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Problem setting

We consider models of sequences of outputs
– Output ‘d’ can depend on earlier ‘d’ anywhere in history
– Dependence on history can be learned

What if output ‘c’ is often (eventually) followed by output 
‘d’?

a b b c d e b a c d cd ?
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Example: Science Fiction Novels

Many other examples:



Simplest approach: 
consider most recent element

a b b c d e b a c d cd ?
Most recent letter most predictive.  Following c:
  { a:100, b:200, c:1273, d:11 }

Can write Pr[next letter | current letter] as matrix:

First-order Markov Model MM1(W):

W =

0
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But is this enough?

Generally, looking at more history should provide better 
models
Approaches to long-range dependencies:
– High-order or variable-order Markov models
– Deep network sequence models
– Point processes
– Many others



Higher Order Markov Models

● n possible states 
● nk+1 parameters 

● Next state only depends on k previous states 
● But dependence is arbitrary

... ?...

W =

0

BBB@

w(1, 1) · · · w(1, n)
w(w, 1) · · · w(2, n)

...
. . .

...
w(nk, 1) · · · p(nk, n)

1

CCCA

Even Variable-Order models require exponential space for 
order-d dependencies

xt�1xt�k



Deep Neural Network Models

Recurrent neural networks  
● (Generating Sequences with RNNs, Graves, 2014) 

● LSTMs (Long-Short 
Term Memory) 

● Complex non-linear 
relations between 
previous states

Concerns 
● Slow to train 
● Requires lots of data



Introduction to recency weighting

Significant body of work on models of re-consumption, 
based on extensions of Simon’s copying model [Simon’55]: 



Introduction to recency weighting

Significant body of work on models of re-consumption, 
based on extensions of Simon’s copying model [Simon’55]: 

a b b c d e b a c d cd ?

weights w

w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9) w(10) w(11) w(12) 

w(2) w(5) w(8) 

Pr[d is consumed next] ~ + +



Combining Recency-Weighting with 
Markov

Extending the same idea to Markov models:
Next state is a mixture

Joe’s 
Family Fun 

Barn

Mortons 
Steak 
House

Shakey’s 
Pizza 
Parlor

Ruth’s 
Chris ??

w(1) w(2) w(3) w(4) 



Linear Additive Markov Process (LAMP) 

Definition of LAMPk(w, W)  

● W stochastic (transition) matrix 
● Vector w with k weights 

Pr[Xt = xt|x0, . . . , xt�1] =
kX

i=1

wiW
T~1xt�i

Total parameter complexity: NNZ(W) + k
Must learn both matrix W and history distribution w
We use alternating minimization — details in paper
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Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk
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Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk

Time 0

State distribution of LAMP at different timesteps:

⇡0

Time 1

⇡0W

Time 2

⇡0W
2

⇡0W

Correct random variable: exponent at time t = 
Evolution: pick exponent from previous k (according to w), add 1 to it.

et

[See also Wu and Gleich (arXiv)]

Time 3

⇡0W
3

⇡0W
2

⇡0W



Steady State of LAMP

Let
Note:
By induction:
Therefore:

Conclusion: LAMPk(w,W) has same steady state as MM1(W)

LAMP has same steady state but different dynamics

et+1 � 1 +m

et �
�
t

k

⌫

m = min{et�k+1, . . . , et}

min{et+1, . . . , et+k} � 1 +m



Exponent Processes

is a stopping time, when this sum first crosses t

But this is just a renewal process!

Theorem: By Strong Law of Large Numbers for Renewal Processes: 

Look back from exponent at time t

Time: t�
H(t)P
I=1

Wi . . . t�W1 �W2 t�W1 t

State: ⇡0 . . . ⇡0W et�2 ⇡0W et�1 ⇡0W et

lim
t!1

H(t) = t
E(w)



LAMP Mixing

● Can derive concentration bounds 

● Gives strong statements on mixing time of LAMP, based 
on mixing of underlying first-order MM 



Data for Evaluation

Wikispeedia



Experiments: Total Perplexity

BrightKite

Reuters

LastFM

Wikispeedia

Observations 
● In general, N-grams 

and Kneyser-Ney N-
grams struggle to use 
higher order 
information without 
overfitting 

●  Exception is Reuters 
(text data) which these 
models have been 
designed to do better 
on



Experiments: learned weight distribution

● LAMP learns weight decay where useful (BrightKite) 

