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Problem setting

We consider models of sequences of outputs
- Output ‘d’ can depend on earlier ‘d’ anywhere in history
- Dependence on history can be learned

alblbjc]d]e]b]d]alc]d]c]?

What if output ‘c’ is often (eventually) followed by output
‘d’?
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Simplest approach:

consider most recent element

alblbjc]d]e]b]d]alc]d]c]?

Most recent letter most predictive. Following c:
{a:100, b:200, c:1273, d:11 }

Can write Pr[next letter | current letter] as matrix:

0o 0.1 0.1 0.3
0 08 0.15 0.05
06 0.13 .8 .007
0.1 0.1 0.1 0.7

W —

First-order Markov Model MM1(W): Zpew = W 2014



But is this enough?

Generally, looking at more history should provide better
models

Approaches to long-range dependencies:
- High-order or variable-order Markov models
- Deep network sequence models
- Point processes
- Many others



Higher Order Markov Models

e Next state only depends on k previous states
e But dependence is arbitrary

@@ @ - - — D G 2

e N possible states
e nk+*1 parameters

w(1,1) w(1,n)
w(w, 1) w(2,n)
W = . .

Even Variable-Order models require exponential space for
order-d dependencies



Deep Neural Network Models

Recurrent neural networks @
e (Generating Sequences with RNNs, Graves, 2014)

e LSTMs (Long-Short
Term Memory) o AN
e Complex non-linear S
relations between E!jﬁ
previous states CIF Vid
()

Concerns
e Slow to train
e Requires lots of data
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Introduction to recency weighting

Significant body of work on models of re-consumption,
based on extensions of Simon’s copying model [Simon’55]:

alblbjc]d]e]b]d]alc]d]c]?

weights w

w(12) w(11) w(10) w(?2) w(8) w(7) w(6) w(5) w(4) w(3) w(2) w(1)

Pr[d is consumed next] ~



Combining Recency-Weighting with

Markov

Extending the same idea to Markov models:
Next state is a mixture

Joe’s Mortons Shakey’s
Family Fun Steak Pizza

Barn House Parlor




Linear Additive Markov Process (LAMP)

Definition of LAMP,(w, W)

e W stochastic (transition) matrix
e \ector w with k weights

k
Pr|X; = x¢|zo, ..., 21| = Z w,;Wfot_i
i=1

Total parameter complexity: NNZ(W) + k
Must learn both matrix W and history distribution w
We use alternating minimization — details in paper
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Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMx-1
2. LAMP(w,W) is a subset of MM

State distribution of LAMP at different timesteps:

Time 0 Time 1 Time 2 Time 3
3
oW
o mWE—
TO— »To W /, 7T()W2

Correct random variable: exponent at time t = e;
Evolution: pick exponent from previous k (according to w), add 1 to it.

[See also Wu and Gleich (arXiv)]



Steady State of LAMP

Let m = min{e; _gi1,...,6:}
Note: e;41 > 1+ m
By induction: min{e; 1 1,...,eip} > 1+ m
Therefore: /
€ = _E_

Conclusion: LAMPk(w,W) has same steady state as MM1(W)

LAMP has same steady state but different dynamics



Exponent Processes

Look back from exponent at time t

H(#) \.

Time: t_ZWi t—Wl—WQ t—Wl t
I=1
State: o . To W et =2 moWe=1  qaWes

H(f) IS a stopping time, when this sum first crosses t

But this is just a renewal process!

Theorem: By Strong Law of Large Numbers for Renewal Processes:

. _ 4
A () = 375




LAMP Mixing

e (Can derive concentration bounds

e Gives strong statements on mixing time of LAMP, based
on mixing of underlying first-order MM



Data for Evaluation

T

Wikispeedia



Experiments: Total Perplexity
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Experiments: learned weight distribution

Weight value

0.55

BrightKite
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e LAMP learns weight decay where useful (BrightKite)

e If history isn’t useful (Wikispeedia), then turns into First

Order Markov Chain
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BN Weight Only LAMP Order 6




Comparison with LSTMs

Algorithm BRIGHTKITE LASTFM  REUTERS
LAMP order 6, 1.5 iter 38.4 1054.6 296.8
LSTM, short training time 85.8 1359.1 105.4
LSTM, long training time 51.0 H25.7 60.4

e LAMP does better than LSTM on some datasets (e.qg.
BrightKite)

e Better or equal performance on other datasets (e.qg.
LastFM) with similar amounts of training time
o With 20x training time, LSTM does better

e LSTM does better on text data (better at using text
statistics, similar to N-grams)



Reverse Engineering
a Markov Chain

Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee



http://tomkins.family/static/papers/src/KTV+15.pdf

Random Walks & Markov Chains

Markov Chains in Data Analysis:

- Simple, yet capture a lot of interactions

- Typically: compute & use the stationary distribution
- Beautiful theory with great applications

Examples:
- PageRank: Random surfer stationary distribution
- Translation: Use language models to build phrases



A Recommendation Chain

GO ! "gle markov chain @, “

Web Videos Books Images Shopping More ~ Search tools

About 2,250,000 results (0.30 seconds)

Markov chain - Wikipedia, the free encyclopedia
en.wikipedia.org/wiki/Markov_chain v Wikipedia ~

A Markov chain (discrete-time Markov chain or DTMC), named after Andrey Markov, is
a mathematical system that undergoes transitions from one state to ...

