in C([0,1], M_{p_n} \otimes M_{q_n}) : f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n} \}$, with $p_n, q_n \in \mathbb{N}$: $\gcd(p_n, q_n) = 1$, $p_n \mid p_{n+1}$, $q_n \mid q_{n+1}$...;

- $\varphi_n(f) = u_{n+1}^* \cdot (f \circ \lambda_y)_y \cdot u_{n+1}$, with $\lambda_y \in \left\{ \frac{t}{2}, \frac{1}{2}, \frac{t+1}{2} \right\}$, and u_{n+1} is a path of unitaries.
Constructing Cartan subalgebras in the Jiang-Su algebra

The Jiang-Su algebra is given by $\mathcal{Z} = \lim \rightarrow \{A_n; \varphi_n\}$, where

1. $A_n = \{f \in C([0, 1], M_{p_n} \otimes M_{q_n}): f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n}\}$, with $p_n, q_n \in \mathbb{N}$: $\gcd(p_n, q_n) = 1$, $p_n \mid p_{n+1}$, $q_n \mid q_{n+1}$...;

2. $\varphi_n(f) = u_{n+1}^* \cdot (f \circ \lambda_y)y \cdot u_{n+1}$, with $\lambda_y \in \{\frac{t}{2}, \frac{1}{2}, \frac{t+1}{2}\}$, and u_{n+1} is a path of unitaries.

- A_n has a canonical Cartan subalgebra: $\{f \in A_n: f(t) \in D_{p_n} \otimes D_{q_n}\}$.

But: These Cartan subalgebras are not preserved by φ_n because of u_{n+1}.
The Jiang-Su algebra is given by $\mathcal{Z} = \lim_{n \to -\infty} \{A_n; \varphi_n\}$, where

- $A_n = \{f \in C([0, 1], M_{p_n} \otimes M_{q_n}): f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n}\}$, with $p_n, q_n \in \mathbb{N}$: $\gcd(p_n, q_n) = 1$, $p_n \mid p_{n+1}$, $q_n \mid q_{n+1}$...;

- $\varphi_n(f) = u_{n+1}^* \cdot (f \circ \lambda_y)_y \cdot u_{n+1}$, with $\lambda_y \in \{\frac{t}{2}, \frac{1}{2}, \frac{t+1}{2}\}$, and u_{n+1} is a path of unitaries.

- A_n has a canonical Cartan subalgebra: $\{f \in A_n: f(t) \in D_{p_n} \otimes D_{q_n}\}$.

But: These Cartan subalgebras are not preserved by φ_n because of u_{n+1}.

- We only need u_{n+1} to ensure the boundary conditions at $t = 0, 1$.

So only the permutation matrices $u_{n+1}(0)$ and $u_{n+1}(1)$ matter.
The Jiang-Su algebra is given by \(\mathcal{Z} = \lim \{ A_n; \varphi_n \} \), where

- \(A_n = \{ f \in C([0, 1], M_{p_n} \otimes M_{q_n}): f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n} \} \), with \(p_n, q_n \in \mathbb{N}: \gcd(p_n, q_n) = 1, p_n \mid p_{n+1}, q_n \mid q_{n+1} \);...

- \(\varphi_n(f) = u_{n+1}^* \cdot (f \circ \lambda_y)_y \cdot u_{n+1} \), with \(\lambda_y \in \{ \frac{t}{2}, \frac{1}{2}, \frac{t+1}{2} \} \), and \(u_{n+1} \) is a path of unitaries.

- \(A_n \) has a canonical Cartan subalgebra: \(\{ f \in A_n: f(t) \in D_{p_n} \otimes D_{q_n} \} \). But: These Cartan subalgebras are not preserved by \(\varphi_n \) because of \(u_{n+1} \).

- We only need \(u_{n+1} \) to ensure the boundary conditions at \(t = 0, 1 \). So only the permutation matrices \(u_{n+1}(0) \) and \(u_{n+1}(1) \) matter.

