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10 million times
slower than a transistor





In immune system

• innate immunity (ancient, fast)

• adaptive immunity (in vertebrates, slower, memory)





5%

5%

Edelman and Tononi, 2000



In genetics

• 98% of human genome does not encode protein  sequences

• Used in part for regulation and control
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Modularity/Feedback

Prediction

Synchronization



Synchronization models neural computations at many scales

• Coincidence detection, pattern matching

• Mirror neuron response

• Signal transmission and restoration

• Temporal binding of multi-sensory data

• Attention and priming

Similar mathematics describe

• Flocking and schooling

• Quorum sensing, fields effects

• Phase transitions (lasers, Bose-Einstein)
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Contraction: if Jacobian is negative definite in some metric
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Contraction Theory
Lohmiller and Slotine, Automatica 34(6), 1998

ẋ = f(x, t)

If ∃Θ(x, t) such that, uniformly∀x,∀t ≥ 0 ,

F = (Θ̇ + Θ
∂f

∂x
)Θ−1 < 0 Θ(x, t)TΘ(x, t) > 0

then any two trajectories converge exponentially.

Proof: Consider virtual displacements,δx = ∂x(t,xo)
∂xo

dxo

δz = Θδx
1

2

d

dt
||δz||2 ≤ λF ||δz||2

and path integrationat fixed time.



Observer

Lorenz attractor Observer
ẋ = σ (y − x)

ẏ = ρ x− y − x z

ż = −β z + x y

{
˙̂y = ρ x− ŷ − x ẑ
˙̂z = −β ẑ + x ŷ

J =

[
−1 −x
x −β

]
< 0



Aggregation Properties

• positive parallel

• negative feedback

• series and cascades

• translation and scaling

• all of the above

• Evolvability

Plausibly favored by evolution.
Similarly, development.
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Combinations of Contracting Systems

Parallel
d

dt
δz =

∑
i

αi(t)
d

dt
δzi

with αi(t) > 0, same metric

Hierarchies
d

dt

(
δz1
δz2

)
=

(
F1 0
G2 F2

)(
δz1
δz2

)
with G2 bounded

Feedback
d

dt

(
δz1
δz2

)
=

(
F1 G1
G2 F2

)(
δz1
δz2

)
with λ(F1) λ(F2) >

1

4
min
k>0

σ2(kG1 + GT
2 ) uniformly



Hierarchies

Composite Variables

ṡ = φ(s, t) contracting by choice of control law

˙̃x + λx̃ = s contracting by definition ofs

Qualitative dynamics.For instance, react faster to larger errors

˙̃x+(λ1 +λ2|x̃|)x̃ = s
∂ ˙̃x

∂x̃
= −(λ1 +2λ2|x̃|)

More generally x(n) = f (x, ẋ, ..., x(n−1), u, t)

Target contracting system x(n) = g(x, ẋ, ..., x(n−1), t)

Choosing
s = x(n−1) − x(n−1)

r
d

dt
x(n−1)

r = − k s + g

yields
x(n) − g = ṡ + k s Zuo and Slotine, 2004



Parallel Combinations

Control Primitives

Dynamicsf and primitivesφi all contracting in the sameΘ(x)

ẋ = f(x, t) +
∑

i

αi(t) φi(x, t) αi(t) > 0

More generally

ẋ = f(x, t) + B(x, t) u

Assume control primitivesu = pi(x, t) make theclosed-loop
systemcontractingin common metric,∀i. Then anyconvex
combination

u =
∑

i

αi(t) pi(x, t) αi(t) ≥ 0
∑

i

αi(t) = 1

yields a contracting dynamics in the same metric.

MIT 2.152



Entrainment

Contracting systems of the form

ẋ = f(x,u(t))

where the input u(t) is periodic in time, converge towards a
periodic state of the same period.

Robustness

Disturbed flow field

ẋ = f(x, t) + d(x, t)

Radius of metric ball

Ṙ + λ R ≤ ‖Θd‖
Lohmiller and Slotine, 1998



Alternate Norms

d
dt
δz = F(x, t)δz

‖δz‖2 =
∑
i

(δzi)
2 → d

dt
‖δz‖2 ≤ λmax

(F + FT

2

)
‖δz‖2

Other norms give diagonal dominance conditions

‖δz‖1 =
∑
i

|δzi| → d

dt
‖δz‖1 ≤ max

j
(Fjj+

∑
i6=j

|Fij|) ‖δz‖1

‖δz‖∞ = max
i
|δzi| → d

dt
‖δz‖∞ ≤ max

i
(Fii+

∑
j 6=i

|Fij|) ‖δz‖∞

Lohmiller and Slotine, 1998



Hierarchies of strongly connected components 
Tabareau and Slotine, 2005 



types, formation of the body plan’s map of selector gene 
compartments

Facilitated Variation
Gerhart and Kirschner, P.N.A.S. 104, 2007

Three billion years ago, in early prokaryotic organisms          
Components of energy metabolism, biosynthesis of the 60 building 
blocks, DNA replication, DNA transcription to RNA, translation of RNA to 
protein, lipid membrane synthesis, transmembrane transport

Two billion years ago, in early eukaryotic cells
Components of the formation of microfilament and microtubule 
cytoskeletons, motor proteins moving materials along the cytoskeletons, 
contractility processes, movement of the cell by cilia and ruffling 
membrane action, shuttling of materials between intracellular 
organelles, phagocytosis, secretion, chromosome dynamics, a complex 
cell cycle driven by protein kinases and protein degradation, sexual 
reproduction with meiosis and cell fusion

One billion years ago, in early multicellular animal life forms 
Components of 15–20 cell–cell signaling pathways, cell adhesion 
processes, apical basal polarization of cells, junction formation, 
epithelium formation, specialization of cells toward physiological ends, 
some developmental processes of the single-celled egg to the adult

Near pre-Cambrian, in animals with early body axes 
Components of complex developmental patterning, such as 
anteroposterior axis formation (Wnt/Wnt antagonist gradients) and 
dorsoventral axis formation (Bmp/antagonist gradients), inductions, 
complex cell competence, additional specialized cell types, formation of 
the body plan’s map of selector gene compartments (both transcription 
factors and signaling proteins), various regulatory processes



The universe of 3-node interconnection patterns



Gene Transcription 
(Yeast and E. Coli)

Food webs!
(Little Rock, Ythan…)