● If history isn’t useful (Wikispeedia), then turns into First 
Order Markov Chain 

BrightKite Wikispeedia



Experiments

● LAMP does better than LSTM on some datasets (e.g. 
BrightKite) 

● Better or equal performance on other datasets (e.g. 
LastFM) with similar amounts of training time 
○ With 20x training time, LSTM does better 

● LSTM does better on text data (better at using text 
statistics, similar to N-grams)  

Comparison with LSTMs 



Reverse Engineering 
a Markov Chain

Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee
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Random Walks & Markov Chains

Markov Chains in Data Analysis:
– Simple, yet capture a lot of interactions
– Typically: compute & use the stationary distribution
– Beautiful theory with great applications

Examples:
– PageRank: Random surfer stationary distribution
– Translation: Use language models to build phrases 
– ...
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A Recommendation Chain



A Recommendation Chain



A Recommendation Chain

stationary distribution



A Recommendation Chain

Example:
– Items: videos
– Stationary Distribution: view counts

Why are some videos more popular:
– Better (higher quality) videos
– More frequently recommended 

Today:
– Disentangle these two reasons 



Inverting a Markov Chain

Problem: 
– Given a stationary distribution, find the Markov Chain that generated 

it.

Given:
– Graph 
– Distribution  

Output:
– Transition Matrix      that generated it

 

⇡

G

M



Feasibility

Feasibility:
– Not always feasible

A B

⇡A = 1/3 ⇡B = 2/3

⇡



Feasibility

Feasibility:
– Not always feasible

Definition:
– A directed graph is consistent if there is a flow that preserves the 

steady state. 
– Any strongly connected graph with self loops is consistent

Theorem:
– For any consistent graph, there exists a Markov chain with     as its 

stationary distribution. 

A B

⇡A = 1/3 ⇡B = 2/3

⇡



Constraints

The problem is under-constrained:
–     constraints
–                     variables
n

m� n � n
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The problem is under-constrained:
–     constraints
–                     variables

Approaches
– [Tomlin `03]: MaxEnt objective on variables (regularization) 

n
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Constraints

The problem is under-constrained:
–     constraints
–                     variables

Approaches
– [Tomlin `03]: MaxEnt objective on variables (regularization) 
– [Today] Limit the degrees of freedom 

– For each vertex     let      be its score.  The Markov Chain is the 
function of the scores

– Scores express “quality” or “attractiveness”

n

vi si

m� n � n



From Scores to Transitions

Transition probability            depends on:
– Score of the destination
– Parameter of the edge

C

B

A

D

MA!C

sc
wAC



Simplest Example

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

C
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sB + sC + sD
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Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

– Transition probabilities are context dependent:
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Simplest Example

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

– Transition probabilities are context dependent:

C

B

A

D
MA!C =

sC
sB + sC + sD

C

B

A

D

sB = 100

sC = 10

sD = 1

MA!C = 0.09

F

MF!C = 0.91



From Scores to Transitions

Transition probability            depends on:
– Score of the destination
– Parameter of the edge
– Call this function

Formally:

C

B

A

D

MA!C / f(sC , wAC)

MA!C =
f(sC , wAC)

f(sC , wAC) + f(sB , wAB) + f(sD, wAD)

f

MA!C

sc
wAC



From Scores to Transitions

Transition probability            depends on:
– Score of the destination
– Parameter of the edge
– Call this function

Formally:

Sanity Check on   :
– Continuous in 
– Monotone in 
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From Scores to Transitions

Transition probability            depends on:
– Score of the destination
– Parameter of the edge
– Call this function

Formally:

Sanity Check on   :
– Continuous in 
– Monotone in 
– Unbounded in    :

C

B

A

D

MA!C / f(sC , wAC)

f

MA!C

sc

f

s

s
s

wAC

lim
s!1

f(s, w) ! 1

lim
sc!1

MA!C = 1



Simplest Example

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

C
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sB + sC + sD



More Examples

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

Seeking Similar Content:
– Edge weight: similarity between two nodes

–

C

B

A

D
MA!C =

sC
sB + sC + sD

MA!C / wAC · sC



More Examples

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

Seeking Similar Content:
– Edge weight: similarity between two nodes
–  

Overall:
– Decide whether items are popular due to high scores (attract all of the 

incoming traffic) or due to location (attract a little bit from many 
locations)

