
Markov Chains, LAMP Models
and Reverse-Engineering

LAMP Models

Ravi Kumar, Maithra Raghu,
Tamas Sarlos and Andrew Tomkins

[Ref: WWW 2017]

https://arxiv.org/abs/1704.01255

Problem setting

We consider models of sequences of outputs
– Output ‘d’ can depend on earlier ‘d’ anywhere in history
– Dependence on history can be learned

What if output ‘c’ is often (eventually) followed by output
‘d’?

a b b c d e b a c d cd ?

Example: Science Fiction Novels

Example: Science Fiction Novels

Example: Science Fiction Novels

Example: Science Fiction Novels

Many other examples:

Simplest approach:
consider most recent element

a b b c d e b a c d cd ?
Most recent letter most predictive. Following c:
 { a:100, b:200, c:1273, d:11 }

Can write Pr[next letter | current letter] as matrix:

First-order Markov Model MM1(W):

W =

0

BB@

0.5 0.1 0.1 0.3
0 0.8 0.15 0.05
.06 0.13 .8 .007
0.1 0.1 0.1 0.7

1

CCA

xnew = WTxold

But is this enough?

Generally, looking at more history should provide better
models
Approaches to long-range dependencies:
– High-order or variable-order Markov models
– Deep network sequence models
– Point processes
– Many others

Higher Order Markov Models

● n possible states
● nk+1 parameters

● Next state only depends on k previous states
● But dependence is arbitrary

... ?...

W =

0

BBB@

w(1, 1) · · · w(1, n)
w(w, 1) · · · w(2, n)

...
. . .

...
w(nk, 1) · · · p(nk, n)

1

CCCA

Even Variable-Order models require exponential space for
order-d dependencies

xt�1xt�k

Deep Neural Network Models

Recurrent neural networks
● (Generating Sequences with RNNs, Graves, 2014)

● LSTMs (Long-Short
Term Memory)

● Complex non-linear
relations between
previous states

Concerns
● Slow to train
● Requires lots of data

Introduction to recency weighting

Significant body of work on models of re-consumption,
based on extensions of Simon’s copying model [Simon’55]:

Introduction to recency weighting

Significant body of work on models of re-consumption,
based on extensions of Simon’s copying model [Simon’55]:

a b b c d e b a c d cd ?

weights w

w(1) w(2) w(3) w(4) w(5) w(6) w(7) w(8) w(9) w(10) w(11) w(12)

w(2) w(5) w(8)

Pr[d is consumed next] ~ + +

Combining Recency-Weighting with
Markov

Extending the same idea to Markov models:
Next state is a mixture

Joe’s
Family Fun

Barn

Mortons
Steak
House

Shakey’s
Pizza
Parlor

Ruth’s
Chris ??

w(1) w(2) w(3) w(4)

Linear Additive Markov Process (LAMP)

Definition of LAMPk(w, W)

● W stochastic (transition) matrix
● Vector w with k weights

Pr[Xt = xt|x0, . . . , xt�1] =
kX

i=1

wiW
T~1xt�i

Total parameter complexity: NNZ(W) + k
Must learn both matrix W and history distribution w
We use alternating minimization — details in paper

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

Move from

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

Move from

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
Move from

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
Move from

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B Move from

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B Move from

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B
E

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B

Move from

E

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B

Move from

E

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B
E
G

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B

Move from

E
G

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B

Move from

E
G

Example LAMP Walk

A
B

D

F

EC

G

A
Current path:

C
B
E
G
D

Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk

Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk

Time 0

State distribution of LAMP at different timesteps:

⇡0

Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk

Time 0

State distribution of LAMP at different timesteps:

⇡0

Time 1

⇡0W

Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk

Time 0

State distribution of LAMP at different timesteps:

⇡0

Time 1

⇡0W

Time 2

⇡0W
2

⇡0W

Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk

Time 0

State distribution of LAMP at different timesteps:

⇡0

Time 1

⇡0W

Time 2

⇡0W
2

⇡0W

Time 3

⇡0W
3

⇡0W
2

⇡0W

Expressivity and Evolution of LAMP

1. LAMPk(w,W) cannot be approximated by MMk-1

2. LAMPk(w,W) is a subset of MMk

Time 0

State distribution of LAMP at different timesteps:

⇡0

Time 1

⇡0W

Time 2

⇡0W
2

⇡0W

Correct random variable: exponent at time t =
Evolution: pick exponent from previous k (according to w), add 1 to it.

et

[See also Wu and Gleich (arXiv)]

Time 3

⇡0W
3

⇡0W
2

⇡0W

Steady State of LAMP

Let
Note:
By induction:
Therefore:

Conclusion: LAMPk(w,W) has same steady state as MM1(W)

LAMP has same steady state but different dynamics

et+1 � 1 +m

et �
�
t

k

⌫

m = min{et�k+1, . . . , et}

min{et+1, . . . , et+k} � 1 +m

Exponent Processes

is a stopping time, when this sum first crosses t

But this is just a renewal process!

