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Outline
• Motivation and questions:  

- science in the Big Data era. What are the relevant variables? 
- why are broad abundance distributions so ubiquitous? 

• Main result: Relevance = entropy of the frequency distribution 
- minimally sufficient representations 
- maximally informative samples have broad distributions 

• Where is this realised and how can it be used? 
- Minimum Description Length (optimal coding) 
- deep learning 
- relevant neurons in rat’s navigation 
- relevant residues in protein sequences 

• Conclusions



Science in the Big Data era 
-CTMPMEAGSCDGKLARWHFARDDNKCMPFYYTGCGGNHNQFISLDQCEEQC-
-CTNTLAQGEGPLSVTRYYFNAQSRTCDEFMFRGLKGNSNNFNSLAECEKAC-
-CTQPKDSGVCSGSQRSFYFDTRMKVCQPFLYSGCGGNENRFSTSKECRDACQ
-CTQPRDNGSCSENGRAFYFDTRTKVCQPFLYSGCGGNDNRFATSKECRDSCQ
-CTQTLAQGEGPLSVARFYFNAQSRTCDEFMFRGLKGNSNNFKSQEDCEKAC-
-CTQTLAQGEGPLSVARFYFNAQSRTCDEFMFRGLKGNSNNFKSQEDCEKAC-
-CTQTLAQGEGPLSVARFYFNAQSRTCDEFMFRGLKGNSNNFKSQEDCEKAC-
-CTSPPVTGPCRAGFKRYNYNTRTKQCEPFKYGGCKGNGNRYKSEQDCLDAC-
-CTVLPSEGYCKKRYFRFLYDSNTKTCQLFWYRGCGGTENNFPTYYSCLDRC-
-CTVLPSEGYCRKKYFRFLYDSNTKTCQLFWYRGCGGTENNFPTYYACLDRC-
-CTVQPTNGLCVPSTLGIYFDVETQHCR---FLGC-GNKRLFASLEDCEKIC-
-CTVQPTNGLCVPSTLGIYFDVETQHCR---FLGC-GNKRLFASLEDCEKIC-
-CVAKPDAGPCRAAFPAFFYDPDTNSCQPFIYGGCRGNGNRYNSREECLSRC-
-CVAPLDKCP--GNVIIYYYN-RTSGCQQMHRGNCSDN-GNYPTLQECQEYCL
-CVDLPDTGLCKESIPRWYYNPFSEHCARFTYGGCYGNKNNFEEEQQCLESCR
-CVDLPDTGLCKESIPRWYYNPFSEHCARFTYGGCYGNKNNFEEEQQCLESCR
…

?

- Big Data is not that big (e.g.                                , D~102, N~104 << 20D) 
- Model is unknown 
- What are the relevant variables (e.g. residues along the sequence)? 
- How much information does the data contains about the model? 
- How to quantify relevant information?

s 2 {A,B, . . . ,W}D

e.g.



Really? His23 and Asp78 
would be a disaster in my 

cytoplasm!

I also had Ala23 and 
Leu78 until some time ago but 
now I’m much more stable with 

His23 and Asp78!

Intrinsic relevance: e.g. relevant positions for proteins are  
those they talk about when they meet



Complexity ~ broad frequency distributions: why?

Rank (log scale)
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• Statistical mechanics: order and disorder 
 
 
 
 
 
 

Weak interaction
Large entropy

Strong interaction
Small entropy

T � Tc

T ⌧ Tc

p{s|ĝ} =
1

Z
e�Eĝ [s]/T

s = (s1, . . . , sN ), si = ±1

Broad distributions are the exception in physics

critical point Tc

C(r) ⇠ r�d�⌘
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• Self-Organized Criticality (P. Bak, How Nature Works, 1996)

• Statistical Criticality (?)



The distribution depends on which variables we measure  
e.g. where do you live?
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Figure 1 Frequency of word usage in English 
 
Figure 1 shows a plot of frequency of word usage in English plotted against rank. The most 
popular word, at least in polite conversation, is THE which is used about once in every twelve 
words. This has a rank of one. As we move to higher ranks we encounter less well known 
words. QUALITY occurs about once in every thousand words. The curve is remarkable. For 
over three orders of magnitude it follows very closely Zipf’s Law in its currently used form with k 
equal to one.   
 
This, and some of the following examples, are taken from a paper by Scarrott 2. More modern 
examples have recently been generated by the author.  
 

 
Figure 2    Ranking of world cities by population, see table 1 for key. 
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The relevant variables for a complex systems  
- may not be those an engineer would choose  
- appear with a non-trivial frequency distribution (statistical citicality)

btw: where do I live? At my zip-code 34151=13 x 37 x 71 which nicely decomposes in primes

population by zip code



Minimally sufficient representations

ŝ = (s(1), . . . , s(N))Data: P (ŝ) =
NY

i=1

p(s(i))Model:

p(s)

ˆH[s] = �
X

s

ks
N

log

ks
N

Information content (coding cost/data point):

ks = |{i : si = s}|

How many of these bits are just noise and  
how many of them can provide  
useful information on p(s)?ŝ



Minimally sufficient representations

ŝ = (s(1), . . . , s(N))Data: P (ŝ) =
NY

i=1

p(s(i))Model:

Information content (coding cost/data point):

Ĥ[s] = Ĥ[k] + Ĥ[s|k]

ŝ

k̂ p(k) =
kmk

N

p(s|k) = 1

mk
�ks,k

Useful 
information

Noise

mk = |{s : ks = k}|

{



H[s]=Resolution, H[k]= Relevance

intrinsic resolution 
= relevance

user defined resolution

! H[k]

! H[s]ŝŝ

k̂

(+A. Haimovici UBA/NETADIS)Bayesian point of view:  

 
Idea: if states s and s’ have ks=ks’ then they have the same probability 
⇒ s and s’ can be distinguished only if ks ≠ ks’ 

H[k] ⇠ number of parameters that can be estimated with ŝ

(e.g. classification of products,  
firms, species, molecules, …)



Resolution - Relevance trade-off
Data processing inequality:

mk = 0, 1 8k

m⇤
k ⇠ k�µ�1
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Figure 6: Entropy Ĥ[K] as a function of Ĥ[s] as the number n of clusters increases
(from left to right), for di↵erent data clustering schemes. From bottom to top,
Single Linkage (MST), maximum likelihood with (MLDC) and without (MLDC IM)
the principal component. The SEC classification at 2 and 3 digits of the stocks is
also shown as black squares.

methods.
The point we want to make here is that the discussion of the previous section

allows us to suggest an universal method to compare di↵erent data clustering algo-
rithms and to identify the one that extracts the most informative classification. The
idea is simple: For any algorithm A, compute the variables KA

s and the correspond-

ing entropies Ĥ[sA] and Ĥ[KA] and plot the latter with respect to the former, as the
number n of clusters varies from 1 to M . If such curve for algorithm A lies above the
corresponding curve for algorithm B, we conclude that A extracts more information
on the systems behavior and hence it is to be preferred to B.

This idea is illustrated by the study of financial correlations of a set of M = 4000
stocks in NYSE in what follows15. Financial markets perform many functions, such
as channelling private investment to the economy, allowing inter-temporal wealth
transfer and risk management. Time series of the price dynamics carry a signature
about such complex interactions, and have been studied intensively [17, 18, 19]: the
principal component in the singular value decomposition largely reflects portfolio

15Here ~x(i) = (x(i)
1 , . . . , x

(i)
T ) consists of daily log returns x

(i)
t = log(p(i)

t /p
(i)
t�1), where p

(i)
t is the

price of stock i on day t, and t runs from 1st January 1990 to 30th of April 1999.
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in NYSE
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Maximally informative samples look critical

m⇤
k = argmax

mk

H[k]

s.t. H[s] = H0,
X

k

kmk = N

Data processing inequality:
mk = 0, 1 8k

m⇤
k ⇠ k�µ�1

Resolution-relevance tradeoff:

max

mk

{H[k] + µH[s]}

⇒ Zipf’s law (μ=1) ⟺ optimal compression

analytic  
bounds



Where do we expect to find maximally informative samples  
 

and how can we use it to find relevant variables?



Why does deep learning works so well?
2

quantified by the average entropy hSi, which is simply related
to the relevance [11, 12]

H[k] = �
X

k

kmk

M
log

kmk

M
= logM � hSi, (2)

where mk is the number of states with energy E =
� log(k/M). We conjecture that optimal representations are

those for which hSi is minimal, at a fixed resolution hEi. Put
differently, optimal representations are those that maximise
the relevance H[k] at each level of resolution H[s].

Within this picture, a feed forward network with many lay-
ers extracts a hierarchy of optimal representations with de-
creasing hEi (i.e. decreasing resolution H[s]) as one moves
deeper and deeper in the architecture. The level of resolution
hEi at each layer is constrained by the number of hidden vari-
ables, in principle. In practice, it is decided in the learning
process in an unsupervised manner, and it ultimately depends
on the data. Structureless (e.g. random) data is not expected to
display features at many resolution scales, whereas data with
a non-trivial structure may exhibit a rich hierarchy of features,
spanning the resolution scale in a dense manner.