Examples of Markov chains - Andrey Markov - State space - Stochastic matrix

PPFI Chapter 11, Markov Chains

www.dartmouth.edu/~chance/.../Chapter11.pdf v Dartmouth College ~
Chapter 11. Markov Chains. 11.1 Introduction. Most of our study of probability has dealt
with independent trials processes. These processes are the basis of ...

Origin of Markov chains - Khan Academy
www.khanacademy.org/.../markov_cha... Khan Academy ~
Could Markov chains be considered a basis of some (random)

” H | l”’ ol cellular automaton? | mean, each Markov ...
: !
S, >

«

il

Markov Chains

setosa.io/blog/2014/07/26/markov-chains/ ~
Jul 26, 2014 - Markov chains, named after Andrey Markov, are mathematical systems
that hop from one "state" (a situation or set of values) to another.



A Recommendation Chain
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About 109,000 results

Markov Chains - Part 1
by patrickJMT + 4 years ago * 178,071 views

Part 2: http://www.youtube.com/watch?v=jtHBfLtMq4U In this video, | discuss Markov
Chains, although | never quite give a ...

(ML 14.1) Markov models - motivating examples
by mathematicalmonk + 3 years ago * 33,870 views

Introduction to Markov models, using intuitive examples of applications, and motivating
the concept of the Markov chain.

Finite Math: Introduction to Markov Chains
by Brandon Foltz + 2 years ago * 28,609 views

Finite Math: Introduction to Markov Chains. In this video we discuss the basics of
Markov Chains (Markov Processes, Markov ...

HD

Bruins and Canadiens scrum, Markov spears Chara in the groin
by Eric Burton « 6 months ago * 19,249 views
cc
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A Recommendation Chain

Example:
- |ltems: videos
- Stationary Distribution: view counts

Why are some videos more popular:

- Better (higher quality) videos
- More frequently recommended

Today:

- Disentangle these two reasons



Inverting a Markov Chain

Problem:

- Given a stationary distribution, find the Markov Chain that generated
it.

Given:
- Graph &
- Distribution 7

Output:
- Transition Matrix M that generated it



Feasibility

Feasibility:
- Not always feasible

G
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Feasibility

Feasibility:

- Not always feasible

G

T4 = 1/3 TR = 2/3

Definition:
- A directed graph is consistent if there is a flow that preserves the
steady state.

- Any strongly connected graph with self loops is consistent

Theorem:

- For any consistent graph, there exists a Markov chain with 7 as its
stationary distribution.



Constraints

The problem is under-constrained:
- N constraints
- m —n > n variables
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Constraints

The problem is under-constrained:
- 7 constraints
- m — n > n variables

Approaches

- [Tomlin "03]: MaxEnt objective on variables (regularization)

- [Today] Limit the degrees of freedom

- For each vertex v; let s; be its score. The Markov Chain is the
function of the scores

- Scores express “quality” or “attractiveness”



From Scores to Transitions

Transition probability M4 .o depends on:

O
- Score of the destination s, A ->(c)
O

- Parameter of the edge wac



Simplest Example

Weighted Random Walk:
- All of the edge weights are set to 1 . @

- Transition probability proportional to the score
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Simplest Example

Weighted Random Walk:
- All of the edge weights are set to 1 . @

- Transition probability proportional to the score

SC
S+ Sc + Sp

Moo =

- Transition probabilities are context dependent:

e SB:].OO

Ma_.c = 0.09
SC — 10

(A

Pk & Mp_c = 0.91
N —1

F—@ °°



From Scores to Transitions

Transition probability M4 .o depends on:

(&)
- Score of the destination s, A »@

- Parameter of the edge wac
- Call this function f

Formally: My_.c < f(sc,wac)

f(sc,wac)
sc,wac) + f(sB,waB) + f(sp,wap)

MA—>C — f(
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- Continuous in s
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From Scores to Transitions

Transition probability M4 .o depends on:

(&)
- Score of the destination s, A »@
©

- Parameter of the edge wac
- Call this function f

Formally: My_.c < f(sc,wac)