The universe of 3-node interconnection patterns

[Milo et.al. Science 2002]

NETWORK MOTIFS

Neural network!
(C. Elegans)



Overrepresented subgraphs have low  
relative contraction loss 4
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FIG. 4. (color online) Relative contraction loss r as a function of the normalized Z-score, each dot representing a subgraph, for
the neural connectome of C. Elegans, the gene transcription networks of Yeast and EColi, and the food-web at Saint Martin.
Subgraphs with high Z-score tend to have small relative contraction loss. In particular, in the case of 3-node subgraphs,
under-represented subgraphs also have high relative contraction loss.

tems. To address such question, let us consider a set of
N modules possibly having vector dynamics

⇢
ẋ

i

= f

i

(x
i

, t) +B

i

u

i

y

i

= C

i

x

i

x

i

(t0) = x

i0, i = 1, · · · , N,

(4)
where x

i

2 Rni , u
i

2 Rmi and y

i

2 Rpi are the state,
input and output vectors of module i. We regard a mod-
ule as a subgraph within the network. The matrices
B

i

2 Rni⇥mi and C

i

2 Rpi⇥ni determine which nodes of
the module interact with other modules. The intercon-
nection of modules is again described by equation (2),
but the A matrix is not square anymore if some module
has di↵erent number of inputs and outputs. We assume
no self-loop in the interconnection of modules.
Each isolated module is assumed to be contracting with

rate ↵

i

> 0 and measure µ

i

, which can be calculated us-
ing the contraction rate of its internal nodes and their in-
terconnection topology A

i

. To each module, we associate
a condensed scalar node containing only its contraction
rate

⇢
ż

i

= �↵

i

z

i

+ u

i

y

i

= z

i

i = 1, · · · , N. (5)

Additionally, using the (n1+ · · ·+n

N

)⇥(n1+ · · ·+n

N

)
interconnection network of the full system, we define a
condensed adjacency matrix A

cond

2 RN⇥N as

A

cond

=

2

6664

0 kM12k1,2 · · · kM1Nk1,N
kM21k2,1 0 · · · kM2Nk2,N

...
. . .

...
kM

N1kN,1 kM
N2kN,2 · · · 0

3

7775
,

(6)
where M

ij

= B

i

A

ij

C

j

with A

ij

the (i, j) block of the
interconnection network (2). Above k · k

i,j

stands for the
induced matrix norm

kMk
i,j

= sup

|x|i=1
|Mx|

j

with |x|
i

= |P 1/2
i

x|2 a weighted Euclidean norm with
metric P

i

2 Rni⇥ni found as the solution to the following
linear matrix inequality (Theorem 1 in SI-1):

A

|
i

P

i

+ P

i

A

i

� 2µ
i

(A
i

)P
i

� 0, P

i

� 0.

In the case when A

i

is Metzler a diagonal solution exists,
and the metric P

i

just assigns di↵erent units to di↵erent
modules (see SI-1). Also, in the case when each mod-
ule has a single input and a single output, A

cond

takes a
particular simple form in which its (i, j) entry is |�

ij

A

ij

|
with �

ij

= B

|
i

C

j

2 R.
In Theorem 2 of SI-1 we prove that if the condensed

interconnected system (5)-(6) is contracting, then the
original interconnected system (4)-(2) is also contracting.
With this method, the interconnection between modules
has minimal contraction loss if they are also intercon-
nected using network motifs. This suggest a modular
mechanism to build complex systems, starting by build-
ing modules interconnecting nodes as network motifs and
interconnecting those modules again as network motifs.

FIG. 5. Interconnection of network motifs in feedback. The
network shown at the left is reduced into the network shown
in the right by using (5) and (6). Contraction of the reduced
network implies contraction of the original network. The edge
weights of the reduced network (illustrated by di↵erent edge
thickness) depends on the original interconnection.

To better illustrate the point above, consider the feed-
back interconnection of three 3-node motifs shown in Fig.
5. Each isolated motif, that we label by j = 1, 2, 3, will

MotifAnti-!
motif

Low!
contraction loss

High!
contraction loss

4

-� � �

�

���

�

��������	
 �-���	

�
	�
��
��
	
�
��
��
�
��
�
��
��

�-���� ���	
���

-� � �

�

���

�

��������	
 �-���	

�-���� ���	
���

C.Elegans

Yeast

E.Coli

Food-web

FIG. 4. (color online) Relative contraction loss r as a function of the normalized Z-score, each dot representing a subgraph, for
the neural connectome of C. Elegans, the gene transcription networks of Yeast and EColi, and the food-web at Saint Martin.
Subgraphs with high Z-score tend to have small relative contraction loss. In particular, in the case of 3-node subgraphs,
under-represented subgraphs also have high relative contraction loss.

tems. To address such question, let us consider a set of
N modules possibly having vector dynamics

⇢
ẋ
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Time delays

Two contracting systems of possibly different dimensions,
with identity metric, {

ẋ1 = f1(x1, t)

ẋ2 = f2(x2, t)

Delayed coupling with constant Gi and constants ki ≥ 0{
ẋ1 = f1(x1, t) + k1G2(G

T
1x2(t− T21)−GT

2x1(t))

ẋ2 = f2(x2, t) + k2G1(G
T
2x1(t− T12)−GT

1x2(t))

preserves asymptotic contraction.

For same dimension andG1 = G2 , means couplings are p.s.d.
in same metric.

Wang and Slotine, MIT NSL 2004,  IEEE TAC 2006 



• Teleoperation between two linear mass-spring dampers{
ẍ1 + bẋ1 + ω2x1 = kD(ẋ2(t− T21)− ẋ1(t)) + kP (x2(t− T21)− x1(t))

ẍ2 + bẋ2 + ω2x2 = kD(ẋ1(t− T12)− ẋ2(t)) + kP (x1(t− T12)− x2(t))

Θ =

[
ω 0
b 1

]
→ K =

[
kD 0
kP
ω 0

]
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• Similarly, in Turing/Smale diffusion-driven instability, the
diffusion gains lose positive semi-definiteness once expressed
in the individual cell metric.