The rest of this paper focuses on exploring the conse-
quences of the conjecture above and in presenting evidence
on numerical experiments. We shall first review the definition
of Deep Belief Networks (DBN), Then, we take the MNIST
dataset [13] as a benchmark, and show that, when a DBN is
trained on the data, it extracts a sequence of representation at
different layers that span uniformly the resolution scale. On
the contrary, the representation of the data before learning (i.e.
with random weights) or of structureless data (i.e. random or
reshuffled data) concentrates on the upper or lower ends of the
resolution scale. As shown in previous studies [11, 12], a clear
signature of representations that maximise H[k] at a given res-
olution H[s], is that mk ⇠ k���1 follows a power-law be-
haviour. We find that learned representations indeed exhibit a
power-law behaviour in mk, with a gradually decreasing ex-
ponent as one moves deeper and deeper in the network. Dif-
ferent clustering methods (e.g. k-means) produce representa-
tions which do not feature power law cluster size distributions,
indicating that power law distributions are not a characteristic
of the data but rather of the mechanism of DL. Un-structured
data or non-optimized networks instead are not characterised
by power-law distributions of frequencies in general (although
we observe power-law distributions in some cases). They also
lack a rich hierarchical structure across the resolution scale.

Finally, we address the issue of optimal representation of
the inputs. DL aims at striking a balance between compres-
sion and accuracy. Representations at very low resolution
fall short of the necessary details for reconstructing the whole
range of inputs, whereas representations at very high resolu-
tion include too many of these details. Our picture has the
virtue of mapping both resolution and accuracy – that is quan-
tified by H[k] – on an information scale. It therefore allows
us to locate the point where a bit in resolution is traded for
exactly one bit in accuracy. This turns out to be the point
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FIG. 1. Information processing in deep learning. (a) A Deep Belief
Network (DBN), consisting of one visible layer (V ) and two hid-
den layers (H1 and H2), is composed of stacks of restricted Boltz-
mann machines (RBMs). (b) An example of data representation in
the DBN. The DBN maps three input data in V to hidden states in
H1 and H2. (c) The data representation can be considered to be a
hierarchical data grouping based on the hidden states. The forward
propagation of input data to deep layers is a coarse-graining process.
Subsets of distinct states on the shallow layers are transformed to
identical states in deep layers. (d) Then, V , H1, and H2 have differ-
ent sets of distinct states s. Two entropies are obtained for each layer
on the basis of the frequency k of distinct states and its degeneracy
mk: H[s] represents the uncertainty of state distinguishability, and
H[k] represents the uncertainty of state frequency.

where i) the network displays the best generalisation ability
and ii) the distribution of frequencies follows Zipf’s law [14]:
mk ⇠ k�2. We conclude with a discussion of the results and
of their implications.

RESULTS

Among the various DL models, we adopted the DBN, a
representative energy-based generative model [15, 16]. A
DBN is composed of stacks of restricted Boltzmann machines
(RBMs) (Fig. 1a). Each RBM consists of one visible layer and
one hidden layer with restricted connections, i.e. visible nodes
are not connected to other visible nodes and hidden nodes are
not connected to other hidden nodes. Thus, nodes in the same
layer are indirectly connected through the nodes in the neigh-
boring layer within an RBM stack. Given a visible and hidden
state (v,h), the RBM defines an energy function,

E(v,h; ✓) ⌘ �v>Wh� v · a� h · b, (3)

where ✓ ⌘ (W,a, b) is the model parameters. Specifically,
the matrix W represents the symmetric coupling strengths be-
tween the visible and hidden nodes, and the vectors a and b
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Zipf’s law in efficient representations

Mora, et al. PNAS (2010)Zipf 1949  
(from Finn Årup Nielsen's blog)

Tkacik et al., 2007 
Mora and Bialek, 2011

Language 
Frequency of words

Immune system 
Antibody binding seqs

Neurons (retina) 
Firing patterns



… and in Google matrix

description of localized or delocalized eigenstates of electrons
in a disordered potential with Anderson transition (Guhr,
Mueller-Groeling, and Weidenmueller, 1998; Evers and
Mirlin, 2008). We discuss the specific properties of eigen-
vectors in Secs. IV, and VI–XIV.

IV. CHEIRANK VERSUS PAGERANK

It is established that the ranking of network nodes based on
PageRank order works reliably not only for WWW but also
for other directed networks. As an example it is possible to
quote the citation network of Physical Review (Redner, 1998,
2005; Radicchi et al., 2009), the Wikipedia network (Zhirov,
Zhirov, and Shepelyansky, 2010; Aragón et al., 2012; Eom
and Shepelyansky, 2013; Skiena and Ward, 2014), and even
the network of world commercial trade (Ermann and
Shepelyansky, 2011). Here we describe the main properties
of PageRank and CheiRank probabilities using a few real
networks. A more detailed presentation for concrete networks
follows in Secs. VI–XI.

A. Probability decay of PageRank and CheiRank

Wikipedia is a useful example of a scale-free network. An
article quotes other Wikipedia articles that generates a net-
work of directed links. For Wikipedia of English articles dated
August 2009 we have N ¼ 3 282 257 and Nl ¼ 71 012 307
(Zhirov, Zhirov, and Shepelyansky, 2010). The dependences
of PageRank PðKÞ and CheiRank P$ðK$Þ probabilities on
indices K and K$ are shown in Fig. 5. In a large range the
decay can be satisfactory described by an algebraic law with

an exponent β. The obtained β values are in reasonable
agreement with the expected relation β ¼ 1=ðμin;out − 1Þ with
the exponents of the distribution of links given previously.
However, the decay is algebraic only on a tail, showing certain
nonlinear variations well visible for P$ðK$Þ at large values
of P$.
Similar data for the network of the University of Cambridge

(2006) with N ¼ 212 710 and Nl ¼ 2 015 265 (Frahm,
Georgeot, and Shepelyansky, 2011) are shown in the same
Fig. 5. Here the exponents β have different values with
approximately the same statistical accuracy of β.
Thus we come to the same conclusion as Meusel et al.

(2015): the probability decay of PageRank and CheiRank is
only approximately algebraic, the relation between exponents
β and μ also works only approximately.

B. Correlator between PageRank and CheiRank

Each network node i has both PageRank KðiÞ and
CheiRank KðiÞ$ indices so that it is interesting to know what
is the correlation between the corresponding vectors of
PageRank and CheiRank. It is convenient to characterize this
by a correlator introduced in Chepelianskii (2010):

κ ¼ N
XN

i¼1

P(KðiÞ)P$(K$ðiÞ) − 1: ð4Þ

Even if all the networks from Fig. 6 have similar algebraic
decay of PageRank probability with K and similar β ∼ 1
exponents we see that the correlations between PageRank and
CheiRank vectors are drastically different in these networks.
Thus the networks of UK universities and nine different
language editions of Wikipedia have the correlator κ ∼ 1–8
while all other networks have κ ∼ 0. This means that there are
significant differences hidden in the network architecture
which are not visible from a PageRank analysis. We discuss
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FIG. 5 (color online). Dependence of probabilities of PageRank
P [gray (red) curves] and CheiRank P$ [black (blue) curves]
vectors on the corresponding rank indices K and K$ for networks
of Wikipedia August 2009 (top curves) and University of
Cambridge (bottom curves, moved down by a factor of 100).
The straight dashed lines show the power law fits for PageRank
and CheiRank with the slopes β ¼ 0.92 and 0.58, respectively,
corresponding to β ¼ 1=ðμin;out − 1Þ for Wikipedia (see Fig. 2),
and β ¼ 0.75 and 0.61 for Cambridge. From Zhirov, Zhirov,
and Shepelyansky, 2010 and Frahm, Georgeot, and Shepelyan-
sky, 2011.
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FIG. 6 (color online). Correlator κ as a function of the number of
nodes N for different networks: From Ermann, Chepelianskii,
and Shepelyansky, 2012, with additional data from Abel and
Shepelyansky, 2011, Eom and Shepelyansky, 2013, Kandiah and
Shepelyansky, 2014, and Frahm, Eom, and Shepelyansky, 2014.
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eigenvectors of S are associated with many different Jordan
blocks of S0 for the eigenvalue λ ¼ 0.
These l nonvanishing complex eigenvalues can be numeri-

cally computed as the zeros of the reduced polynomial by the
Newton-Maehly method, by a numerical diagonalization of
the “small” representation matrix S̄ (or better a more stable
transformed matrix with identical eigenvalues) or by the
Arnoldi method using the uniform vector e as the initial
vector. In the latter case the Arnoldi method should theoreti-
cally (in the absence of rounding errors) exactly explore the
l-dimensional subspace of the vectors vðjÞ and break off after
l iterations with l exact eigenvalues.
However, numerical rounding errors may have a strong

effect due to the Jordan blocks for the zero eigenvalue (Frahm,
Chepelianskii, and Shepelyansky, 2012). Indeed, an error ϵ
appearing in the bottom left corner of a Jordan matrix of size
D with zero eigenvalue leads to numerically induced eigen-
values on a complex circle of radius

jλϵj ¼ ϵ1=D: ð12Þ

Such an error can become significant with jλj > 0.1 even for
ϵ ∼ 10−15 as soon as D > 15. We call this phenomenon the
Jordan error enhancement. Furthermore, also the numerical
determination of the zeros of PrðλÞ for large values of l ∼ 102

can be numerically rather difficult. Thus, it may be necessary
to use a high-precision library such as the GNU Multiple
Precision Arithmetic Library (see https://gmplib.org/) either
for the determination of the zeros of PrðλÞ or for the Arnoldi
method (Frahm, Eom, and Shepelyansky, 2014).