Theorem: By Strong Law of Large Numbers for Renewal Processes:

Look back from exponent at time t

Time: t�
H(t)P
I=1

Wi . . . t�W1 �W2 t�W1 t

State: ⇡0 . . . ⇡0W et�2 ⇡0W et�1 ⇡0W et

lim
t!1

H(t) = t
E(w)

LAMP Mixing

● Can derive concentration bounds

● Gives strong statements on mixing time of LAMP, based
on mixing of underlying first-order MM

Data for Evaluation

Wikispeedia

Experiments: Total Perplexity

BrightKite

Reuters

LastFM

Wikispeedia

Observations
● In general, N-grams

and Kneyser-Ney N-
grams struggle to use
higher order
information without
overfitting

● Exception is Reuters
(text data) which these
models have been
designed to do better
on

Experiments: learned weight distribution

● LAMP learns weight decay where useful (BrightKite)

● If history isn’t useful (Wikispeedia), then turns into First
Order Markov Chain

BrightKite Wikispeedia

Experiments

● LAMP does better than LSTM on some datasets (e.g.
BrightKite)

● Better or equal performance on other datasets (e.g.
LastFM) with similar amounts of training time
○ With 20x training time, LSTM does better

● LSTM does better on text data (better at using text
statistics, similar to N-grams)

Comparison with LSTMs

Reverse Engineering
a Markov Chain

Ravi Kumar, Andrew Tomkins, Sergei Vassilvitskii and Erik Vee

[Ref: WSDM 2015]

http://tomkins.family/static/papers/src/KTV+15.pdf

Random Walks & Markov Chains

Markov Chains in Data Analysis:
– Simple, yet capture a lot of interactions
– Typically: compute & use the stationary distribution
– Beautiful theory with great applications

Examples:
– PageRank: Random surfer stationary distribution
– Translation: Use language models to build phrases
– ...

A Recommendation Chain

A Recommendation Chain

A Recommendation Chain

A Recommendation Chain

A Recommendation Chain

A Recommendation Chain

stationary distribution

A Recommendation Chain

Example:
– Items: videos
– Stationary Distribution: view counts

Why are some videos more popular:
– Better (higher quality) videos
– More frequently recommended

Today:
– Disentangle these two reasons

Inverting a Markov Chain

Problem:
– Given a stationary distribution, find the Markov Chain that generated

it.

Given:
– Graph
– Distribution

Output:
– Transition Matrix that generated it

⇡

G

M

Feasibility

Feasibility:
– Not always feasible

A B

⇡A = 1/3 ⇡B = 2/3

⇡

Feasibility

Feasibility:
– Not always feasible

Definition:
– A directed graph is consistent if there is a flow that preserves the

steady state.
– Any strongly connected graph with self loops is consistent

Theorem:
– For any consistent graph, there exists a Markov chain with as its

stationary distribution.

A B

⇡A = 1/3 ⇡B = 2/3

⇡

Constraints

The problem is under-constrained:
– constraints
– variables
n

m� n � n

Constraints

The problem is under-constrained:
– constraints
– variables

Approaches
– [Tomlin `03]: MaxEnt objective on variables (regularization)

n

m� n � n

Constraints

The problem is under-constrained:
– constraints
– variables

Approaches
– [Tomlin `03]: MaxEnt objective on variables (regularization)
– [Today] Limit the degrees of freedom

– For each vertex let be its score. The Markov Chain is the
function of the scores

– Scores express “quality” or “attractiveness”

n

vi si

m� n � n

From Scores to Transitions

Transition probability depends on:
– Score of the destination
– Parameter of the edge

C

B

A

D

MA!C

sc
wAC

Simplest Example

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

C

B

A

D
MA!C =

sC
sB + sC + sD

Simplest Example

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

– Transition probabilities are context dependent:

C

B

A

D
MA!C =

sC
sB + sC + sD

C

B

A

D

sB = 100

sC = 10

sD = 1

MA!C = 0.09

Simplest Example

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

– Transition probabilities are context dependent:

C

B

A

D
MA!C =

sC
sB + sC + sD

C

B

A

D

sB = 100

sC = 10

sD = 1

MA!C = 0.09

F

MF!C = 0.91

From Scores to Transitions

Transition probability depends on:
– Score of the destination
– Parameter of the edge
– Call this function