Toward Contraction Analysis of Optimization
With metric M = ⇥

>
⇥ the condition

⇣
˙

⇥+⇥A

⌘
⇥

�1 � �↵I

is equivalent to

˙

M+A

>
M+MA � �2↵M

Recall that

˙

M+A

>
M+MA � �2↵M implies that geodesic

distances decrease exponentially,

dM(x1(t),x2(t))  e

�↵t dM(x1(0),x2(0))



Contraction analysis of gradient flows

Fact: If a function f 2 C2
(Rn,R) is ↵-strongly convex, then its gradient system

˙

x = �@
x

f

converges to the global minimum exponentially with rate ↵.

Proof: Consider the identity metric M(x) = I.

MA+A

>
M+

˙

M = �2@
xx

f  �2↵I



Generalization to the Riemannian Setting

�(s)

s

f(�(s))

[Rapscak, 1991]

Hij = @ijf � �k
ij @kf

Geodesic Hessian

• The natural gradient (Amari, 1998) gives the direction of steepest ascent
according to distances measured on a space or manifold equipped with a
Riemannian metric.

• Natural gradient descent: ẋ = �M(x)�1@
x

f

• A function f 2 C2(Rn,R) is ↵-strongly g-convex, if it is ↵-strongly convex
in the length parameter along any geodesic curve.

– Equivalently, its geodesic Hessian H(x) must satisfy H(x) ⌫ ↵M(x).



Contraction Analysis of Natural Gradient Flows

Theorem: A function f : Rn ! R is ↵-strongly g-convex in a metric M(x)
if and only if its natural gradient system is contracting at rate ↵ in the same
metric.

Basic Insight: The geodesic Hessian H(x) is given by

H(x) = �1

2

⇣
MA+A>M+ Ṁ

⌘

where A(x) is the Jacobian of the natural gradient dynamics.

Example: The Rosenbrock function is g-convex.

[Wensing and Slotine, 2018]



Non-Strict Contraction Case

�(s, t)

�(s, 0)

@s�(s, t)

x2

x1

[Wensing and Slotine, 2018]

Consider the case with the natural gradient dynamics semi-contracting:

d

dt

⇥
�x>M �x

⇤
= �2�x>H(x)�x � 0

Under mild assumptions, along trajectories H(x(t))�x(t) ! 0

Theorem: If the natural gradient dynamics of f are semi-contracting

in a metric M(x), then f is g-convex, every stationary point of f is

a global optimum, and any geodesic between optima is composed of

optima.

Sketch: Consider the family of solutions �(s, t) with initial conditions �(0, 0) = x1,

�(1, 0) = x2 with x1 and x2 stationary points.

1. H(�(s, t))@s�(s, t) ! 0 as t ! 1.

2. @
x

f(�(s, t)) ! 0 as t ! 1
3. f(x2) = f(x1)



Examples: Bregman Divergence

[Wensing and Slotine, 2018]

x

f(x) p

q

df (p||q)

Recall the Bregman divergence of a convex function f :

df (p||q) = f(p)� f(q)� < @
x

f(q),p� q >

The Bregman divergence is convex in p but not necessarily in q.

Example: Generalized KL-divergence x 2 Rn

,

f(x) =

P
x

i

log(x

i

).

d

f

(p||q) =
P

p

i

log

⇣
pi

qi

⌘
+ q

i

� p

i

• Metric via: ds

2
=

P⇣
�x

2
i

xi

⌘

• Natural gradient for fixed p,

˙

q = p� q.

• Di↵erential dynamics

d
dt�q = ��q, ) contracting

• The discrete KL-divergence is g-convex in q.

Example: For PD matrices

f(X) = �logdet(X)

df (P||Q) the KL-divergence between N (0,P) and N (0,Q).

• Metric via: ds2 = tr((X

�1 �X)

2
)

• Natural gradient for fixed P,

˙

Q = �(Q�P)

• Di↵erential dynamics:

d
dt�Q = ��Q ) contracting.

• Thus, df (P||Q) is g-convex in Q.



Extension to Time-Varying Contexts

Theorem: A function f(x, t) is ↵-strongly g-convex in a metric M(x) for each
t if and only if its natural gradient system is contracting at rate ↵ in the same
metric.

Basic Insight: The geodesic Hessian at fixed time H(x, t) is given by

H(x, t) = �1

2

⇣
M(x)A(x, t) +A(x, t)>M(x) + Ṁ(x, t)

⌘

where A(x, t) is the Jacobian of the natural gradient dynamics at time t.



Combination Properties

ẋ1 = �M1(x1)
�1 @

x1f1(x1)

ẋ2 = �M2(x2)
�1 @

x2f2(x1,x2)
ẋ2 = �M2(x2)

�1 @
x2f2(x1,x2)

x2

ẋ1 = �M1(x1)
�1 @

x1f1(x1,x2)

x1
x1

Hierarchical Natural Gradient Multi-player games

Contracting when:

• f1 strongly g-convex

• f2 strongly g-convex for each x1

Contracting to a unique Nash when:

• f1 strongly g-convex for each x2

• f2 strongly g-convex for each x1

• @
x1x2f1 = � k (@

x2x1f2)
>

[Wensing and Slotine, 2018]



Extension to the Primal Dual Setting

[Wensing and Slotine, 2018, Nguyen et al. 2018]

Consider the Lagrangian L(x,�, t) with metric M

x

and M�. The

associated geodesic primal-dual dynamics

M

x

(x)

˙

x = �@
x

L
M�(�) ˙� = @�L

are contracting if L g-convex over x (in M

x

) and g-concave over �
(in M�).

Contraction in metric M = diag(M
x

,M�):

M>A+ A>M +

˙M = �2


H

x

0
0 �H�

�
< 0

Potential applications:

• Min-max problems in adversarial training

• Distributed constrained g-convex optimization



Partial Contraction
Wang and Slotine, 2002

Two nonlinear systems synchronize if their trajectories are
both particular solutions of a virtual contracting system.



Non-Autonomous Setting: Virtual Systems

[Wensing and Slotine, 2018]

Example: Time-varying learning rates in natural gradient descent

˙

x = �p(x, t)M(x)

�1 @
x

f(x)

If p(x, t) > pmin, and f is ↵-strongly g-convex in M(x), then the above con-

verges exponentially to the minimum of f with rate ↵pmin.

Virtual System:

˙

y = �p(x, t)M�1
(y) @

y

f(y)



Quorum sensing
All-to-all coupling

ẋi = f(xi, t) + k
∑

j

(xj − xi) i = 1, .., N

equivalent to local damping + quorum sensing

ẋi = f(xi, t)−kNxi + k
∑

j

xj i = 1, ..., N

Use virtual system

ẏ = f(y, t)− kNy + k
∑

j

xj i = 1, ..., N

contracting for upper-bounded Jacobian and kN large enough.