B. PageRank of integers

A network for integer numbers (Frahm, Chepelianskii, and
Shepelyansky, 2012) can be constructed by linking an integer
number n ∈ f1;…; Ng to its divisorsm different from 1 and n
itself by an adjacency matrix Amn ¼ Mðn;mÞ, where the
multiplicity Mðn;mÞ is the number of times we can divide n
bym, i.e., the largest integer such thatmMðn;mÞ is a divisor of n,
and Amn ¼ 0 for all other cases. The number 1 and the prime
numbers are not linked to any other number and correspond to
dangling nodes. The total size N of the matrix is fixed by the
maximal considered integer. According to numerical data the
number of linksNl¼

P
mnAmn is given byNl¼Nðalþbl lnNÞ

with al ¼ −0.901% 0.018 and bl ¼ 1.003% 0.001.
The matrix elements Amn are different from zero only for

n ≥ 2m and the associated matrix S0 is therefore nilpotent with
Sl0 ¼ 0 and l ¼ log2ðNÞ ≪ N. This triangular matrix structure
can be seen in Fig. 42(a) which shows the amplitudes of S. The
vertical gray/green lines correspond to the extra contribution
due to the dangling nodes. These l nonvanishing eigenvalues of
S can be efficiently calculated as the zeros of the reduced
polynomial (11) up to N ¼ 109 with l ¼ 29. For N ¼ 109 the
largest eigenvalues are λ1 ¼ 1, λ2;3 ≈ −0.27 178% i0.42 736,
λ4 ≈ −0.177 34, and jλjj < 0.1 for j ≥ 5. The dependence of
the eigenvalues on N seems to scale with the parameter
1= lnðNÞ forN → ∞ and in particular γ2ðNÞ ¼ −2 ln jλ2ðNÞj ≈
1.020þ 7.14= lnN (Frahm, Chepelianskii, and Shepelyansky,
2012). Therefore the first eigenvalue is separated from the

second eigenvalue and one can choose the damping factor
α ¼ 1 without any problems to define a unique PageRank.
The large values of N are possible because the vector

iteration vðjþ1Þ ¼ S0vðjÞ can actually be computed without
storing the Nl ∼ N lnN nonvanishing elements of S0 by using

vðjþ1Þ
n ¼

X½N=n'

m¼2

Mðmn;mÞ
QðmnÞ

vðjÞmn; if n ≥ 2 ð13Þ

and vðjþ1Þ
1 ¼ 0 (Frahm, Chepelianskii, and Shepelyansky,

2012). The initial vector is given by vð0Þ ¼ e=N and QðnÞ ¼Pn−1
m¼2 Mðn;mÞ is the number of divisors of n (taking into

account the multiplicity). The multiplicity Mðmn; nÞ can be
recalculated during each iteration and one needs only to store
Nð≪ NlÞ integer numbers QðnÞ. It is also possible to
reformulate Eq. (13) in a different way without using
Mðmn; nÞ (Frahm, Chepelianskii, and Shepelyansky, 2012).
The vectors vðjÞ allow one to compute the coefficients cj ¼
dTvðjÞ in the reduced polynomial and the PageRank
P ∝

Pl−1
j¼0 v

ðjÞ. Figure 42(b) shows the PageRank for N ∈
f107; 108; 109g obtained in this way and for comparison also
the result of the power method for N ¼ 107.
Actually Fig. 43 shows that in the sum P ∝

Pl−1
j¼0 v

ðjÞ the
first three terms already give a quite satisfactory approxima-
tion to the PageRank allowing a further analytical simplified
evaluation (Frahm, Chepelianskii, and Shepelyansky, 2012)
with the result PðnÞ ≈ CN=bnn for n ≪ N, where CN is the
normalization constant and bn ¼ 2 for prime numbers n and
bn ¼ 6 − δp1;p2

for numbers n ¼ p1p2 being a product of two
prime numbers p1 and p2. The behavior PðnÞn ≈ CN=bn,
which takes approximately constant values on several
branches, is also visible in Fig. 43 with CN=bn decreasing
if n is a product of many prime numbers. The numerical
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FIG. 42 (color online). (a) The Google matrix of integers. The
amplitudes of matrix elements Smn are shown by color black
(blue) for minimal zero elements and gray (red) maximal unity
elements, with 1 ≤ n ≤ 31 corresponding to the x axis (with
n ¼ 1 corresponding to the left column) and 1 ≤ m ≤ 31 for the
y axis (with m ¼ 1 corresponding to the upper row). (b) The full
lines correspond to the dependence of the PageRank probability
PðKÞ on index K for the matrix sizes N ¼ 107, 108, and 109 with
the PageRank evaluated by the exact expression P ∝

Pl−1
j¼0 v

ðjÞ.
The gray (green) crosses correspond to the PageRank obtained by
the power method for N ¼ 107; the dashed straight line shows the
Zipf law dependence P ∼ 1=K. From Frahm, Chepelianskii, and
Shepelyansky, 2012.
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eigenvectors of S are associated with many different Jordan
blocks of S0 for the eigenvalue λ ¼ 0.
These l nonvanishing complex eigenvalues can be numeri-

cally computed as the zeros of the reduced polynomial by the
Newton-Maehly method, by a numerical diagonalization of
the “small” representation matrix S̄ (or better a more stable
transformed matrix with identical eigenvalues) or by the
Arnoldi method using the uniform vector e as the initial
vector. In the latter case the Arnoldi method should theoreti-
cally (in the absence of rounding errors) exactly explore the
l-dimensional subspace of the vectors vðjÞ and break off after
l iterations with l exact eigenvalues.
However, numerical rounding errors may have a strong

effect due to the Jordan blocks for the zero eigenvalue (Frahm,
Chepelianskii, and Shepelyansky, 2012). Indeed, an error ϵ
appearing in the bottom left corner of a Jordan matrix of size
D with zero eigenvalue leads to numerically induced eigen-
values on a complex circle of radius

jλϵj ¼ ϵ1=D: ð12Þ

Such an error can become significant with jλj > 0.1 even for
ϵ ∼ 10−15 as soon as D > 15. We call this phenomenon the
Jordan error enhancement. Furthermore, also the numerical
determination of the zeros of PrðλÞ for large values of l ∼ 102

can be numerically rather difficult. Thus, it may be necessary
to use a high-precision library such as the GNU Multiple
Precision Arithmetic Library (see https://gmplib.org/) either
for the determination of the zeros of PrðλÞ or for the Arnoldi
method (Frahm, Eom, and Shepelyansky, 2014).

B. PageRank of integers

A network for integer numbers (Frahm, Chepelianskii, and
Shepelyansky, 2012) can be constructed by linking an integer
number n ∈ f1;…; Ng to its divisorsm different from 1 and n
itself by an adjacency matrix Amn ¼ Mðn;mÞ, where the
multiplicity Mðn;mÞ is the number of times we can divide n
bym, i.e., the largest integer such thatmMðn;mÞ is a divisor of n,
and Amn ¼ 0 for all other cases. The number 1 and the prime
numbers are not linked to any other number and correspond to
dangling nodes. The total size N of the matrix is fixed by the
maximal considered integer. According to numerical data the
number of linksNl¼

P
mnAmn is given byNl¼Nðalþbl lnNÞ

with al ¼ −0.901% 0.018 and bl ¼ 1.003% 0.001.
The matrix elements Amn are different from zero only for

n ≥ 2m and the associated matrix S0 is therefore nilpotent with
Sl0 ¼ 0 and l ¼ log2ðNÞ ≪ N. This triangular matrix structure
can be seen in Fig. 42(a) which shows the amplitudes of S. The
vertical gray/green lines correspond to the extra contribution
due to the dangling nodes. These l nonvanishing eigenvalues of
S can be efficiently calculated as the zeros of the reduced
polynomial (11) up to N ¼ 109 with l ¼ 29. For N ¼ 109 the
largest eigenvalues are λ1 ¼ 1, λ2;3 ≈ −0.27 178% i0.42 736,
λ4 ≈ −0.177 34, and jλjj < 0.1 for j ≥ 5. The dependence of
the eigenvalues on N seems to scale with the parameter
1= lnðNÞ forN → ∞ and in particular γ2ðNÞ ¼ −2 ln jλ2ðNÞj ≈
1.020þ 7.14= lnN (Frahm, Chepelianskii, and Shepelyansky,
2012). Therefore the first eigenvalue is separated from the

second eigenvalue and one can choose the damping factor
α ¼ 1 without any problems to define a unique PageRank.
The large values of N are possible because the vector

iteration vðjþ1Þ ¼ S0vðjÞ can actually be computed without
storing the Nl ∼ N lnN nonvanishing elements of S0 by using

vðjþ1Þ
n ¼

X½N=n'

m¼2

Mðmn;mÞ
QðmnÞ

vðjÞmn; if n ≥ 2 ð13Þ

and vðjþ1Þ
1 ¼ 0 (Frahm, Chepelianskii, and Shepelyansky,

2012). The initial vector is given by vð0Þ ¼ e=N and QðnÞ ¼Pn−1
m¼2 Mðn;mÞ is the number of divisors of n (taking into

account the multiplicity). The multiplicity Mðmn; nÞ can be
recalculated during each iteration and one needs only to store
Nð≪ NlÞ integer numbers QðnÞ. It is also possible to
reformulate Eq. (13) in a different way without using
Mðmn; nÞ (Frahm, Chepelianskii, and Shepelyansky, 2012).
The vectors vðjÞ allow one to compute the coefficients cj ¼
dTvðjÞ in the reduced polynomial and the PageRank
P ∝