C

B

A

D
MA!C =

sC
sB + sC + sD

MA!C / wAC · sC



Main Theorem

Given:
– A consistent input
– Monotone, continuous and unbounded function 

There exists:
– A unique set of scores
– So that     is the stationary distribution induced by 
– Moreover, the scores can be found in polynomial time

G,⇡

f

s1, . . . , sn
⇡ f
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Main Theorem

Given:
– A consistent input
– Monotone, continuous and unbounded function 

There exists:
– A unique set of scores
– So that     is the stationary distribution induced by 
– Moreover, the scores can be found in polynomial time

G,⇡

f

s1, . . . , sn
⇡ f

up to scaling

up to (1± ✏)
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Definitions 

– Fix a set of scores     and permutation 
– Let         be the expected mass at     

starting with    using 

–
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Definitions 
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Definitions 

– Fix a set of scores     and permutation 
– Let         be the expected mass at     

starting with    using 

–  Call a node underweight if
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Definitions 

– Fix a set of scores     and steady state 
– Let         be the expected mass at     

starting with    using 

–  Call a node underweight if

– Algorithm:
• Repeatedly increase scores of underweight 

nodes
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Definitions 

– Fix a set of scores     and steady state 
– Let         be the expected mass at     

starting with    using 

–  Call a node underweight if

– Algorithm:
• Repeatedly increase scores of underweight 

nodes

s
vi

s

⇡
qi(s)
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Definitions 

– Fix a set of scores     and steady state 
– Let         be the expected mass at     

starting with    using 
– Call a node underweight if

Algorithm:
– Start with 
– For 

• For each              :
• If       underweight:

Set
• else:
 Set

s
vi

s

⇡
qi(s)

qi(s) < (1� ✏)⇡i

s0i = 1/n

t = 1, . . .
vi 2 V

vi

sti = st�1
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sti : qi(s
t�1
�i , sti) = (1� ✏/2)⇡i
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Definitions 

Guaranteed to exist because 
f is monotone, continuous, 
unbounded & G is consistent

Note: scores never decrease

If q is ever below    , it will 
always stay below

⇡

– Fix a set of scores     and steady state 
– Let         be the expected mass at     

starting with    using 
– Call a node underweight if

Algorithm:
– Start with 
– For 

• For each              :
• If       underweight:

Set
• else:
 Set

s
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Proof of Convergence

Key Lemma: 
– There is an explicit bound      such that               for all       .M sti  M i, t



Proof of Convergence

Key Lemma: 
– There is an explicit bound      such that               for all       .

Proof Sketch:
– Consider a set of scores that grows without bound
– These scores all must be underweight (these are the only scores that 

increase) 
– Not all scores can be underweight (sum of underweight scores below 

1) 
– The scores growing without bound are taking all of the probability 

mass from those bounded 
– By consistency, this demand must be met, a contradiction.

M sti  M i, t



Proof of Convergence

Key Lemma: 
– There is an explicit bound      such that               for all       .

Finishing the Proof:
– Scores increase multiplicatively by factor of  

–      is bounded by 

– Overall:                                iterations suffice. 

M sti  M i, t

M

✓
n2W

✏pmin

◆n

O

✓
n
2

✏
log

nW

✏pmin

◆

(1 + ✏/2)



But Does it Work...

Experimental Evaluation:
– Dataset: empirical transitions 
– Input: Transition graph and the steady state distribution
– Output: Transition probabilities
– Metrics: LogLikelihood or RMSE 



Datasets

Wiki:
– Navigation paths through wikipedia. 
– About 200k transition pairs, 51k user traces over 4.6k nodes 

Rest:
– Results of broad restaurant queries to Google. 
– 100k transitions, 65k nodes 

Entree:
– Chicago restaurant recommendation system from 90s
– 50k transitions, 27k nodes

Comedy:
– Given a pair of videos, predict which one is judged funnier
– 225k transitions, 75k nodes



Baselines

Popularity:
– Transition proportionally to the steady state distribution (score = pi) 

Uniform:
– Uniform over out-edges

Pagerank:
– Transition proportionally to the node pagerank

Temperature:
– MaxEnt regularization approach

Inversion:
– Our algorithm



Results

RMSE Prediction:

Popularity Uniform PageRank Tempe-
rature Inversion

Wiki 1 0.65 0.83 0.65 0.57

Rest 1 1.17 1.39 1.21 0.59

Entree 1 0.69 1.01 0.56 0.42

Comedy 1 0.65 0.9 0.78 0.36



Convergence
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The End