Note N 2 → 2N connections.



Some non-intuitive properties

• Global from local

• Leader following

Global synchronization to single, locally-connected element.

• Fast inhibition

A single inhibitory link can turn off an entire network.

• Robustness

Spike synchrony preserved under large parameter variations.

• Adaptation leader

A single element can control entire qualitative behavior.

• Long range synchronization through different dynamics

• Synchronization protects from noise



5%

5%

Edelman and Tononi, 2000



Fast Inhibition

ẋi = f(xi, t) +
∑
j∈Ni

Kji (xj − xi) i = 1, . . . , n

A single inhibitory linkbetween two arbitrary elements has

the ability to turn off the entire network.

ẋa = f(xa, t) +
∑
j∈Na

Kja (xj − xa) + K (−xb − xa)

ẋb = f(xb, t) +
∑
j∈Nb

Kjb (xj − xb) + K (−xa − xb)



Fast Inhibition

0 50 100 150 200 250 300
t
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x
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Concurrent Synchronization
Pham and Slotine, 2005

Under simple conditions on the coupling strengths, the� group globally
exponentially synchronizes, thus providing synchronized inputs to the outer
elements. So does the� group.

Regardless of the dynamics, connections, or inputs of the other systems.

"As stable" asglobal exponential convergence toan equilibrium. But now to
a possibly verycomplex coordinated behavior.

The invariance itself (but not the convergence) is closely related to the
notion of input-equivalence(Golubitsky, et al.).

Evolution/Development friendly.

















Global exponential concurrent synchronization
=

Contraction to a flow-invariant linear subspace



Global exponential concurrent synchronization
=

Contraction to a flow-invariant linear subspace



Global exponential concurrent synchronization
=

Contraction to a flow-invariant linear subspace

• Simple conditions based on Jacobians

• Combination properties



Contraction to a Linear Subspace

Theorem Consider a linear subspaceM invariant for

ẋ = f(x, t)

Let V be the orthornormalprojection onM⊥. All solutions
converge exponentially toM if dynamics

ẏ = Vf(V>y, t)

is contracting (in a constant metric).

Note

x ∈M ⇐⇒ Vx = 0

Synchronization rate = Contraction rate ofy



ẋi = f (xi, t) +
∑
j 6=i

Kij(xj − xi) i = 1, . . . , n

shrinking length in the
orthogonal subspace
(dimension n-p)

a given trajectory

corresponding trajectory
in the invariant subspace
(dimension p)



ẋi = fi(xi, t) +
∑
j 6=i

Kij(xj − xi) i = 1, . . . , n

shrinking length in the
orthogonal subspace
(dimension n-p)

a given trajectory

2 φ

invariant
boundary layer
(dimension p)
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Two way coupling (k1 = k2 = k )
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Generalizeddiffusive connections{
ẋ1 = f1(x1, t) + kA>(Bx2 −Ax1)
ẋ2 = f2(x2, t) + kB>(Ax1 −Bx2)

wherex1 andx2 can be of different dimensions, andA andB
are constant matrices of appropriate dimensions.

J =

( ∂f1
∂x1

∂f2
∂x2

)
−kL, where L =

(
A>A −A>B
−B>A B>B

)

L = LT ≥ 0 since
(
x1 x2

)
L

(
x1
x2

)
= ||Ax1−Bx2||2

Assume that the subspaceM : Ax1 − Bx2 = 0 is flow-
invariant. Using the projectionV onM⊥ (soVLV> > 0),
for upper bounded individual Jacobians, large enoughk en-
sures exponential convergence toM.

By recursion for larger systems.



How Synchronization Protects from NoiseHow Synchronization Protects from Noise

Tabareau, et al.,  PLoS Comp. Bio., January 2010



Consider the synchronized systems

dxi =

f (xi) + k
∑
j 6=i

(xj − xi)

 dt + σi(xi)dWi

The average, M = 1
N

∑
i xi , satisfies

dM =
1

N

[∑
i

f (xi)dt +
∑
i

σi(xi)dWi

]
This can be written

dM =
(
f (M) + ε

)
dt +

1

N

∑
i

σi(xi)dWi

with

E ‖ε‖ ≤ ρmax

(
∂2f

∂x2

)
κ(kN)

where ρ denotes spectral radius and

κ(kN)→ 0 as kN → +∞







Multiple Time Scales

N layers, each partially contracting in state zk at rate βk,

żk = fk(zk−1, zk, zk+1, t)

and the reduced system approximation

żk = fk(zk−1, zk, z
∗
k+1(zk, t), t)

Theorem 1 Assume that fk is ηk- and ξk-Lipschitz with respect
to zk and zk+1 , and that each z?k(zk−1, t) is ρk-Lipschitz. Let
γk = 1− ηkτk+1ρk+1. For small enough constants,

γk > 0 γkβk > ξk

the reduced system is contracting and its deviation from the
exact system can be explicitly bounded.

Can also apply to virtual contracting systems, e.g. to sync of
multi-time scale oscillators or quorum sensing.

(Nguyen et al., 2018)



Transverse Contraction

If the contraction condition holds on a 
compact manifold:

For all     satisfying 
i.e. transversal w.r.t. 

Then there exists a unique, globally orbitally 
stable limit cycle.

Manchester & Slotine, 2012
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Mixed Spiking / Subthreshold Data:
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Data (gray) exhibits both spiking and subthreshold activity; the
model (blue) with the relaxed stability constraint reproduces both
regimes.

M. Tobenkin, under A. Megretski and R. Tedrake Convex Optimization Approaches to Nonlinear SysID

• Robust regions of stability for walking robots

• Identification of nonlinear systems with limit cycles
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Fig. 4. Schematic and photograph of compass-gait biped used in the experiments.

Table 1. Parameters of the compass-gait biped.