Pl−1
j¼0 v

ðjÞ. Figure 42(b) shows the PageRank for N ∈
f107; 108; 109g obtained in this way and for comparison also
the result of the power method for N ¼ 107.
Actually Fig. 43 shows that in the sum P ∝

Pl−1
j¼0 v

ðjÞ the
first three terms already give a quite satisfactory approxima-
tion to the PageRank allowing a further analytical simplified
evaluation (Frahm, Chepelianskii, and Shepelyansky, 2012)
with the result PðnÞ ≈ CN=bnn for n ≪ N, where CN is the
normalization constant and bn ¼ 2 for prime numbers n and
bn ¼ 6 − δp1;p2

for numbers n ¼ p1p2 being a product of two
prime numbers p1 and p2. The behavior PðnÞn ≈ CN=bn,
which takes approximately constant values on several
branches, is also visible in Fig. 43 with CN=bn decreasing
if n is a product of many prime numbers. The numerical
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FIG. 42 (color online). (a) The Google matrix of integers. The
amplitudes of matrix elements Smn are shown by color black
(blue) for minimal zero elements and gray (red) maximal unity
elements, with 1 ≤ n ≤ 31 corresponding to the x axis (with
n ¼ 1 corresponding to the left column) and 1 ≤ m ≤ 31 for the
y axis (with m ¼ 1 corresponding to the upper row). (b) The full
lines correspond to the dependence of the PageRank probability
PðKÞ on index K for the matrix sizes N ¼ 107, 108, and 109 with
the PageRank evaluated by the exact expression P ∝

Pl−1
j¼0 v

ðjÞ.
The gray (green) crosses correspond to the PageRank obtained by
the power method for N ¼ 107; the dashed straight line shows the
Zipf law dependence P ∼ 1=K. From Frahm, Chepelianskii, and
Shepelyansky, 2012.
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eigenvectors of S are associated with many different Jordan
blocks of S0 for the eigenvalue λ ¼ 0.
These l nonvanishing complex eigenvalues can be numeri-

cally computed as the zeros of the reduced polynomial by the
Newton-Maehly method, by a numerical diagonalization of
the “small” representation matrix S̄ (or better a more stable
transformed matrix with identical eigenvalues) or by the
Arnoldi method using the uniform vector e as the initial
vector. In the latter case the Arnoldi method should theoreti-
cally (in the absence of rounding errors) exactly explore the
l-dimensional subspace of the vectors vðjÞ and break off after
l iterations with l exact eigenvalues.
However, numerical rounding errors may have a strong

effect due to the Jordan blocks for the zero eigenvalue (Frahm,
Chepelianskii, and Shepelyansky, 2012). Indeed, an error ϵ
appearing in the bottom left corner of a Jordan matrix of size
D with zero eigenvalue leads to numerically induced eigen-
values on a complex circle of radius

jλϵj ¼ ϵ1=D: ð12Þ

Such an error can become significant with jλj > 0.1 even for
ϵ ∼ 10−15 as soon as D > 15. We call this phenomenon the
Jordan error enhancement. Furthermore, also the numerical
determination of the zeros of PrðλÞ for large values of l ∼ 102

can be numerically rather difficult. Thus, it may be necessary
to use a high-precision library such as the GNU Multiple
Precision Arithmetic Library (see https://gmplib.org/) either
for the determination of the zeros of PrðλÞ or for the Arnoldi
method (Frahm, Eom, and Shepelyansky, 2014).

B. PageRank of integers

A network for integer numbers (Frahm, Chepelianskii, and
Shepelyansky, 2012) can be constructed by linking an integer
number n ∈ f1;…; Ng to its divisorsm different from 1 and n
itself by an adjacency matrix Amn ¼ Mðn;mÞ, where the
multiplicity Mðn;mÞ is the number of times we can divide n
bym, i.e., the largest integer such thatmMðn;mÞ is a divisor of n,
and Amn ¼ 0 for all other cases. The number 1 and the prime
numbers are not linked to any other number and correspond to
dangling nodes. The total size N of the matrix is fixed by the
maximal considered integer. According to numerical data the
number of linksNl¼

P
mnAmn is given byNl¼Nðalþbl lnNÞ

with al ¼ −0.901% 0.018 and bl ¼ 1.003% 0.001.
The matrix elements Amn are different from zero only for

n ≥ 2m and the associated matrix S0 is therefore nilpotent with
Sl0 ¼ 0 and l ¼ log2ðNÞ ≪ N. This triangular matrix structure
can be seen in Fig. 42(a) which shows the amplitudes of S. The
vertical gray/green lines correspond to the extra contribution
due to the dangling nodes. These l nonvanishing eigenvalues of
S can be efficiently calculated as the zeros of the reduced
polynomial (11) up to N ¼ 109 with l ¼ 29. For N ¼ 109 the
largest eigenvalues are λ1 ¼ 1, λ2;3 ≈ −0.27 178% i0.42 736,
λ4 ≈ −0.177 34, and jλjj < 0.1 for j ≥ 5. The dependence of
the eigenvalues on N seems to scale with the parameter
1= lnðNÞ forN → ∞ and in particular γ2ðNÞ ¼ −2 ln jλ2ðNÞj ≈
1.020þ 7.14= lnN (Frahm, Chepelianskii, and Shepelyansky,
2012). Therefore the first eigenvalue is separated from the

second eigenvalue and one can choose the damping factor
α ¼ 1 without any problems to define a unique PageRank.
The large values of N are possible because the vector

iteration vðjþ1Þ ¼ S0vðjÞ can actually be computed without
storing the Nl ∼ N lnN nonvanishing elements of S0 by using

vðjþ1Þ
n ¼

X½N=n'

m¼2

Mðmn;mÞ
QðmnÞ

vðjÞmn; if n ≥ 2 ð13Þ

and vðjþ1Þ
1 ¼ 0 (Frahm, Chepelianskii, and Shepelyansky,

2012). The initial vector is given by vð0Þ ¼ e=N and QðnÞ ¼Pn−1
m¼2 Mðn;mÞ is the number of divisors of n (taking into

account the multiplicity). The multiplicity Mðmn; nÞ can be
recalculated during each iteration and one needs only to store
Nð≪ NlÞ integer numbers QðnÞ. It is also possible to
reformulate Eq. (13) in a different way without using
Mðmn; nÞ (Frahm, Chepelianskii, and Shepelyansky, 2012).
The vectors vðjÞ allow one to compute the coefficients cj ¼
dTvðjÞ in the reduced polynomial and the PageRank
P ∝

Pl−1
j¼0 v

ðjÞ. Figure 42(b) shows the PageRank for N ∈
f107; 108; 109g obtained in this way and for comparison also
the result of the power method for N ¼ 107.
Actually Fig. 43 shows that in the sum P ∝

Pl−1
j¼0 v

ðjÞ the
first three terms already give a quite satisfactory approxima-
tion to the PageRank allowing a further analytical simplified
evaluation (Frahm, Chepelianskii, and Shepelyansky, 2012)
with the result PðnÞ ≈ CN=bnn for n ≪ N, where CN is the
normalization constant and bn ¼ 2 for prime numbers n and
bn ¼ 6 − δp1;p2

for numbers n ¼ p1p2 being a product of two
prime numbers p1 and p2. The behavior PðnÞn ≈ CN=bn,
which takes approximately constant values on several
branches, is also visible in Fig. 43 with CN=bn decreasing
if n is a product of many prime numbers. The numerical
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FIG. 42 (color online). (a) The Google matrix of integers. The
amplitudes of matrix elements Smn are shown by color black
(blue) for minimal zero elements and gray (red) maximal unity
elements, with 1 ≤ n ≤ 31 corresponding to the x axis (with
n ¼ 1 corresponding to the left column) and 1 ≤ m ≤ 31 for the
y axis (with m ¼ 1 corresponding to the upper row). (b) The full
lines correspond to the dependence of the PageRank probability
PðKÞ on index K for the matrix sizes N ¼ 107, 108, and 109 with
the PageRank evaluated by the exact expression P ∝

Pl−1
j¼0 v

ðjÞ.
The gray (green) crosses correspond to the PageRank obtained by
the power method for N ¼ 107; the dashed straight line shows the
Zipf law dependence P ∼ 1=K. From Frahm, Chepelianskii, and
Shepelyansky, 2012.
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WTN which allow to treat all countries on equal grounds
independently of the fact if a given country is rich or poor.
A similar choice was used in rating of scientific journals
[11], PCN Linux [12] and Wikipedia network [13]. The
main difference appearing for WTN is a very large varia-
tion of mass matrix elements Mij related to the fact that
there is very strong variation of richness of various coun-
tries. Due to these reason we think that it is important to
use the ranking based on the Google matrix which treats
in a democratic way all world countries that corresponds
to the democratic standards of the UN. For the WTN
CheiRank and PageRank are naturally linked to export
and import flows for a given country and hence it is very
natural to use these ranks for characterization of country
trade abilities. The Google matrix can be constructed in
the same way not only for all commodities but also for a
given specific commodity.

We note that recently the interest to the analysis of the
world trade as a network becomes more and more pro-
nounced with a few publications in this area [14,15,16,
17]. Thus, the global network characteristics were consid-
ered in [14,15], degree centrality measures were analyzed
in [16] and time evolution of network global characteristics
was studied in [17]. Topological and clustering properties
of multinetwork of various commodities were discussed
in [18]. Here we present a systematic study of directed
WTN on the basis of new combination of PageRank and
CheiRank methods using the Google matrix constructed
for the enormous UN COMTRADE database.