- So we can modify the building blocks to \(\bar{A}_n \) so that the new connecting maps are given by \(\bar{\varphi}_n(f) = (f \circ \lambda_y)_y \).
Constructing Cartan subalgebras in the Jiang-Su algebra

The Jiang-Su algebra is given by $\mathcal{Z} = \lim_{\to} \{ A_n; \varphi_n \}$, where

- $A_n = \{ f \in C([0,1], M_{p_n} \otimes M_{q_n}) : f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n} \}$, with $p_n, q_n \in \mathbb{N}$: $\text{gcd}(p_n, q_n) = 1, p_n | p_{n+1}, q_n | q_{n+1}$...;

- $\varphi_n(f) = u_{n+1}^* \cdot (f \circ \lambda_y)_y \cdot u_{n+1}$, with $\lambda_y \in \{ \frac{t}{2}, \frac{1}{2}, \frac{t+1}{2} \}$, and u_{n+1} is a path of unitaries.

- A_n has a canonical Cartan subalgebra: $\{ f \in A_n : f(t) \in D_{p_n} \otimes D_{q_n} \}$.
 But: These Cartan subalgebras are not preserved by φ_n because of u_{n+1}.

- We only need u_{n+1} to ensure the boundary conditions at $t = 0, 1$.
 So only the permutation matrices $u_{n+1}(0)$ and $u_{n+1}(1)$ matter.

- So we can modify the building blocks to \tilde{A}_n so that the new connecting maps are given by $\tilde{\varphi}_n(f) = (f \circ \lambda_y)_y$. Now, these new connecting maps perserve the Cartan subalgebras $B_n := \{ f \in \tilde{A}_n : f(t) \in D_{p_n} \otimes D_{q_n} \}$.
Constructing Cartan subalgebras in the Jiang-Su algebra

The Jiang-Su algebra is given by \(\mathcal{Z} = \lim_{\leftarrow} \{ A_n; \varphi_n \} \), where

\[A_n = \{ f \in C([0, 1], M_{p_n} \otimes M_{q_n}): f(0) \in M_{p_n} \otimes 1, f(1) \in 1 \otimes M_{q_n} \} \]
with \(p_n, q_n \in \mathbb{N}: \gcd(p_n, q_n) = 1, p_n \mid p_{n+1}, q_n \mid q_{n+1} \ldots \);

\[\varphi_n(f) = u_{n+1}^* \cdot (f \circ \lambda_y)_y \cdot u_{n+1} \], with \(\lambda_y \in \{ \frac{t}{2}, \frac{1}{2}, \frac{t+1}{2} \} \),
and \(u_{n+1} \) is a path of unitaries.

- \(A_n \) has a canonical Cartan subalgebra: \(\{ f \in A_n: f(t) \in D_{p_n} \otimes D_{q_n} \} \).
 But: These Cartan subalgebras are not preserved by \(\varphi_n \) because of \(u_{n+1} \).

- We only need \(u_{n+1} \) to ensure the boundary conditions at \(t = 0, 1 \).
 So only the permutation matrices \(u_{n+1}(0) \) and \(u_{n+1}(1) \) matter.

- So we can modify the building blocks to \(\tilde{A}_n \) so that the new connecting maps are given by \(\tilde{\varphi}_n(f) = (f \circ \lambda_y)_y \). Now, these new connecting maps preserve the Cartan subalgebras \(B_n := \{ f \in \tilde{A}_n: f(t) \in D_{p_n} \otimes D_{q_n} \} \).
 So we get a Cartan subalgebra \(B := \lim_{\leftarrow} \{ B_n; \tilde{\varphi}_n \} \) in \(\mathcal{Z} \cong \lim_{\leftarrow} \{ \tilde{A}_n; \tilde{\varphi}_n \} \).
How does the groupoid look like?