Parameters Values

Masses [kg] m = 1.3, mH = 2.2,
mHg = −1.2

Inertia [kgm2] Ic = 0.0168
Lengths [m] l = 0.32, lc = 0.0596
Gravitational constant [m/s2] g = 9.81
Ratio current/input [A] kI = 1.1
Motor torque constant [Nm/A] kτ = 0.0671
Coulomb friction [Nm] FC = 0.02
Viscous friction [Nm s] FV = 0.01

d
dt

[
q̂
ˆ̇q

]
=

[ ˆ̇q
M( q̂)−1 (−C( q̂, ˆ̇q) ˆ̇q− G( q̂)+B( q̂) u)

]

+L( y− q̂) ,
q̂+ = "qq̂, ˆ̇q+ = "q̇( q̂) ˆ̇q,

where y is the measurement of q. A simple choice for
the observer gain is L = [1/ε 2/ε2], which places the
eigenvalues of the linearized error system at −1/ε. In
our experiments we found that ε = 0.02 gave a reason-
able compromise between speed of convergence and noise
rejection.

5.1. Polynomial representation of desired motion
In this paper, we represent planned trajectories in the form
of virtual holonomic constraints: one coordinate (or func-
tion of coordinates) which evolves monotonically is chosen
as a “phase” variable, and the desired motions of all other
coordinates are represented as functions of this variable.

For the compass biped we take θ = q2, the “ankle”
angle of the stance leg relative to horizontal. Then to spec-
ify the path through configuration space for each step j, we
need to specify only the inter-leg angle q1 as a function of
the ankle angle: q%

1 = φj( θ ). We chose to construct the
φj functions as Bézier polynomials, which can represent a
wide range of useful motions with quite a low number of
parameters. For details, see Westervelt et al. (2007, Ch. 6),
in which Bézier polynomials were used to design periodic
trajectories.
A trajectory q∗

1( θ ) can be represented as

φj( σ ) :=
M∑

k=0
ak

M!
k!(M − k) !

σ k
j ( 1− σj)M−k ,

where σj ∈ [0, 1] is a mapping of the evolution of θ for the
j-th footstep into the interval [0, 1]:

σj =
θ − θ ( t+j )

θ ( t−j+1)−θ ( t+j )
.

This method is straightforward to adapt to non-periodic
trajectories. For the experiments in this paper, we hand-
chose parameters of fourth-order Bézier polynomials which
achieved a walking motion over our terrain. Real-time plan-
ning in this framework may offer significant efficiency
benefits, and will be part of our future work.

6. Experimental results
To test the controller experimentally, a relatively simple
task was chosen: the robot should walk flat for two steps,
then down two “stairs”, and then continue along the flat.
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Some Other Applications



• (Left) A network of 128 silicon Integrate-and-Fire neurons in a Cooperative and

Competitive Network (CCN) topology (mediated respectively by 124 locally

coupled excitatory neurons and 4 all-to-all coupled inhibitory neurons)

• (Right)The input and output from the network are events (also called spikes or

action potentials). They can be mapped from one chip to another.

(G. Indiveri, E. Chicca, R. Douglas 2007)

E. Neftci (INI–ETHZ) May 30, 2007 2 / 4



Triantafyllou, et al., 2005Triantafyllou, et al., 2005

Miller, et al., 2006Miller, et al., 2006

Seo, et al., 2007Seo, et al., 2007

Chung, et al., 2008; Ramirez, et al., 2009Chung, et al., 2008; Ramirez, et al., 2009



System Architecture for Real-Time Animation

▸ Movement primitives are
extracted from MOCAP data by
unsupervised learning.
(Omlor & Giese, 2006)

▸ Primitives modelled by
dynamical systems.

▸ The phase space mapped onto
the ’source signals’ using
Support Vector Regression. (Giese

et al., 2008)

▸ Joint angles reconstructed by
combining the (time-shifted)
source signals linearly according
to a learned mixture model.



Movement Primitives and Sparse 
Synchronization for Gaited Locomotion

[Wensing and Slotine, 2016]

MIT Cheetah 
[Park, Wensing, Kim, RSS, 2015]

Pace

Trot

Bound



Decentralized Cloud-Based Teaming With 
Delay

?

â1

â2

â3

â

?

?

Cloud-Based Update Law for Teaming

[Wensing & Slotine, ICRA 2018]



Analytical SLAM Without Linearization 

Tan, et al., IJRR 2017



EKF-SLAM	
• Take	Measurements

• Standard	extended	Kalman	Filter

• Linearize	measurements	with	es4mated
Jacobian

BACKGROUND	

˙̂x = u+K(y �Hx̂)

Ṗ = Q�PHTR�1HP

y1 = ✓ = arctan(
x1

x2
)

y = H x + v(t)

� =


�1

�2

�
=


x̂i1 � x̂v1

x̂i2 � x̂v2

�
q = �T �

Hi(x̂)

Hi(x̂) =
1
q


�p

q�1 �p
q�2 0 �p
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2
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= (r sin ✓, r cos ✓)

T



LOCAL	LTV	KALMAN	FILTER	SLAM	

Our	Algorithm	

• The	fic4ve	measurement	vectors

• In	azimuth	model

• Rewrite	the	measurements	into	linear	virtual
constrains

h = (cos✓,�sin✓)

h⇤ = (sin✓, cos✓)

x = (x1, x2)
T
= (r sin ✓, r cos ✓)

T

hx = 0

h

⇤
x = r

✓ = arctan(
x1

x2
)

r =
q
x

2
1 + x

2
2

,
,

x = (x1, x2)
T
= (r sin ✓, r cos ✓)

T
x = (x1, x2)

T
= (r sin ✓, r cos ✓)

T



EXTENSION	TO	PINHOLE	CAMERA	MODEL	

Pinhole	Camera	Model	

• The	pinhole	camera	model

• which	can	be	rewri_en	as	LTV	constraints	on
the	states 																									as	

• LTV	Kalman	Filter
˙̂x = �u� ⌦x̂+K(y �Hx̂)

Ṗ = Q�PHTR�1HP� ⌦P�P⌦T


y1

y2

�
= � f

x3


x1

x2

�

(x1, x2, x3)


f 0 y1

0 f y2

�2

4
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x3

3

5 = Hx = 0



EXTENSION	TO	STRUCTURE	FROM	MOTION	

Structure	from	MoAon	

• Remember	that	for	the	pinhole	camera
model

• Rewrite	in	global	coordinates

• LTV	Kalman	Filter

˙̂x = �u� ⌦x̂+K(y �Hx̂)

Ṗ = Q�PHTR�1HP� ⌦P�P⌦T
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0 f y2
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4
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3

5 = Hx = 0


f 0 yi1
0 f yi2

�
T(�)(xi � xc) = 0



DECOUPLED	UNLINEARIZED	NETWORKED	KALMAN-FILTER	

Complete	Algorithm	for	SLAM-DUNK

• Separate	LTV	Kalman	filter	for	each	single	pair	of	
landmark	and	virtual	vehicle,	including	both	the	
measurement	and	the	consensus	following	for	the	
virtual	vehicle	

• The	consensus									is	the	best	es4ma4on	from	the	
weighted	average	that	maximizes	the	likelihood	
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Dynamic soaring beyond biomimetics:
design and control of an albatross-inspired 

wind-powered system 
Gabriel Bousquet

Michael Triantafyllou
Jean-Jacques Slotine



because up to now there were no tracking devices providing the
necessary high resolution (in both position and sampling rate) and
no adequate mathematical method for computing the flight path
with the required high precision. As result, we still do not know
which physical mechanism of energy extraction from the wind
allows albatrosses to fly at no mechanical cost.