The paper is composed as follows: in Section 2 we
describe the global properties of the Google matrix of
WTN, in Section 3 we analyze distribution of countries in
PageRank-CheiRank plane for all time period 1962 - 2009
and propose a random matrix model of WTN (RMWTN)
which describes the statistical properties of this distribu-
tion in the case of all commodities; comparison with rank-
ing based on import and export for various commodities is
presented in Section 4; discussion of the results is given in
Section 5. More detailed information and data are given
in Appendix and at the website [19].

2 Properties of Google matrix of WTN

An example of the Google matrix of WTN in 2008 is shown
in Fig. 1 for all commodities and crude petroleum. The
matrices G and G∗ are shown in the bases where all coun-
tries are ordered by the PageRank index K of matrix G
constructed for corresponding commodity (left and right
columns). The matrix elements of G are distributed over
all N values being roughly homogeneously in K, even if
the left top corner at small K, K ′ values is filled in a more
dense way. In contrast the density drops at large values
of K ′. Such a structure is visible both for all commodi-
ties and crude petroleum but clearly the global density is
smaller in the later case since there are less number of
links there (see data in next Section). The structure of
G∗ is approximately the same (we will see in next Section
that rich countries are located at low K, K ′ values). In
contrast to G and G∗ the structure of money matrix M is

rather different. For all commodities matrix elements drop
very rapidly at large values of K and K ′ that corresponds
to the fact that the main amount of world money circu-
lates only between rich countries with top ranks K. In
contrast to that for crude petroleum the matrix elements
of M are located at intermediate K values. Indeed, in this
case PageRank index K orders countries by their crude
petroleum trade where richest countries are not necessar-
ily at the top ranks.
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Fig. 2. (Color online) Probability distributions of PageR-
ank P (K), CheiRank P ∗(K∗), ImportRank P̃ (K̃), and Ex-
portRank P̃ ∗(K̃∗) are shown as function of their indexes in
logarithmic scale for all commodities (top panel) and crude
petroleum (bottom panel) for WTN in 2008 with N = 227.
Here P (K) and P ∗(K∗) are shown by red and blue curves re-
spectively, for α = 0.5 (solid curves) and α = 0.85 (dotted
curves); P̃ (K̃) and P̃ ∗(K̃∗) are displayed by dashed red and
blue curves respectively. For both commodities the distribu-
tions P (K) and P ∗(K∗) follow a power law dependence like
P ∝ 1/Kβ (see text), the Zipf law is shown by the straight
dashed line with β = 1 in top panel.

From the Google matrices G and G∗ we find the proba-
bility distributions PageRank P (K) and CheiRank P ∗(K∗)
which are shown in Fig. 2 for the same commodities as
Fig. 1. One of the main features of these distributions is
that both P (K) and P ∗(K∗) depend on their indexes in a
rather similar way from, that is in contrast to the results
found for the WWW [7,8], PCN Linux [12] and Wikipedia
network [13], where these distributions are different hav-
ing different exponents β in the power law decay. Here,
up to fluctuations, we have βin = βout = β. The size of
WTN is rather small compared to usual sizes of WWW,
Linux or Wikipedia networks. However, still we find that
the power law gives a quite good fit of our data. The fit
gives β = 1.17 ± 0.015 at α = 0.85 and β = 0.63 ± 0.01
at α = 0.5 (for all commodities) and β = 0.92 ± 0.02
and β = 0.51± 0.01 respectively (for crude petroleum) for

2 L.Ermann, D.L.Shepelyansky: Google matrix of the world trade network

for rating of the total importance of scientific journals [11].

Fig. 1. (Color online) Image of money mass matrix M (top),
Google matrix G (middle) and inverse Google matrix G∗ (bot-
tom) for all commodities (left column) and crude petroleum
(right column) for year 2008 with all world countries N = 227
from the UN COMTRADE [1]. Matrix elements g, for Mi,j ,
Gi,j or G∗

i,j , are shown by color changing from 0 to a corre-
sponding maximum value gmax. All three matrices are shown
in the basis of PageRank indexK (andK′) of matrix G, respec-
tively for all commodities (left) and crude petroleum (right),
which correspond to x, y-axis with 1 ≤ K,K′ ≤ N . Here we
use α = 0.5 for matrix G and its PageRank index K and the
same α for G∗.

The PageRank performs ranking determined by in-
going links putting at the top most known and popular
nodes. However, in certain networks outgoing links also
play an important role. Recently, on an example of proce-
dure call network of Linux Kernel software, it was shown
[12] that a relevant additional ranking is obtained by tak-
ing the network with inverse link directions in the ad-

jacency matrix corresponding to Aij → AT = Aji and
constructing from it an additional Google matrix G∗ ac-
cording to relation (1) at the same α. The examples of
matrices G and G∗ for the world trade network are shown
in Fig. 1. The eigenvector of G∗ with eigenvalue λ = 1
gives then a new inverse PageRank P ∗(i) with ranking
index K∗(i). This ranking was named CheiRank [13] to
mark that it allows to chercher l’information in a new way.
While the PageRank rates the network nodes in average
proportionally to a number of ingoing links, the CheiRank
rates nodes in average proportionally to a number of out-
going links. The results obtained in [12,13] confirm this
proportionality with the exponent βout = 1/(γout − 1).

Since each node belongs both to CheiRank and PageR-
ank vectors the ranking of information flow on a directed
network becomes two-dimensional.While PageRank high-
lights how popular and known is a given node, CheiRank
highlights its communication and connectivity abilities.
The examples of Linux and Wikipedia networks show that
the rating of nodes based on PageRank and CheiRank al-
lows to perform information retrieval and to characterize
network properties in a qualitatively new way [12,13].

In this work we apply CheiRank and PageRank ap-
proach to the World Trade Network (WTN) using the
enormous and detailed United Nations Commodity Trade
Statistics Database (UN COMTRADE) [1]. Using these
data we analyze the world trade flows both in import and
export for all commodities for all years 1962 - 2009 avail-
able there at SITC1 and HS96 databases. We also per-
formed analysis for specific commodities taken from SITC
Rev. 1 database, mainly for year 2008: crude petroleum
(S1-33101, ”Crude petroleum”), natural gas (S1-3411, ”Gas,
natural”), barley (S1-0430, ”Barley, unmilled”), cars (S1-
7321, ”Passenger motor cars, other than buses”), food (S1-
0, ”Food and live animals”), cereals (S1-04, ”Cereals and
cereal preparations”). Their codes and official UN names
are given in brackets. In few cases, when certain coun-
tries were non-reporting their export, we complemented
the WTN data from the import database.

For a given year we extract from the UN COMTRADE
money transfer (in USD) from country j to country i that
gives us money matrix elements Mij (for all types of com-
modities noted above). These elements can be viewed as
a money mass transfer from j to i. In contrast to the ad-
jacency matrix Aij of WWW, where all elements are only
0 or 1, here we have the case of weighted elements. This
corresponds to a case when there are in principle multiple
number of links from j to i and this number is propor-
tional to USD amount transfer. Such a situation appears
for rating of scientific journals [11], Linux PCN [12] and for
Wikipedia English articles hyperlink network [13], where
generally there are few citations (links) from a given ar-
ticle to another one. In this case still the Google matrix
is constructed according to the usual rules and relation
(1) with Sij = Mij/mj and Sij = 1/N , if for a given
j all elements Mij = 0. Here mj =

∑
i Mij is the total

export mass for country j. The matrix G∗ is constructed
from transposed money matrix with Sij = Mji/

∑
i Mji.

In this way we obtain the Google matrices G and G∗ of
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f(ŝ0|ˆ✓0) ' K

2

log2 N + log2

Z
d✓

p
det J(✓)Complexity:



MDL samples are maximally informative

100 101 102

k

100

101

102

m
k

SK model

A
n = 4

n = 7

n = 9

100 101 102

k

100

101

102

m
k

RBM, nh = 7

B
n = 4

n = 9

n = 12

0.2 0.4 0.6 0.8 1.0
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Figure 2. Properties of the typical samples generated from the NML of the Dirichlet model. (A)
A plot showing the frequency distribution of the typical samples of the Dirichlet NML code. Given
S, the cardinality of the state space, c, with S = 1.0 ⇥ 103 (orange dots), 5.0 ⇥ 103 (green squares),
and 1.0 ⇥ 104 (red triangles), we compute the average frequency distribution across 100 generated
samples from the Dirichlet NML of size N = 10S such that the average frequency per state, r, is fixed.
This is compared against the theoretical calculations (solid black line) for q(k|z⇤) in Eq. (19). (B-C
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:::::
spike:

:::::::
r = 100

::::::
(yellow

:::::::
triangle),

::::::
r = 10

:::::::
(orange

:::::::
x-mark)

:::
and

:::::
r = 2

::::
(red

::::::
cross).

::::
The

::::::::::::
corresponding

::::::
dashed

:::::
lines

:::::
depict

:::
the

:::::
best-fit

::::
line.

::::::
(C-D)

::::
Plots

::
of

:
Ĥ[s] versus Ĥ[k] for the typical samples of the Dirichlet NML code. For

a fixed size of the data, N (N = 103 in B and N = 104 in C), we have drawn 100 samples from the
Dirichlet NML code varying r, ranging from 2 to 100. The results are compared against the Ĥ[k] and
Ĥ[s] for maximally informative samples (MIS, solid black line) and random samples (dashed black
lines). For the MIS, the theoretical lower bound is reported [8]. For the random samples, we compute
the averages of Ĥ[s] and Ĥ[k] over 107 realizations of random distributions of N balls in L boxes, with
L ranging from 2 to 107. Here, each box corresponds to one state s = 1, . . . , L and ks is the number of
balls in box s. Note that all the calculated values for Ĥ[k] and Ĥ[s] are normalized by log N.