Our Cartan subalgebra is given by

$$B := \lim_{\to} \{ B_n; \bar{\phi}_n \}.$$

Define

$$X_n := \text{Spec}(B_n)$$

and

$$X := \text{Spec}(B).$$

Then

$$X \sim = \lim_{\leftarrow} \{ X_n; \pi_n \},$$

where

$$\pi_n: X_n + 1 \to X_n$$

induces

$$\bar{\phi}_n: B_n \to B_n + 1,$$

i.e.,

$$\bar{\phi}_n = (\pi_n)^*.$$

So

$$X = \{ (x_n)_{n \in \mathbb{N}} \in \prod X_n: \pi_n(x_{n+1}) = x_n \},$$

and

$$X_n$$

are bipartite graphs of the form

Our groupoid $$G$$ with

$$(C^* r(G), C(G(0))) \sim = (Z, B)$$

is then given by the "tail equivalence relation" on

$$X = G(0).$$
How does the groupoid look like?

- Our Cartan subalgebra is given by $B := \lim \{ B_n; \varphi_n \}$.

- Define $X_n := \text{Spec}(B_n)$ and $X := \text{Spec}(B)$. Then $X \sim = \lim \left\{ X_n; \pi_n \right\}$, where $\pi_n: X_n + 1 \to X_n$ induces $\varphi_n: B_n \to B_n + 1$, i.e., $\varphi_n = (\pi_n)^\ast$.

- So $X = \{(x_n)_{ n \in \mathbb{N}} \in \prod_n X_n : \pi_n(x_n + 1) = x_n \}$, and X_n are bipartite graphs of the form

- Our groupoid G with $(C^\ast_r(G), C(G(0))) \sim = (\mathbb{Z}, B)$ is then given by the "tail equivalence relation" on $X = G(0)$.

8
How does the groupoid look like?

- Our Cartan subalgebra is given by $B := \lim \{ B_n; \varphi_n \}$.
- Define $X_n := \text{Spec} (B_n)$ and $X := \text{Spec} (B)$. Then $X \cong \lim \{ X_n; \pi_n \}$, where $\pi_n : X_{n+1} \to X_n$ induces $\varphi_n : B_n \to B_{n+1}$, i.e., $\varphi_n = (\pi_n)^*$.
How does the groupoid look like?

- Our Cartan subalgebra is given by $B := \lim \rightarrow \{ B_n; \bar{\varphi}_n \}$.

- Define $X_n := \text{Spec}(B_n)$ and $X := \text{Spec}(B)$. Then $X \cong \lim \leftarrow \{ X_n; \pi_n \}$, where $\pi_n : X_{n+1} \to X_n$ induces $\bar{\varphi}_n : B_n \to B_{n+1}$, i.e., $\bar{\varphi}_n = (\pi_n)^*$.

- So $X = \{ (x_n)_n \in \prod_n X_n : \pi_n(x_{n+1}) = x_n \}$, and X_n are bipartite graphs of the form
How does the groupoid look like?

- Our Cartan subalgebra is given by $B := \lim \{ B_n; \bar{\varphi}_n \}$.
- Define $X_n := \text{Spec} (B_n)$ and $X := \text{Spec} (B)$. Then $X \cong \lim \{ X_n; \pi_n \}$, where $\pi_n : X_{n+1} \rightarrow X_n$ induces $\bar{\varphi}_n : B_n \rightarrow B_{n+1}$, i.e., $\bar{\varphi}_n = (\pi_n)^*$.
- So $X = \{(x_n)_n \in \prod_n X_n : \pi_n(x_{n+1}) = x_n\}$, and X_n are bipartite graphs of the form

```
How does the groupoid look like?

- Our Cartan subalgebra is given by $B := \lim \{ B_n; \bar{\varphi}_n \}$.
- Define $X_n := \text{Spec} (B_n)$ and $X := \text{Spec} (B)$. Then $X \cong \lim \{ X_n; \pi_n \}$, where $\pi_n : X_{n+1} \rightarrow X_n$ induces $\bar{\varphi}_n : B_n \rightarrow B_{n+1}$, i.e., $\bar{\varphi}_n = (\pi_n)^*$.
- So $X = \{(x_n)_n \in \prod_n X_n : \pi_n(x_{n+1}) = x_n\}$, and $X_n$ are bipartite graphs of the form
```

- Our groupoid G with $(C^*_r(G), C(G^{(0)})) \cong (\mathcal{Z}, B)$ is then given by the “tail equivalence relation” on $X = G^{(0)}$.
What is the unit space?