There are different theories of the small-scale movements in
albatrosses [11,12,13,14,15,16,17]. The theory of wind-gradient
soaring is based on gradient in the shear wind gradient above the
sea surface [11,12,13,14]. Another theory is related to gust soaring
which explains discontinuities in the wind flow [15,16,17].

This paper presents the first experimental results on the small-
scale movements constituting dynamics soaring which enables
albatrosses to fly at no mechanical energy cost. We use in-flight-
measurement data to show how birds gain the energy required for
flying without flapping their wings from the moving air in the
shear wind above the sea surface. Based on these high-precision
data achieved with a new, in-house developed GPS-signal tracking
method, it was possible to analyse the dynamic soaring flight
manoeuvre in detail.

Results and Discussion

Experimental results on dynamic soaring
In the longest track the GPS recorded 4,850 km during the first

six days of a total 30-day foraging trip (Fig. 1a). While showing a
large distance covered on a global scale, this trajectory does not
provide any information about the small-scale flight manoeuvres
involved in the whole flight. It is only at small scale resolution
(Fig. 1b) that the typical pattern of dynamic soaring becomes
visible. The whole flight consists of curved trajectory segments that
are continuously repeated close to the water surface. A visual
inspection of all our records (based on the coarse 1 Hz online
solution) revealed that birds never fly in straight lines and are
always confined to a low altitude region.

Analysing further details of the individual flight cycles required
an even smaller scale (Fig. 1c). Whereas no special GPS raw data
analysis was necessary for previous plots (Fig. 1a.b), bird’s position
here was calculated using fine-scale 10 Hz position fixes derived
from a GPS post-processing software. According to the built-in
error estimator of our program, we could identify the total position
error with respect to the starting point of the cycle to stay below
4 dm. One recognizes immediately that the manoeuvre was made
up of horizontal curve phases superimposed by climbing and
descending phases. With regard to the local wind direction, the
manoeuvre could be partitioned into four flight phases which are
representative for each cycle: (1) a windward climb, (2) the upper
curve from wind- to leeward flight direction, (3) a leeward descent,
and finally (4) a lower curve from lee- to windward flight. We
considered such flight cycle as the essential key to understanding
how the birds extract energy from the wind – this cycle is the
fundamental element of dynamic soaring.

A closer examination of the cycle’s quantities related to dynamic
soaring was intended to expose the physics of the manoeuvre
(Fig. 2a). The time of the cycle was in the order of 15 s. The
altitude region extends from approximately 0 to 15 m. In this
region, the wind speed increases from zero to values approaching
the free airflow [18], and the bird’s speed varies between about 10
and nearly 30 m/s.

An interactive visualization of the discussed 3-dimensional
dynamic soaring trajectory is provided in Text S2.

The results of an analysis of the bird’s total energy state during
the manoeuvre are presented in Fig. 2b (solid line), which shows
the time history of
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Figure 1. Large- and small-scale movements and dynamic
soaring cycle. (a) Large -scale movement. The 4850 km path
(projected to the sea surface) of a long-distance flight of a wandering
albatross is shown. Logging stopped after the first 6.0 days of this 30-
day-long foraging trip. (b) Small-scale movements. A 14 min portion of
the long-distance flight from Fig. 1a shows a sequence of three
connected parts. The flight path consists entirely of winding and
curving segments, not exhibiting any straight horizontal sections. (c)
Dynamic soaring cycle. The small-scale movements consisted of
dynamics soaring cycles featuring distinct motions in the longitudinal,
lateral, and vertical directions. Each dynamic soaring cycle consists of (1)
a windward climb, (2) a curve from wind- to leeward at the upper
altitude, (3) a leeward descent and (4) a curve from lee- to windward at
low altitude, close to the sea surface.
doi:10.1371/journal.pone.0041449.g001
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GPS recordings of Albatrosses
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no adequate mathematical method for computing the flight path
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which physical mechanism of energy extraction from the wind
allows albatrosses to fly at no mechanical cost.

There are different theories of the small-scale movements in
albatrosses [11,12,13,14,15,16,17]. The theory of wind-gradient
soaring is based on gradient in the shear wind gradient above the
sea surface [11,12,13,14]. Another theory is related to gust soaring
which explains discontinuities in the wind flow [15,16,17].

This paper presents the first experimental results on the small-
scale movements constituting dynamics soaring which enables
albatrosses to fly at no mechanical energy cost. We use in-flight-
measurement data to show how birds gain the energy required for
flying without flapping their wings from the moving air in the
shear wind above the sea surface. Based on these high-precision
data achieved with a new, in-house developed GPS-signal tracking
method, it was possible to analyse the dynamic soaring flight
manoeuvre in detail.

Results and Discussion

Experimental results on dynamic soaring
In the longest track the GPS recorded 4,850 km during the first

six days of a total 30-day foraging trip (Fig. 1a). While showing a
large distance covered on a global scale, this trajectory does not
provide any information about the small-scale flight manoeuvres
involved in the whole flight. It is only at small scale resolution
(Fig. 1b) that the typical pattern of dynamic soaring becomes
visible. The whole flight consists of curved trajectory segments that
are continuously repeated close to the water surface. A visual
inspection of all our records (based on the coarse 1 Hz online
solution) revealed that birds never fly in straight lines and are
always confined to a low altitude region.