E = � log P̄(ŝ) (24)

= � Â
s2c

ks log
ks

N
+ R̄ (25)

= NĤ[s] + R̄. (26)

The number of samples with encoding cost E can be computed in the following way. The number of171

samples that correspond to a given degeneracy mk of the states that occurs ks = k times in ŝ, is given by172

N!
’k(kmk)!

. (27)

Therefore, the number of samples with coding cost E is173
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MDL samples are “poised at criticality”
Atypical samples with anomalously low 
coding cost do not exist. 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How informative are the representations that deep 
neural networks extract? 2

quantified by the average entropy hSi, which is simply related
to the relevance [11, 12]

H[k] = �
X

k

kmk

M
log

kmk

M
= logM � hSi, (2)

where mk is the number of states with energy E =
� log(k/M). We conjecture that optimal representations are

those for which hSi is minimal, at a fixed resolution hEi. Put
differently, optimal representations are those that maximise
the relevance H[k] at each level of resolution H[s].

Within this picture, a feed forward network with many lay-
ers extracts a hierarchy of optimal representations with de-
creasing hEi (i.e. decreasing resolution H[s]) as one moves
deeper and deeper in the architecture. The level of resolution
hEi at each layer is constrained by the number of hidden vari-
ables, in principle. In practice, it is decided in the learning
process in an unsupervised manner, and it ultimately depends
on the data. Structureless (e.g. random) data is not expected to
display features at many resolution scales, whereas data with
a non-trivial structure may exhibit a rich hierarchy of features,
spanning the resolution scale in a dense manner.

The rest of this paper focuses on exploring the conse-
quences of the conjecture above and in presenting evidence
on numerical experiments. We shall first review the definition
of Deep Belief Networks (DBN), Then, we take the MNIST
dataset [13] as a benchmark, and show that, when a DBN is
trained on the data, it extracts a sequence of representation at
different layers that span uniformly the resolution scale. On
the contrary, the representation of the data before learning (i.e.
with random weights) or of structureless data (i.e. random or
reshuffled data) concentrates on the upper or lower ends of the
resolution scale. As shown in previous studies [11, 12], a clear
signature of representations that maximise H[k] at a given res-
olution H[s], is that mk ⇠ k���1 follows a power-law be-
haviour. We find that learned representations indeed exhibit a
power-law behaviour in mk, with a gradually decreasing ex-
ponent as one moves deeper and deeper in the network. Dif-
ferent clustering methods (e.g. k-means) produce representa-
tions which do not feature power law cluster size distributions,
indicating that power law distributions are not a characteristic
of the data but rather of the mechanism of DL. Un-structured
data or non-optimized networks instead are not characterised
by power-law distributions of frequencies in general (although
we observe power-law distributions in some cases). They also
lack a rich hierarchical structure across the resolution scale.

Finally, we address the issue of optimal representation of
the inputs. DL aims at striking a balance between compres-
sion and accuracy. Representations at very low resolution
fall short of the necessary details for reconstructing the whole
range of inputs, whereas representations at very high resolu-
tion include too many of these details. Our picture has the
virtue of mapping both resolution and accuracy – that is quan-
tified by H[k] – on an information scale. It therefore allows
us to locate the point where a bit in resolution is traded for
exactly one bit in accuracy. This turns out to be the point
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FIG. 1. Information processing in deep learning. (a) A Deep Belief
Network (DBN), consisting of one visible layer (V ) and two hid-
den layers (H1 and H2), is composed of stacks of restricted Boltz-
mann machines (RBMs). (b) An example of data representation in
the DBN. The DBN maps three input data in V to hidden states in
H1 and H2. (c) The data representation can be considered to be a
hierarchical data grouping based on the hidden states. The forward
propagation of input data to deep layers is a coarse-graining process.
Subsets of distinct states on the shallow layers are transformed to
identical states in deep layers. (d) Then, V , H1, and H2 have differ-
ent sets of distinct states s. Two entropies are obtained for each layer
on the basis of the frequency k of distinct states and its degeneracy
mk: H[s] represents the uncertainty of state distinguishability, and
H[k] represents the uncertainty of state frequency.

where i) the network displays the best generalisation ability
and ii) the distribution of frequencies follows Zipf’s law [14]:
mk ⇠ k�2. We conclude with a discussion of the results and
of their implications.

RESULTS

Among the various DL models, we adopted the DBN, a
representative energy-based generative model [15, 16]. A
DBN is composed of stacks of restricted Boltzmann machines
(RBMs) (Fig. 1a). Each RBM consists of one visible layer and
one hidden layer with restricted connections, i.e. visible nodes
are not connected to other visible nodes and hidden nodes are
not connected to other hidden nodes. Thus, nodes in the same
layer are indirectly connected through the nodes in the neigh-
boring layer within an RBM stack. Given a visible and hidden
state (v,h), the RBM defines an energy function,

E(v,h; ✓) ⌘ �v>Wh� v · a� h · b, (3)

where ✓ ⌘ (W,a, b) is the model parameters. Specifically,
the matrix W represents the symmetric coupling strengths be-
tween the visible and hidden nodes, and the vectors a and b
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Maximally informative representations in  
deep layers (MNIST)
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FIG. 2. Critical data grouping of deep learning. (a) The state entropy H[s] and frequency entropy H[k] of the hidden states for different layers
after a Deep Belief Network (DBN) learns the MNIST hand-written digit data (DBN epoch 200, filled black squares), and before the DBN
optimizes its parameters (DBN epoch 0, empty blue squares). As a control, the two entropies are obtained for a structureless data (shuffled
MNIST, empty green circles) in which pixels of MNIST digit images are randomly shuffled. Note that H[s] and H[k] are normalized by
logM , where M is the size of the data. For comparison to the unique data clustering of deep learning, the two entropies are also obtained for
data clustering by the k-means clustering algorithm, where k 2 {22, · · · , 214} (filled orange triangles). Theoretically maximal H[k] for given
H[s] is also plotted (black dotted line). (b) Degeneracy mk of the state frequency k in the hidden layers of DBN epoch 200: H3 (empty black
circles), H6 (squares), and H9 (triangles); and k=212 for k-means clustering (filled orange triangles). (c) The power exponent in mk / k���1,
for different layers at epoch 200 (filled black squares) and 0 (empty blue squares). (d) Classification error for each hidden layer. Classification
error is defined as the fraction of input samples that have the same hidden state but have different true labels from a majority true label for the
hidden state. Ensemble averages of twelve realizations of the DBN were used for the plots and standard error estimation. Errorbars are smaller
than the symbols (c, d).

suggests that the main effect of learning is to organize the rep-
resentations in the subsequent layers in a hierarchical manner,
covering as densely as possible the interval of relevant H[s]
values. The fact that DL extracts features at many resolu-
tion scales, however, depends on the fact that these features
are present in the data, in the first place. Indeed, when com-
paring our results with those obtained from running the same
DBN on re-shuffled data (see “shuffled MNIST” in Fig. 2a),
we found again that the emergent representations were mostly
at low or high resolution. At intermediate values of H[s], we
found representations which were far from the optimal ones.

Let us now turn to discuss the generative capabilities of
the network within the framework just outlined. A key as-
pect is that efficient generalisation entails an optimal trade-off
between resolution and accuracy: Shallow layers (e.g. H1,
H2, and H3 in our example) infer inputs at too high resolu-
tion and fail to detect similarities between them. Hence they
generate too noisy outputs. By contrast, the resolution of deep
layers (e.g. H10) is too low to generate the full spectrum of
variability of the training set. The optimal generative power
is expected to be achieved at intermediate layers and the the-
ory outlined so far provides a quantitative criterium to identify
it. Indeed, resolution and accuracy are both measured in bits.
For optimal representations, a decrease of �E bits in resolu-
tion corresponds to an increase of �S ' ��E bit in accu-

racy. Decreasing resolution provides relevant information on
features that define the input’s similarity when � > 1. But for
� < 1, the information gain on similarity does not compensate
the loss in resolution. Therefore layers with � ⇡ 1 are those

that achieve the optimal trade-off between resolution and ac-

curacy. There one bit of resolution is turned into one bit of
information on features that define inputs’ similarity. This im-
plies that layers that achieve optimal generalisation ability i)

are those for which H[s] +H[k] is maximal and ii) that they
exhibit a Zipf’s law frequency distribution mk ⇠ k�2 (i.e.
� = 1).

