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The bow-tie organization of the Web:

A. Broder, R. Kumar, F. Maghoul, P. Raghavan, S. Rajagopalan,

R. Stata, A. Tomkins, J. Wiener (2000)
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SND, J. F. F. Mendes, A. N. Samukhin (2001)
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(a) directed ER (N = 10000, 〈qtot〉 = 5),
(b) the Gnutella P2P (N = 62586, 〈qtot〉 = 4.726),

(c) C. elegans (N = 495, 〈qtot〉 = 32.073).
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Mean number of tendril layers LT :

(Dashed lines correspond to pc .)
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Relative size of tendrils in layers:

(a) directed ER (N = 106, 〈qtot〉 = 5),
(b) the WWW (N = 875713, 〈qtot〉 = 11.659).
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Manifolds & simplicial complexes:
Manifolds ≡ topological spaces locally homeomorphic to
Euclidean spaces
(e.g., surfaces)

d-simplex ≡ d + 1-clique
[d + 1 vertex and (d + 1)d/2 edges]

d-simplicial complex ≡ constructed only of d-simplexes

Simplicial complexes are the discrete versions of
manifolds,
e.g., triangulation networks (sets of triangular faces) are
the discrete versions of surfaces.

Closed manifolds vs. manifolds with a boundary
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Triangulations are everywhere:

Triangulations are in the heart of modern civilization as
the main method of treatment of surfaces in topography,
engineering, hydrodynamics and aerodynamics,
visualization techniques, and everywhere.

Particular planar graphs, strong constraint (!)
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Manifolds with boundaries:

Wu, Menichetti, Rahmede, and Bianconi (2015)
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Modelling closed manifolds using evolving
simplicial complexes:

• local structure — ???
(degree distribution, degree–degreecorrelations)

• space dimension — ???
(Hausdorff and spectral dimensions)

• topology — ???
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Topology:

Topology is about the properties of space that are
preserved under continuous deformations.
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Triangular mesh operations—1:

Pachner moves:

1−move

2−move

0−move

P1

P2
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Triangular mesh operations—2:

S
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Triangulations of closed surfaces:

Euler’s formula for general polyhedra

χ = F + N − E ,

χ = 2(1− h),

If there are no boundaries, then

3F = 2E ,

χ = N − 1

3
E = N − 1

2
F .
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Local curvature:

Ri = 1− 1

6
qi ,

assuming that all edges are equal.

17 / 36



Organization of models:

At each time step,
(i) an element or neighboring elements of the simplicial
complex under consideration are chosen with some
preference or, in the simplest particular case, without
preference, i.e., uniformly at random. For triangulations,
such elements are vertices, edges, and triangles.
Then,
(ii) a specific transformation from the set of operations
that keep the simplicial complex intact is applied to this
element.
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Zoo:
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Be careful:

The elements of triangulations are faces and not edges
and vertices.
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Hausdorff dimension:
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Spectral dimension:

ϕ0(t) ∼ t−dS/2, ρ(λ) ∼ λdS/2−1

dS ≤ dH
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Evolving topology—
generation of wormholes:
at each step, perform G2 (creates a new face);
in addition, at each θ-th step merge two faces and
eliminate them
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Results:

24 / 36



E1 vs. equilibrium random trees

Model E1:
random addition and addition vertices of degree 3 with
equal rates.

dH ∼ 2(?), dS = 1.4(2).

Equilibrium random trees:

dH = 2, dS = 4/3.
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Self-assembling systems:
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Optimal nets for self-folding systems:
Self-assembling

3D shells are synthesized from the self-folding of 2D
templates of interconnected panels, called nets.

The yield is maximized following sequentially two design
rules:
(i) maximum number of vertices with a single-edge cut
and, e.g.,
(ii) minimum radius of gyration of the net.

A vertex with a single-edge cut is one whose the
number of adjacent faces is the same in the net and in
the shell.

Step (i) is NP hard
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Shells and nets:
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Difficult:

Previously:
a random search, scanning only a small subset of possible
nets and thus missing the global optimum.

(a dodecahedron, E=30 edges, has more than 5 million
possible cuts).

Our deterministic algorithm:
finds exactly the global minimum for solids with E up to
150 (desktop).
Its stochastic version:
approaches the global minimum for higher E .

29 / 36



Idea:

Definition:
A shell graph consists of the vertices and edges of the
shell.

Design rule (i) corresponds to finding the set of

maximum leaf spanning trees of the shell graph.
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Fraction of spanning trees, NST, that are maximum leaf
spanning trees, NMLST, as a function of the number of
shell edges, E
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Number of leaves, L, in a MLST as a function of the
number of shell edges, E
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Soccer ball-1:
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Soccer ball-2:

Truncated icosahedron (soccer ball): (a) spectrum of the
radii of gyration for all the 4114 non-isomorphic MLSTs,
ordered by increasing radius of gyration; the MLST with
the (b) optimal (rank 1); (c) intermediate (rank 2057:
RG = RGmin ≈ 1.23); and (d) largest (rank 4114:
RG = RGmin ≈ 1.40) radius of gyration.
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Conclusion:

∼
∼
∼
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