Analysing further details of the individual flight cycles required
an even smaller scale (Fig. 1c). Whereas no special GPS raw data
analysis was necessary for previous plots (Fig. 1a.b), bird’s position
here was calculated using fine-scale 10 Hz position fixes derived
from a GPS post-processing software. According to the built-in
error estimator of our program, we could identify the total position
error with respect to the starting point of the cycle to stay below
4 dm. One recognizes immediately that the manoeuvre was made
up of horizontal curve phases superimposed by climbing and
descending phases. With regard to the local wind direction, the
manoeuvre could be partitioned into four flight phases which are
representative for each cycle: (1) a windward climb, (2) the upper
curve from wind- to leeward flight direction, (3) a leeward descent,
and finally (4) a lower curve from lee- to windward flight. We
considered such flight cycle as the essential key to understanding
how the birds extract energy from the wind – this cycle is the
fundamental element of dynamic soaring.

A closer examination of the cycle’s quantities related to dynamic
soaring was intended to expose the physics of the manoeuvre
(Fig. 2a). The time of the cycle was in the order of 15 s. The
altitude region extends from approximately 0 to 15 m. In this
region, the wind speed increases from zero to values approaching
the free airflow [18], and the bird’s speed varies between about 10
and nearly 30 m/s.

An interactive visualization of the discussed 3-dimensional
dynamic soaring trajectory is provided in Text S2.

The results of an analysis of the bird’s total energy state during
the manoeuvre are presented in Fig. 2b (solid line), which shows
the time history of
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Figure 1. Large- and small-scale movements and dynamic
soaring cycle. (a) Large -scale movement. The 4850 km path
(projected to the sea surface) of a long-distance flight of a wandering
albatross is shown. Logging stopped after the first 6.0 days of this 30-
day-long foraging trip. (b) Small-scale movements. A 14 min portion of
the long-distance flight from Fig. 1a shows a sequence of three
connected parts. The flight path consists entirely of winding and
curving segments, not exhibiting any straight horizontal sections. (c)
Dynamic soaring cycle. The small-scale movements consisted of
dynamics soaring cycles featuring distinct motions in the longitudinal,
lateral, and vertical directions. Each dynamic soaring cycle consists of (1)
a windward climb, (2) a curve from wind- to leeward at the upper
altitude, (3) a leeward descent and (4) a curve from lee- to windward at
low altitude, close to the sea surface.
doi:10.1371/journal.pone.0041449.g001
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The albatross, a wind-powered bird

direct observation when the bird was on land and derived from
an activity recorder when the bird was at sea. The activity
pattern (sitting on water or in £ight) was measured with an
activity recorder (20 g, Francis Instrument, Cambridge, UK)
that recorded every 15 s whether it was submerged in seawater
or in the air. The activity recorder was ¢tted onto the tarsus
using a plastic leg band. When in £ight, birds tuck their legs in
the plumage (dry) and when on the water, the legs are
submerged. Each bird was also ¢tted with a 20 g Microwave 100
(Microwave Telemetry, Columbia, MD, USA) satellite trans-
mitter (Plateform Terminal Transmitter, PTT) that was taped
onto the back feathers using adhesive tape. The PTT provided
the position of the bird every 1.5 h on average through the Argos
System (CLS Argos, Toulouse, France). Analysis of satellite ¢xes
was performed using ELSA software (CLS Argos, Toulouse,
France) after data were ¢ltered according to procedures
described in Weimerskirch et al. (1993). The activity pattern and
£ight speed were estimated using satellite ¢xes and activity
recorders. Wind direction all along the route taken by the bird
was calculated using the route direction and the direction of the
wind derived from meteorological models estimating twice daily
the wind strength and wind direction in the southern hemi-
sphere (Mëtëo-France, Toulouse, France). All data (heart rate,
activity, position, bathymetry, meteorology) were estimated
every minute using authors’ own software (Diomedea 15.0) that
integrates all the data and estimates geographic positions every
minute based on activity and positioning by the Argos system,
as well as £ight speed. In addition, 82 foraging trips of breeding

wandering albatrosses from Crozet studied by satellite tracking
between 1991 and 1999 were used to examine the overall move-
ments of birds.

3. RESULTS

Heart rates were lowest when birds were resting on
land (65 beats per minute, b.p.m.) and highest when
birds were walking on land, or taking o¡ from land or
the sea (230 b.p.m.; ¢gure 1). When in £ight, the heart
rates of albatrosses were, at times, nearly as low as those
of birds resting on land (¢gure 1). During foraging trips
at sea, birds spent on average 51.8 § 15.9% (range, 33.3^
72.9%) of their time sitting on the water, which was when
heart rates were at their lowest values. However, sporadic
increases in heart rate did occasionally occur when birds
were sitting on the water, which were possibly associated
with feeding and prey handling, or agonistic behaviour
(¢gure 1). These increases in heart rates could also be
associated with ingestion and digestion of prey as this has
been shown to increase metabolic rates (Hawkins et al.
1997). Albatrosses landed (or took o¡ ) on average
15.0 § 4.5 times per day (range, 7.1^19.4) and during
these events elevated heart rates occurred in bursts of 15^
20 min. In some cases, heart rates increased just prior to
taking o¡, suggesting that birds experienced an anticipa-
tory response (¢gures 1 and 2). Average values indicate
that the initial tachycardia measured after taking o¡
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Figure 1. Heart rate of a male wandering albatross recorded during 15 h on 3^4 February 1999. The bird was engaged in various
activities on land (sitting and walking) and at sea. When at sea, the exact timings of take-o¡s or landings recorded by the activity
recorder (see Ω 2) are indicated by the plain vertical bars. The dashed horizontal line indicates the basal heart rate for the bird
resting on land. When sitting on the water at 6^7 h of the second day, or when in £ight at 9^10h of the ¢rst day, the heart rate
reached values close to basal levels.