In order to test this claim, we examined the performance
of the generative DBN. After optimising ✓ so that the DBN
learned the MNIST hand-written digits, we obtained equilib-
rium states for each hidden layer. We repeated the backward
and forward propagation between H` and H`�1 10,000 times
for Gibbs sampling to obtain the equilibrium states for the
`th hidden layer, starting from 60,000 random initial states
for H`. Then, we generated digit images in the visible layer
V by propagating the equilibrium states in H` all the way
back to V . The generated digits appeared different depend-
ing on the starting layer H` (Figs. 3a-c). Shallow layer H2

generated heterogeneous digit samples, including some odd-
looking digits (Fig. 3a). By contrast, deep layer H10 gen-
erated stereotyped samples (Fig. 3c). The generated digits

Zipf
μ

(Juyong Song, Junghyo Jo APCTP, Pohang)
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FIG. 3. Optimal pattern generation of the critical layer. Hand-written digit samples generated from (a) shallow (H2), (b) critical (H6), and (c)
deep (H10) hidden layers. (d, e, f) Label frequencies of the generated samples. The dotted black lines represent the original label distribution
of training samples. (g) Generation ability (black squares) and classification error (blue circles) of the hidden layers (numbers in symbols).
The generation ability quantifies how closely the generated samples follow the statistics of the training samples (see the main text for details).
Here, the x-axis represents the power-law exponent � in the degeneracy mk of the hidden state frequency k, mk / k���1, for each layer.
Classification error is the same plot in Fig. 2d. Twelve ensembles of generated samples were used to estimate the standard errors.

mimic closely the original digits of the MNIST training sam-
ples. Yet, in order to evaluate the quality of generation, we
decided to compare the statistics of generated and original
samples, rather than their similarity, thus avoiding the choice
of ad-hoc similarity measures. The DBN learned uniformly
distributed digits (approximately 6,000 training samples for
each digit, 0 to 9). We examined how closely the generated
digits reproduce the original distribution of the training digit
samples. In order to do this, we resorted to a classification
machine for hand-written digits that works with an accuracy
of 1.6% error [16], in order to assign labels to generated dig-
its. Then, we quantified the generation ability as the inverse
of the Kullback-Leibler divergence

1

D(P ||Q)
⌘

 9X

label=0

P (label) log
P (label)
Q(label)

��1

(9)

between the label distribution of the training sample P (label)
and that of the generated samples Q(label) (Figs. 3d-f).

Shallow layers H1, H2, and H3 generated rich digit sam-
ples, but their label distribution Q(label) deviated substan-
tially from P (label). Shallow layers had a high resolution
H[s] but a low value of H[k] (Fig. 2a). Every training sam-
ple was mostly represented as distinct states and this pre-
cluded the shallow layers from extracting significant struc-
tures from the data. On the other hand, deep layer H10 gen-
erated stereotyped samples, and their Q(label) also deviated
from P (label). Deep layers have low H[s] and low H[k], and
fail to correctly distinguish different digits. Indeed, deep lay-
ers have also a large classification error (Figs. 3g), because
input samples with different labels should be represented by
the same hidden states. Finally, layer H6, which achieved the
highest value of H[s]+H[k] and whose frequency distribution
has a power law behaviour with � ' 1, was found to have the

best generation ability and a low classification error (Fig. 3g).
The highest H[s] + H[k] may provide the largest flexibility
for determining the number and size of distinct states, which
can contribute to effectively extract the nested data structures
because it imposes least constraints for grouping similar sam-
ples with various sizes and separating odd samples as outliers.

We investigated different DBN architectures and datasets in
order to assess the generality of our conclusions. In the differ-
ent (deep and narrowing) network architectures with different
numbers of nodes/layers, the highest generation ability was
always observed at the critical layer for which H[s] +H[k] is
maximal and whose frequency distribution is close to Zipf’s
law (� = 1) (see Fig. S2). Moreover, we confirmed that this
conclusion was also true for using the images of lowercase let-
ters in the OCR data [20], as shown in the hand-written digit
images (see Fig. S3).

DISCUSSION

We characterise feature extraction in deep neural networks
in terms of resolution and accuracy. The former captures in-
formation costs of the internal representations of training data,
whereas the latter is expressed in terms of the degeneracy of
energy (i.e. information cost) levels and it coincides with a
recently proposed notion of relevance [12]. Within this pic-
ture, we found that DL achieves efficient data representations
with maximal relevance at each level of resolution. Interest-
ingly, maximal relevance has been shown to be an efficient
criterium for extracting relevant variables in high dimensional
data analysis also in other contexts [21, 22]. The resolution
of the representation at each layer of the architecture is de-
termined in an unsupervised manner, depending on the data.

μ

(Juyong Song, Junghyo Jo APCTP, Pohang)
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Multi-scale Relevance 
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Multi-scale Relevance 
e.g. recording neurons responsible for spatial navigation
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Neurons with high Multi-scale Relevance contain as much 
information on position/direction  

as those whose neural activity has the highest  
mutual information with position/direction
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-CTMPMEAGSCDGKLARWHFARDDNKCMPFYYTGCGGNHNQFISLDQCEEQC-
-CTNTLAQGEGPLSVTRYYFNAQSRTCDEFMFRGLKGNSNNFNSLAECEKAC-
-CTQPKDSGVCSGSQRSFYFDTRMKVCQPFLYSGCGGNENRFSTSKECRDACQ
-CTQPRDNGSCSENGRAFYFDTRTKVCQPFLYSGCGGNDNRFATSKECRDSCQ
-CTQTLAQGEGPLSVARFYFNAQSRTCDEFMFRGLKGNSNNFKSQEDCEKAC-
-CTQTLAQGEGPLSVARFYFNAQSRTCDEFMFRGLKGNSNNFKSQEDCEKAC-
-CTQTLAQGEGPLSVARFYFNAQSRTCDEFMFRGLKGNSNNFKSQEDCEKAC-
-CTSPPVTGPCRAGFKRYNYNTRTKQCEPFKYGGCKGNGNRYKSEQDCLDAC-
-CTVLPSEGYCKKRYFRFLYDSNTKTCQLFWYRGCGGTENNFPTYYSCLDRC-
-CTVLPSEGYCRKKYFRFLYDSNTKTCQLFWYRGCGGTENNFPTYYACLDRC-
-CTVQPTNGLCVPSTLGIYFDVETQHCR---FLGC-GNKRLFASLEDCEKIC-
-CTVQPTNGLCVPSTLGIYFDVETQHCR---FLGC-GNKRLFASLEDCEKIC-
-CVAKPDAGPCRAAFPAFFYDPDTNSCQPFIYGGCRGNGNRYNSREECLSRC-
-CVAPLDKCP--GNVIIYYYN-RTSGCQQMHRGNCSDN-GNYPTLQECQEYCL
-CVDLPDTGLCKESIPRWYYNPFSEHCARFTYGGCYGNKNNFEEEQQCLESCR
-CVDLPDTGLCKESIPRWYYNPFSEHCARFTYGGCYGNKNNFEEEQQCLESCR
…

?

s 2 {A,B, . . . ,W}L L~102, M~104 << 20L

(S. Grigolon et al, Mol. Biosys, 2016)

Identifying relevant positions in proteins
Critical Variable Selection



(S. Grigolon et al, Mol. Biosys, 2016)

Identifying relevant positions in proteins
Critical Variable Selection
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Sharp separation between relevant and irrelevant sites
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FIG. 1: Relevance count ci(n) for each position in PF00072 . This is defined as the number of times a particular
position i is found in the solution i 2 I⇤n for a given n. The algorithm was run for 100 times for n = 10, 20, 30 and

40. 1a) ci(n) versus i = 1, . . . , L = 112; 1b) ci(n) versus the rank ri defined by ordering the positions i in decreasing
total count

P
n ci(n) order.
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FIG. 2: 2a) Relevance count ci(n) as a function of n for the most relevant positions in PF00072 . 2b) H[K]-H[s]
values relatively to the relevance counts ci(n) in Fig. 2a.
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FIG. 3: 3a) Ranked relevance count ci(n) for positions in PF00520 . The algorithm was run for 100 times for
n = 10, 20, 30 and 40. 3b) Site entropy as a function of total count. Circles represent positions identified in the

literature (see text).
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Conserved and biologically relevant sites

PF00072
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FIG. 3: 3a) Ranked relevance count ci(n) for positions in PF00520 . The algorithm was run for 100 times for
n = 10, 20, 30 and 40. 3b) Site entropy as a function of total count. Circles represent positions identified in the
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S1
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S4

(a) Top 40 CVS sites for the PF00520 .

S1

S2

S3

S4

(b) Top 15 CVS sites for the PF00520 .

FIG. 6: Top CVS sites got for the PF00520 . Green circles spot the functional sites already identified in Refs.
[28, 29] as discussed in the Main Text.

Uniprot sites Our sites Function PCA H[k]

10 5 active X X
11 6 active X X
56 52 active, phosphorylation X X
64 60 active X X
84 80 active X X
101 99 active X (100)
104 102 active and dimerization interface X X
105 103 active and dimerization interface (102) X
106 104 active and dimerization interface (105) (103)
60 56 intermolecular recognition site X X
59 55 intermolecular recognition site (56) (54)
62 58 intermolecular recognition site (57) X
63 59 intermolecular recognition site X (58)
64 60 intermolecular recognition site X X

TABLE I: Functional sites extracted from [27, 28] for the B4DA37 9BACT sequence. In order to make a consistent
comparison sequences have been matched with particular attention to the gaps.

expansion [31] – that has been shown to capture most of the direct contacts in 3D protein structures [9] . We refer
to the appendix for a concise discussion of the steps leading to the calculation of Fi,j as applied to our dataset. We
confine our analysis to PF00072 for which both CVS and SCA yield stable predictions.