Sanity Check on f:
- Continuous in s
- Monotone in s

- Unbounded ins : lim f(s,w) — oo
S—> OO

Se—>00



Simplest Example

Weighted Random Walk:
- All of the edge weights are setto 1 A @

- Transition probability proportional to the score
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More Examples

Weighted Random Walk:
- All of the edge weights are set to 1 A @

- Transition probability proportional to the score

SC
S+ Sc + Sp

Moo =

Seeking Similar Content:

- Edge weight: similarity between two nodes

- My o Xwac - S



More Examples

Weighted Random Walk:
- All of the edge weights are set to 1 A @

- Transition probability proportional to the score

SC
S+ Sc + Sp

Moo =

Seeking Similar Content:

- Edge weight: similarity between two nodes

- Ma,c Xwac * ScC

Overall:

- Decide whether items are popular due to high scores (attract all of the
incoming traffic) or due to location (attract a little bit from many
locations)



Main Theorem

Given:
- A consistent input G, 7
- Monotone, continuous and unbounded function f

There exists:
- A unique set of scores si,...,s,
- So that 7 is the stationary distribution induced by f
- Moreover, the scores can be found in polynomial time
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Main Theorem

Given:
- A consistent input G, 7
- Monotone, continuous and unbounded function f

There exists:
- A unique set of scores si,..., s,
- So that 7 is the stationary distribution induced by f
- Mord¢over, the scores cyn be found in polynomial time

up to scaling

upto (1 +e¢)
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Definitions

- Fix a set of scores s and steady state 7

- Let ¢;(s) be the expected mass at v;
starting with 7 using s

- Call a node underweight if
q,,,(s) < (1 — 6)7’('7;

Algorithm:
- Start with s} = /n

-For t=1,...
e Foreach v; € V :
e If v; underweight:
Set st 1 q;(s' 1, sh) = (1 — €/2)m;
o else:

t_ t—1
Set s, = s,
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Definitions

- Fix a set of scores s and steady state 7

- Let ¢;(s) be the expected mass at v;
starting with 7 using s Note: scores never decrease

- Call a node underweight if
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Algorithm:

- Start with s} = /n
~For t=1,... Guaranteed to exist because
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Definitions

- Fix a set of scores s and steady state 7

- Let ¢;(s) be the expected mass at v;
starting with 7 using s Note: scores never decrease

- Call a node underweight if

i(s) < (1 —¢€)m;
qi(s) < ( ) If g is ever below 7, it will

always stay below

Algorithm:
- Start with s} = /n
~For t=1,... Guaranteed to exist because

e Foreach v; € V / f is monotone, continuous,
o If v; Utnderweigqti t unbounded & G is consistent
Set s; : q;i(s,7,s;) = (1 —€/2)m;

e else:

Set st t=1

i — 5



Proof of Convergence

Key Lemma:
- There is an explicit bound M such that s; < M for all i,t .



Proof of Convergence

Key Lemma:
- There is an explicit bound M such that s < M for all i,t .

Proof Sketch:

- Consider a set of scores that grows without bound

- These scores all must be underweight (these are the only scores that
increase)

- Not all scores can be underweight (sum of underweight scores below
1)

- The scores growing without bound are taking all of the probability
mass from those bounded

- By consistency, this demand must be met, a contradiction.



Proof of Convergence

Key Lemma:
- There is an explicit bound M such that s < M for all i,t .

Finishing the Proof:
- Scores increase multiplicatively by factor of (1 + ¢/2)

- M is bounded by (

2
- Overall: O (n—log n

€ €Pmin




But Does it Work...

Experimental Evaluation:
- Dataset: empirical transitions
- Input: Transition graph and the steady state distribution

- Output: Transition probabilities
- Metrics: LogLikelihood or RMSE



Datasets

Wiki:
- Navigation paths through wikipedia.
- About 200k transition pairs, 51k user traces over 4.6k nodes

Rest:

- Results of broad restaurant queries to Google.
- 100k transitions, 65k nodes

Entree:

- Chicago restaurant recommendation system from 90s
- 50k transitions, 27k nodes

Comedy:
- Given a pair of videos, predict which one is judged funnier
- 225k transitions, 75k nodes



Baselines

Popularity:
- Transition proportionally to the steady state distribution (score = pi)

Uniform:
- Uniform over out-edges

Pagerank:

- Transition proportionally to the node pagerank

Temperature:
- MaxEnt regularization approach

Inversion:
- Our algorithm



RMSE Prediction:

Tempe-

Popularity | Uniform | PageRank Inversion
rature
Wiki 1 0.65 0.83 0.65 0.57
Rest 1 1.17 1.39 1.21 0.59
Entree 1 0.69 1.01 0.56 0.42
Comedy 1 0.65 0.9 0.78 0.36




Convergence

Performance on WIKI
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The End