Formally:

C

B

A

D

MA!C / f(sC , wAC)

MA!C =
f(sC , wAC)

f(sC , wAC) + f(sB , wAB) + f(sD, wAD)

f

MA!C

sc
wAC

From Scores to Transitions

Transition probability depends on:
– Score of the destination
– Parameter of the edge
– Call this function

Formally:

Sanity Check on :
– Continuous in
– Monotone in

C

B

A

D

MA!C / f(sC , wAC)

f

MA!C

sc

f

s

s

wAC

From Scores to Transitions

Transition probability depends on:
– Score of the destination
– Parameter of the edge
– Call this function

Formally:

Sanity Check on :
– Continuous in
– Monotone in
– Unbounded in :

C

B

A

D

MA!C / f(sC , wAC)

f

MA!C

sc

f

s

s
s

wAC

lim
s!1

f(s, w) ! 1

lim
sc!1

MA!C = 1

Simplest Example

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

C

B

A

D
MA!C =

sC
sB + sC + sD

More Examples

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

Seeking Similar Content:
– Edge weight: similarity between two nodes

–

C

B

A

D
MA!C =

sC
sB + sC + sD

MA!C / wAC · sC

More Examples

Weighted Random Walk:
– All of the edge weights are set to 1
– Transition probability proportional to the score

Seeking Similar Content:
– Edge weight: similarity between two nodes
–

Overall:
– Decide whether items are popular due to high scores (attract all of the

incoming traffic) or due to location (attract a little bit from many
locations)

C

B

A

D
MA!C =

sC
sB + sC + sD

MA!C / wAC · sC

Main Theorem

Given:
– A consistent input
– Monotone, continuous and unbounded function

There exists:
– A unique set of scores
– So that is the stationary distribution induced by
– Moreover, the scores can be found in polynomial time

G,⇡

f

s1, . . . , sn
⇡ f

Main Theorem

Given:
– A consistent input
– Monotone, continuous and unbounded function

There exists:
– A unique set of scores
– So that is the stationary distribution induced by
– Moreover, the scores can be found in polynomial time

G,⇡

f

s1, . . . , sn
⇡ f

up to scaling

Main Theorem

Given:
– A consistent input
– Monotone, continuous and unbounded function

There exists:
– A unique set of scores
– So that is the stationary distribution induced by
– Moreover, the scores can be found in polynomial time

G,⇡

f

s1, . . . , sn
⇡ f

up to scaling

up to (1± ✏)

Definitions

– Fix a set of scores and permutation s ⇡

Definitions

– Fix a set of scores and permutation s

C

B

A

D

E

1

1 1 1

1

1/3

2/27

4/27

1/9

1/3

⇡

Definitions

– Fix a set of scores and permutation
– Let be the expected mass at

starting with using

–

s
vi

s

C

B

A

D

E

1

1 1 1

1

1/3

2/27

4/27

1/9

1/3⇡
qi(s)

⇡

Definitions

– Fix a set of scores and permutation
– Let be the expected mass at

starting with using

–

s
vi

s

⇡
qi(s)

C

B

A

D

E

1

1 1 1

1

1/3

2/27

4/27

1/9

1/3

1/9

1/9

1/9

1/3 1/3

⇡

Definitions

– Fix a set of scores and permutation
– Let be the expected mass at

starting with using

– Call a node underweight if

s
vi

s

⇡
qi(s)

C

B

A

D

E

1

1 1 1

1

1/3

2/27

4/27

1/9

1/3

1/9

1/9

1/9

1/3 1/3

qi(s) < (1� ✏)⇡i

⇡

Definitions

– Fix a set of scores and steady state
– Let be the expected mass at

starting with using

– Call a node underweight if

– Algorithm:
• Repeatedly increase scores of underweight

nodes

s
vi

s

⇡
qi(s)

C

B

A

D

E

1

1 1 1

1

1/3

2/27

4/27

1/9

1/3

1/9

1/9

1/9

1/3 1/3

qi(s) < (1� ✏)⇡i

⇡

Definitions

– Fix a set of scores and steady state
– Let be the expected mass at

starting with using

– Call a node underweight if

– Algorithm:
• Repeatedly increase scores of underweight

nodes

s
vi

s

⇡
qi(s)

C

B

A

D

E

1

1 1.6 1

1

1/3

2/27

4/27

1/9

1/3
1/3 1/3

qi(s) < (1� ✏)⇡i

⇡

4/27

5/54

5/54

Definitions

– Fix a set of scores and steady state
– Let be the expected mass at

starting with using
– Call a node underweight if

Algorithm:
– Start with
– For

• For each :
• If underweight:

Set
• else:
 Set

s
vi

s

⇡
qi(s)

qi(s) < (1� ✏)⇡i

s0i = 1/n

t = 1, . . .
vi 2 V

vi

sti = st�1
i

⇡

sti : qi(s
t�1
�i , sti) = (1� ✏/2)⇡i

Definitions

Guaranteed to exist because
f is monotone, continuous,
unbounded & G is consistent

– Fix a set of scores and steady state
– Let be the expected mass at

starting with using
– Call a node underweight if

Algorithm:
– Start with
– For

• For each :
• If underweight:

Set
• else:
 Set

s
vi

s

⇡
qi(s)

qi(s) < (1� ✏)⇡i

s0i = 1/n

t = 1, . . .
vi 2 V

vi

sti = st�1
i

⇡

sti : qi(s
t�1
�i , sti) = (1� ✏/2)⇡i

Definitions

Guaranteed to exist because
f is monotone, continuous,
unbounded & G is consistent

Note: scores never decrease

– Fix a set of scores and steady state
– Let be the expected mass at

starting with using
– Call a node underweight if

Algorithm:
– Start with
– For

• For each :
• If underweight:

Set
• else:
 Set

s
vi

s

⇡
qi(s)

qi(s) < (1� ✏)⇡i

s0i = 1/n

t = 1, . . .
vi 2 V

vi

sti = st�1
i

⇡

sti : qi(s
t�1
�i , sti) = (1� ✏/2)⇡i

Definitions

Guaranteed to exist because
f is monotone, continuous,
unbounded & G is consistent

Note: scores never decrease

If q is ever below , it will
always stay below

⇡

– Fix a set of scores and steady state
– Let be the expected mass at

starting with using
– Call a node underweight if

Algorithm:
– Start with
– For

• For each :
• If underweight:

Set
• else:
 Set

s
vi

s

⇡
qi(s)

qi(s) < (1� ✏)⇡i

s0i = 1/n

t = 1, . . .
vi 2 V

vi

sti = st�1
i

⇡

sti : qi(s
t�1
�i , sti) = (1� ✏/2)⇡i

Proof of Convergence

Key Lemma:
– There is an explicit bound such that for all .M sti  M i, t

Proof of Convergence

Key Lemma:
– There is an explicit bound such that for all .

Proof Sketch:
– Consider a set of scores that grows without bound
– These scores all must be underweight (these are the only scores that

increase)
– Not all scores can be underweight (sum of underweight scores below

1)
– The scores growing without bound are taking all of the probability

mass from those bounded
– By consistency, this demand must be met, a contradiction.

M sti  M i, t

Proof of Convergence

Key Lemma:
– There is an explicit bound such that for all .

Finishing the Proof:
– Scores increase multiplicatively by factor of

– is bounded by

– Overall: iterations suffice.

M sti  M i, t

M

✓
n2W

✏pmin

◆n

O

✓
n
2

✏
log

nW

✏pmin

◆

(1 + ✏/2)

But Does it Work...

Experimental Evaluation:
– Dataset: empirical transitions
– Input: Transition graph and the steady state distribution
– Output: Transition probabilities
– Metrics: LogLikelihood or RMSE

Datasets

Wiki:
– Navigation paths through wikipedia.
– About 200k transition pairs, 51k user traces over 4.6k nodes

Rest:
– Results of broad restaurant queries to Google.
– 100k transitions, 65k nodes

Entree:
– Chicago restaurant recommendation system from 90s
– 50k transitions, 27k nodes

Comedy:
– Given a pair of videos, predict which one is judged funnier
– 225k transitions, 75k nodes

Baselines

Popularity:
– Transition proportionally to the steady state distribution (score = pi)

Uniform:
– Uniform over out-edges

Pagerank:
– Transition proportionally to the node pagerank

Temperature:
– MaxEnt regularization approach

Inversion:
– Our algorithm

Results

RMSE Prediction:

Popularity Uniform PageRank Tempe-
rature Inversion

Wiki 1 0.65 0.83 0.65 0.57

Rest 1 1.17 1.39 1.21 0.59

Entree 1 0.69 1.01 0.56 0.42

Comedy 1 0.65 0.9 0.78 0.36

Convergence

-1

-0.95

-0.9

-0.85

-0.8

-0.75

-0.7

-0.65

 0 5 10 15 20 25 30 35
 0.55

 0.6

 0.65

 0.7

 0.75

 0.8

 0.85

 0.9

 0.95

 1

L
o
g
 li

ke
lih

o
o
d

R
M

S
E

Iteration

Performance on WIKI

Log likelihood
RMSE

The End