Hereby, we propose two ways by which DCA can be used to gauge the relevance of a subset of sites. First, by
analysing the position of the selected sites within the network built up by DCA (positional relevance). The network
is defined by its nodes being the previously identified 41 positions and the links as the Fi,j scores got by applying
DCA. We expect to find the relevant identified sites in central positions, with an interaction with other relevant sites
which is stronger than the interaction with non relevant ones. Second, confining the inference on the subset of selected
sites induces changes in the inferred Fi,j that depends on the relevance of the selected sites (noise undressing). If the
selection excludes only irrelevant sites, we expect a reduction in noise level and more reliable predictions. If, on the
contrary, some relevant variable is excluded, we expect to find enhanced interactions caused by hidden variables.

a. Positional relevance In order to quantify the positional relevance, we firstly performed DCA on the whole
protein and then on the CVS and the SCA lists of sites to infer the Fi,j scores between the amino acids. We shall call
them respectively F all

i,j , FCV S
i,j and FSCA

i,j .
(positional info)
A comparison between the two lists can be made by selecting the n most relevant sites on each list and the m top

interactions from the list of F all
i,j . Figs. 9a, 9c shows the resulting network for n = 41 and m = 200 for the CVS and

Voltage Sensor Domain PF000520 M=6651 (M.L. Klein et al. 2014)

(+S. Grigolon LPTMS/NETADIS)



Orthogonal to correlation based methods (SCA)

• No overlap for the 18 most relevant sites  

• Maximal overlap (51%) for 41 sites (random 33%)

7

(a) SCA sites for the PF00072 . (b) CVS sites for the PF00072 .

FIG. 5: Sites obtained by SCA (Fig. 5a) and CVS (Fig. 5b) represented on the tertiary structure with the overlap
in red.

the PF00520 dataset is as wide as that characterizing PF00072 . Yet the number of available sequences for PF00520
(N = 6652) is much smaller compared to the case of PF00072 .

As shown in Fig. 3a, CVS also in this case clearly distinguishes relevant from irrelevant sites as in the case of
PF00072 . Fig. 3b shows that, besides highly conserved sites having a clear biological relevance, CVS distinguishes
between sites whose variability is evolutionarily related from those that can be regarded as noise. A first group of
13 sites with counts larger than 890 can be identified. This contains 9 sites identified in Refs. [22, 29]. Three more
functionally relevant sites have counts larger than 500 belong to a larger group of the 38 most relevant sites. These
sites are represented on the 3D structure in Fig.6. These include N-62, N-72, R-76 and E-93 of the voltage-dependent
K+ channel KvAP which are important for channel function [28, 29]. The same sites have also been identified in Ref.
[22], that refer to the NavAb sequence (E-49, E-59, R-63, D-80 respectively). Ref. [22] also highlights the role of I-22,
F-56 and F-71 in NavAb. In addition, Ref. [22] also performs Direct Coupling Analysis on the VSD MSA, identifying
several evolutionary conserved contacts along the chain. In particular, E-49 is found to be in contact both with N-25
and with E-96, which are far apart in the NavAb structure. Ref. [22] argues that these two contacts are important to
confer stability both to the activated and to the resting state of the protein domain. All these sites are found to be
relevant in the CVS analysis, as well as R-63 and S-77, which are also found to be in contact on the NavAb structure.
Ref. [22] also reports a false positive contact (between W-76 and T-15). We find that while W-76 is relevant, T-15
is not (CT�15 = 145). Finally, we find an enrichment in relevant sites in the region corresponding to S4, which is a
highly dynamical region of the VSD, and in the S2-S3 turn (Tyr-63 to Pro-95 in KvAP) that has been suggested to
be structurally important [29].

D. Direct Coupling Analysis: interaction networks and hidden variables

In the previous section we have discussed the relevance of the selected sites in terms of known functional annotations.
In this section we discuss an independent criterium, which is based on the predictions of Direct Coupling Analysis
(DCA) on the MSA. DCA is a method aimed at identifying a network of interactions between the positions along
the protein domain, that are inferred from the traces left by the evolutionary process on the pair correlation matrix.
In recent years many e↵orts have been spent in refining this observation into a quantitative bio-informatic tool [8–
14]. Some of these, given the MSA of a given protein family, produce an F-score Fi,j for each pair of positions
i, j = 1, . . . , L with Fi,i = 0. In particular, if two positions are relevant for preserving the tertiary structure, by
establishing a physical contact, one expects that residues on these sites to co-evolve, that results in a large value of
Fi,j . DCA is indeed a powerful tool for predicting contacts in protein domains.

Here we use DCA to generate a network of interactions between positions, with the goal of deriving an independent
assessment of the relevance of the sites selected by CVS and SCA, respectively. Therefore, we stick with a standard
implementation of DCA – the so called naive Mean Field Direct Coupling Analysis (DCA) based on the Plefka

SCA CVS

(+S. Grigolon LPTMS/NETADIS)

SCA=Statistical Coupling Analysis, Lockless & Ranganathan, Science (1999)
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allosteric signal. Finally, the network of mechanically coupled residues is identified by studying separately the effect of 
a perturbation in each specific residue-residue interaction by a quasi-harmonic analysis of protein fluctuations19, 
allowing the detection of the sets of residue-residue contacts involved in the long-range signal transmission from the 
sensing domain to the pore region of the channels.  

 Figure 3. Maximally informative sites20 for 
the VGC (red) and TRP (blue) MSAs in 
comparison with the corresponding 
Shannon entropy, mapped on the relative 
structures (see also Fig 1). The analysis 
captures both the similar helical pattern, 
outlining important differences in the S4 
helix of the sensing domains of the 
channels, related to the different functional 
requirements (voltage sensitvity and 
structural stability). 

Network of co-evolving residues (WP3). The requirement of preserving such a precise network along evolution has 
arguably left a distinct imprint on the distribution of sequences encoding for these channels. In these respects, 
identifying the networks of co-evolving residues will provide a complementary view on the problem. It is then of 
crucial relevance to characterize patterns and regularities in large multiple sequence alignments (MSA), reflecting the 
evolutionary 'design principles' underlying allosteric modulation21,22. Thus, the third work package of this project 
(WP3) involves building an accurate probabilistic model based on the analysis of the correlated mutations in 
specific positions of the sequences reflecting their co-evolution. Indeed the specific mutations allowed at a given 
position are highly dependent on the chemical identity of neighbouring residues. As a result, frequency distributions of 
amino acids at different positions in a MSA are expected to be statistically dependent on each other. The approach to 
disentangle direct and indirect interactions relies on concepts of probabilistic inference, whereby a specific model 
(Potts, based on pairwise interactions23) is selected according to the probability of generating the observations. This 
method has been shown to be extremely successful at predicting several structural properties of proteins9. However, 
also in this case the under-sampling regime can make the statistical inference inaccurate. To address this issue we will 
apply the feature-selection approach described above to reduce the set of residue (and thus the number of parameters) 
for which probabilistic inference is attempted (see preliminary results in Fig. 3). At the same time, we will try to tackle 
the computational complexity related to finding optimal parameters for the Potts model developing a methodology 
based on a two-stage strategy that I am already implementing. First, a nonlinear dimensionality reduction, based 
specifically on the fractal dimension analysis24 and the diffusion maps method25, is applied in the space of the sequence 
with the goal of obtaining a parsimonious description of its variability. This will further reduce the dimensionality of 
the problem and making a more accurate estimation of the model parameters computationally tractable. 
Finally, both the results of WP2 and WP3 will be exploited to design mutagenesis experiments, to directly test 
the theoretical predictions. This will be implemented thanks to the long-standing expertise in the expression and 
functional characterisation of ion channels of the laboratory of Prof. Voets, during the secondment period, in order to 
obtain insights into the sequence-structure-function relations that underlie channel conductance and gating. This will 
include molecular techniques to produce mutated TRP channels, various cellular expression systems, as well as state-
of-the-art microscopy and electrophysiological techniques to study channel function at the cellular and molecular level. 
This provides a direct route to test whether the predicted functional consequences of specific mutations have indeed the 
expected effects, fully realizing the multidisciplinary impact of the action.  
Originality and innovative aspects of the research program 
The goal of recasting fundamental questions such as how is a stimulus transduced into an ionic current? and how are 
ligands able to interfere with this signal propagation in a quantitative form suitable for experimental verification is still 
one of the major open problems in the field of channel biophysics. Addressing this issue holds promise to shed light on 
                                                        
19 Carnevale V., S. Raugei, C. Micheletti, and P. Carloni, J Am. Chem. Soc. 128, 9766 (2006) 
20 Granata D., M. Marsili , M.L. Klein, V. Carnevale (submitted) 
21 Palovcak E., L. Delemotte, M.L. Klein, V. Carnevale, J. Gen. Physiol. 143:145-156 (2014) 
22 Palovcak E., L. Delemotte, M.L. Klein, V. Carnevale, J. Gen. Physiol. 146:37-50 (2015) 
23 Weigt M., A. White, H. Szurmant, J.A. Hoch, T. Hwa, Proc. Natl. Acad. Sci USA 106 (1) 67-72 (2009) 
24 Grassberger P., I. Procaccia, Phys. Rev. Lett. 50, 346 
25 Coifman R.R., S. Lafon, A.B. Lee, M. Maggioni, B. Nadler, F. Warner, S.W. Zucker, Proc Natl Acad Sci USA 2005 102(21):7426-7431 

Response 
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cation channels 
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TRP channels

(M.L. Klein et al. 2014)
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Conclusions
• H[k] as a model free measure of intrinsic relevance, very easy to compute 

• Maximally informative samples (maximal relevance at fixed resolution)  
typically exhibit power laws frequency distributions 

• Applications: 
- Maximally informative samples and criticality in Minimum Description Length  
- Understanding deep learning  
- Featureless selection of relevant neurons in spatial navigation  
- Prediction of relevant positions in proteins 

• Extensions: 
- Inference beyond correlations (higher order interactions)  
- Heuristics for Bayesian model selection 
- Relevance for dynamical data 
- Continuous variables