Our unit space X is compact, Hausdorff, metrizable and connected. $\dim X = 1$ implies that $\dim X = 1$.

Theorem (L): Under a certain condition on the unitaries $u_n + 1$, X is locally path-connected.

In this case, X is a one-dimensional Peano continuum.

Computing Čech-homology of X, we get: $X \sim \text{ShHawaiian earring.}$
What is the unit space?

▶ Our unit space X is compact, Hausdorff, metrizable and connected.
What is the unit space?

- Our unit space X is compact, Hausdorff, metrizable and connected.
- $\dim X_n = 1$ implies that $\dim X = 1$.

Theorem (L): Under a certain condition on the unitaries u_{n+1}, X is locally path-connected.

In this case, X is a one-dimensional Peano continuum.

Computing Čech-homology of X, we get: $X \sim$ Hawaiian earring.
What is the unit space?

- Our unit space X is compact, Hausdorff, metrizable and connected.
- $\dim X_n = 1$ implies that $\dim X = 1$.
- **Theorem** (L): Under a certain condition on the unitaries u_{n+1}, X is locally path-connected.
What is the unit space?

- Our unit space X is compact, Hausdorff, metrizable and connected.
- $\dim X_n = 1$ implies that $\dim X = 1$.
- **Theorem** (L): Under a certain condition on the unitaries u_{n+1}, X is locally path-connected.
- In this case, X is a one-dimensional Peano continuum.
What is the unit space?

- Our unit space X is compact, Hausdorff, metrizable and connected.
- $\dim X_n = 1$ implies that $\dim X = 1$.
- **Theorem** (L): Under a certain condition on the unitaries u_{n+1}, X is locally path-connected.
- In this case, X is a one-dimensional Peano continuum.
- Computing Čech-homology of X, we get: $X \sim_{Sh} \text{Hawaiian earring.}$
What exactly is the unit space?
What exactly is the unit space?

Theorem (L): Under a certain condition on the unitaries \(u_{n+1} \), \(X \sim_{\text{Sh}} \) Hawaiian earring.
What exactly is the unit space?

Theorem (L): Under a certain condition on the unitaries u_{n+1}, $X \sim_{\text{Sh}}$ Hawaiian earring.

Theorem (L): Under stronger conditions on the unitaries u_{n+1}, $X \cong$ Menger curve.
What exactly is the unit space?

Theorem (L): Under a certain condition on the unitaries u_{n+1}, $X \sim_{\text{Sh}} \text{Hawaiian earring}$.

Theorem (L): Under stronger conditions on the unitaries u_{n+1}, $X \cong \text{Menger curve}$.
How many Cartan subalgebras have we constructed?

We have constructed Cartan subalgebras of \mathbb{Z} whose groupoids are given by "tail equivalence relations" on the Menger curve.

Theorem (L): Our construction yields 2^{\aleph_0} many different Cartan subalgebras of \mathbb{Z} whose spectra are all homeomorphic to the Menger curve.
How many Cartan subalgebras have we constructed?

We have constructed Cartan subalgebras of \(\mathbb{Z} \) whose groupoids are given by “tail equivalence relations” on the Menger curve.

Theorem (L): Our construction yields \(2^{\aleph_0} \) many different Cartan subalgebras of \(\mathbb{Z} \) whose spectra are all homeomorphic to the Menger curve.
How many Cartan subalgebras have we constructed?

- We have constructed Cartan subalgebras of \(\mathbb{Z} \) whose groupoids are given by “tail equivalence relations” on the Menger curve.
- How many Cartan subalgebras have we constructed?
How many Cartan subalgebras have we constructed?

- We have constructed Cartan subalgebras of \mathbb{Z} whose groupoids are given by “tail equivalence relations” on the Menger curve.
- How many Cartan subalgebras have we constructed?

Theorem (L): Our construction yields 2^{\aleph_0} many different Cartan subalgebras of \mathbb{Z} whose spectra are all homeomorphically to the Menger curve.
The End

Thank you very much!