Fast and fuel efécient? Optimal use of wind by èying
albatrosses
H. Weimerskirch1*, T. Guionnet1, J. Martin1, S. A. Sha¡er2 and D. P. Costa2

1Centre d’Etudes Biologiques de Chizë, Centre National de la Recherche Scienti¢que, 79360 Villiers en Bois, France
2Department of Biology, University of California, Santa Cruz, CA 95064, USA

The in£uence of wind patterns on behaviour and e¡ort of free-ranging male wandering albatrosses
(Diomedea exulans) was studied with miniaturized external heart-rate recorders in conjunction with satel-
lite transmitters and activity recorders. Heart rate was used as an instantaneous index of energy
expenditure. When cruising with favourable tail or side winds, wandering albatrosses can achieve high
£ight speeds while expending little more energy than birds resting on land. In contrast, heart rate
increases concomitantly with increasing head winds, and £ight speeds decrease. Our results show that
e¡ort is greatest when albatrosses take o¡ from or land on the water. On a larger scale, we show that in
order for birds to have the highest probability of experiencing favourable winds, wandering albatrosses
use predictable weather systems to engage in a stereotypical £ight pattern of large looping tracks. When
heading north, albatrosses £y in anticlockwise loops, and to the south, movements are in a clockwise
direction. Thus, the capacity to integrate instantaneous eco-physiological measures with records of large-
scale £ight and wind patterns allows us to understand better the complex interplay between the evolution
of morphological, physiological and behavioural adaptations of albatrosses in the windiest place on earth.

Keywords: heart rate; Southern Ocean; wandering albatross; £ight patterns

1. INTRODUCTION

Wandering albatrosses forage at extensive distances
from their nests in the Southern Ocean (Jouventin &
Weimerskirch 1990; Weimerskirch 1998), relying on prey
that are widely dispersed and encountered irregularly
throughout their foraging trips (Weimerskirch et al. 1994;
Viswanathan et al. 1996). Remarkably, the overall energy
expenditure (EE) while foraging, measured with doubly
labelled water, is very low (Adams et al. 1986; Arnould et
al. 1996) and wandering albatrosses have a low ratio of
EEforaging/EEresting compared to other species of birds and
mammals (Daan et al. 1990; Hammond & Diamond
1997). Flight energetic models suggest that low costs
could be achieved by the use of dynamic soaring where
birds take advantage of wind conditions (Cone 1964;
Wood 1973; Pennycuick 1982, 1989) or increase £ight
speeds to maximize distance covered (Alerstam et al.
1993). The lack of wind has been suggested to increase EE
of foraging petrels and albatrosses (Furness & Bryant
1996). Because of their morphology, with long narrow
wings and heavy weight, sustained £apping £ight would
be energetically impossible for wandering albatrosses in
the absence of wind (Alerstam et al. 1993). Low costs of
£ight are also assisted by the anatomical adaptation of a
tendon wing lock, this being con¢ned among large
gliding birds to albatrosses and giant petrels (Pennycuick
1982). Alternatively a reduced-£ight activity when at sea,
i.e. long periods sitting on the water, may explain overall
low costs but would also reduce time and distance foraged
and therefore the probability of encountering prey since
prey are detected in £ight (Weimerskirch et al. 1997). Low
foraging costs are probably critical to the unique life-
history pattern of albatrosses (Costa 1991) and especially
so in reducing the time and energy constraints imposed

on central-place foragers by distant foraging (Ydenberg et
al. 1992). However, the reliance on wind to reduce fora-
ging costs was impossible to prove in the absence of a
metric that can be linked to e¡ort exerted during
di¡erent phases of foraging £ight over the open sea. To be
able to demonstrate how wind a¡ects foraging costs it is
necessary to obtain a precise time^energy budget and
therefore estimate EE and e¡ort in relation to the
di¡erent activities at sea and to wind conditions. Previous
studies have shown that heart rate o¡ers a convenient
measure of instantaneous e¡ort and EE (Bevan et al.
1994, 1995). We use this technique in addition to miniatur-
ized units measuring the exact timing of activity and
location in the open ocean to examine how the wind
pattern a¡ects costs of foraging and £ight patterns during
foraging bouts. In a second step we analyse the patterns
of movements of satellite-tracked birds to examine on a
much larger scale whether wandering albatrosses can
consistently take advantage of wind conditions when they
depart on a foraging trip.

2. METHODS

The study was carried out on Possession Island, Crozet
Islands, Southern Indian Ocean, in January^March 1999. Seven
male wandering albatrosses were each ¢tted with three minia-
turized electronic devices (total mass 80 g): a heart-rate trans-
mitter^recorder, an activity recorder and a satellite transmitter;
the total mass of the three electronic systems representing only
0.75% of the mass of male albatrosses. Heart rate was measured
using an external heart-rate recorder^transmitter (PE4000,
Polar, Elektro Oy, Kempele, Finland) coupled with a receiver-
logging system (Vantage NV watches, Polar). Electrodes were
made of gold-plated safety pins placed under the skin. Heart
rates were measured every 60 s over ¢ve days during each fora-
ging trip at sea. The two heart-rate loggers (40 g) were taped on
the back feathers. The activity of the bird was recorded through
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types, formation of the body plan’s map of selector gene 
compartments

Facilitated Variation
Gerhart and Kirschner, P.N.A.S. 104, 2007

Three billion years ago, in early prokaryotic organisms          
Components of energy metabolism, biosynthesis of the 60 building 
blocks, DNA replication, DNA transcription to RNA, translation of RNA to 
protein, lipid membrane synthesis, transmembrane transport

Two billion years ago, in early eukaryotic cells
Components of the formation of microfilament and microtubule 
cytoskeletons, motor proteins moving materials along the cytoskeletons, 
contractility processes, movement of the cell by cilia and ruffling 
membrane action, shuttling of materials between intracellular 
organelles, phagocytosis, secretion, chromosome dynamics, a complex 
cell cycle driven by protein kinases and protein degradation, sexual 
reproduction with meiosis and cell fusion

One billion years ago, in early multicellular animal life forms 
Components of 15–20 cell–cell signaling pathways, cell adhesion 
processes, apical basal polarization of cells, junction formation, 
epithelium formation, specialization of cells toward physiological ends, 
some developmental processes of the single-celled egg to the adult

Near pre-Cambrian, in animals with early body axes 
Components of complex developmental patterning, such as 
anteroposterior axis formation (Wnt/Wnt antagonist gradients) and 
dorsoventral axis formation (Bmp/antagonist gradients), inductions, 
complex cell competence, additional specialized cell types, formation of 
the body plan’s map of selector gene compartments (both transcription 
factors and signaling proteins), various regulatory processes
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Nepusz and Vicsek, Controlling edge dynamics in complex networks
Nature Physics, 8(7), 2012

Dual problem and properties, simple algorithm.

Slotine and Liu, Complex networks: The Missing Link
Nature Physics, 8(7), 2012

Evolution may be based on ancient optimized components
whose connections are the main target of natural selection (fa-
cilitated variation). From this perspective, controllability of
evolution and development is primarily a link-based concept.
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