
Random Walks &
Graph Properties

Ravi Kumar
Google

Credits

Joint work with Flavio Chierichetti, Anirban
Dasgupta, Silvio Lattanzi, Tamas Sarlos

Setting

Given a graph, estimate its basic parameters
Number of nodes
Number of edges
Fraction of nodes/edges of certain type
Largest/average degree
Local/global clustering coefficient
Number of triangles

Applications
Business intelligence

How many art lovers are in social network X?
Is X’s social network in Paris as well connected
as that of Y?

Algorithmic reasons
Is the triangle density unusually small in
certain portions of the graph?
How does the average degree vary over time?

Sampling
Critical tool to understand and analyze large
graphs

Study graph properties using samples
Only realistic option in many situations

Graph constantly changing
Entire graph not accessible

Important to have provably good algorithms
Sample quality ⇒ quality of the output

Estimation by sampling

German tank problem
Frequentist, Bayesian estimates

Mark and recapture
Peterson-Lincoln-Chapman indices
Used in ecology

Fraction of subpopulation
Population with a specific property

Estimation by sampling

Important when population is too large to
obtain information from everyone
Broad uses in statistics, computer science,
sociology, economics, …
Eg, polling to estimate

Political preferences
Average income, education level, …

Sampling in graphs

How to access the graph and what information is available to
the algorithm?

Can query any node by its name and get its out
neighborhood

Subscribes to standard crawling model
Applies to both Web and social networks

A small number of (truly random) nodes are available
Truly random nodes are expensive

This access model supports random walks on the graph
Querying is an expensive operation

Algorithms should minimize number of queries

Graph access model

A

D

C

B

Sampling according to a distribution

G = (V, E) be an undirected, connected graph
n = #nodes, m = #edges

D = a distribution on V
𝛆 = error parameter

Problem. Using the graph access model, output a
node in G according to D (to within 𝛆 additive error)

Pr[algorithm outputs v] ≈ D(v)± 𝛆
Measure #steps, #queries

An easy case

Degree-proportional case (ie, uniform edge)
D1(v) ∝	d(v)

Solution: do a uniform random walk on the
graph

Fact. Limiting distribution of the walk is D1

Fact. Expected number of steps is the mixing
time (tmix) of the graph

Uniform distribution

Output a node uniform at random

D0(v) = 1/n

Idea#1: Rejection sampling

Generate and reject
Uniform random walk for tmix steps
Reached a node u
With probability proportional to 1/d(u),
output u and stop
Otherwise, go to first step starting from u

Analysis

Assume minimum degree is 1
Claim. E[#queries] = E[#steps] = O(tmix ∙ davg)
Proof. Generates u according to D1 and outputs u
wp 1/d(u). Probability of outputting some node

𝚺u Pr[U = u] × 1/d(u) = 𝚺u d(u)/(2m) × 1/d(u)

= 𝚺u 1/(2m) = n / 2m = 1/davg

Repeat this davg times to successfully get a sample

Idea#2: Max-degree (MD) walk
Make the graph uniform degree by spending more time
at low degree nodes

Uniform random walk on modified graph generates D0

Use max degree (dmax) to define transitions
#queries could be ≪ #steps

A

D

C

B

A

D

C

B

dmax = 3

2/3

1/3

MD Analysis

Claim. The steady-state of MD is D0

Claim. E[#steps] spent at node u is dmax/d(u)
Claim. For any real-valued function f

𝚺uv (f(u) - f(v))2 d(u) d(v)
 ———————————— —- ≥ davg /2

 𝚺uv (f(u) - f(v))2

MD Analysis (contd)

Use the variational characterization
 𝚺uv (f(u) - f(v))2 𝛑(u) P(u, v)

1 - 𝛌2 = inff ———————————— —-
 𝚺uv (f(u) - f(v))2 𝛑(u) 𝛑(v)

Relate 𝛌2 of MD and original walk using this
Fact. tmix ≤ 1/(1 - 𝛌2) log n
Claim. E[#steps] = Õ(tmix ∙ davg)

Idea#3: Metropolis-Hastings (MH)

A way to sample from any target distribution D starting
from an arbitrary transition matrix Q

Current state = u
Generate v ～ Q(u, ∙)
Move to v wp min(1, (Q(v, u) D(u)) / (Q(u, v) D(v)))

Fact. Steady-state of MH walk is D
If D = D0 and Q is given by the graph

Pr[u → v] = 1/d(u)∙ min(1, d(u)/d(v)) = 1/max(d(u), d(v))

MH Analysis

Claim. E[#steps] = Õ(tmix ∙ dmax)

Proof. Use the variational characterization and
steps as before

Claim. E[steps] ≥ 𝛀(tmix dmax)
Proof. o(k2) non-self loop
steps will miss constant fraction
of path nodes
To be close to D0 we need
𝛀(k2) steps
Self-loop steps on path nodes
is 𝛀(D)

Tightness of MH

KD k

n = D(k+1)
davg = D/k
 dmax = D

tmix = 𝚹(k2)

Lower bounds: 𝛀(davg)

davg = d, tmix = O(log n / log d)
Distance between D0 for c = H and c = T is 1/2 - o(1)

#queries = o(d)⇒ query only unchanged nodes wp 1 -

o(1)

G(n, d/n) + $ if $ = T & wp 1/d

Lower bounds: 𝛀(tmix)

Claim. Any algorithm for D0 must issue 𝛀(tmix)
queries

Lower bounds: 𝛀(davgtmix)

(Chierichetti, Haddadan 2018)

Claim. Any algorithm to obtain, with probability
at least 1−δ, an ϵ-additive approximation of the
average of a bounded function on the nodes of
a graph, must issue 𝛀(davgtmix) queries

Construction

G(n, d/n) G(n, d/n)
$

$

$
davg = 𝚹(d)

tmix = O(log n/log d)

Experiments
Uniformity of the samples

Strict criterion

Quality of estimators based on samples

Size of the network

Average degree

Clustering coefficient

Results

Results (contd)

Claim. For D= D1+𝛆 and for MH,
E[steps] ≥ 𝛀(poly(n))
Proof. A random walk will take
time n1 - 1/(1+𝛆) - 𝛅 to even visit the
high degree node, so the MH
algorithm will take this much
time

Other distributions

d(v) = n1/(1+𝛆) + 𝛅

constant
conductance

v

G(n, c/n)

Estimating parameters

Estimating n = #nodes
Birthday paradox: expected #collisions in k
uniform random samples is roughly k2/(2n)

Collision-counting (Katzir, Liberty, Somekh)

Sample nodes proportional to degree

Let x1,...,xk be the samples and let di =deg(xi)

Output (∑ di) (∑ 1/di) / #collisions

Collision counting
E[#collisions] = kC2 ∙ ∑ (di/2m)2

Theorem. To get a relative estimate, #samples can be written
as a function of (certain norms of) the degree distribution

If graph is regular, then O(√n) samples suffice

If graph has Zipfian degrees with parameter 2, then
O(n1/4) samples suffice

Can use return times (Cooper, Radzik, Siantos)

Estimating average degree
How to estimate average degree davg = m/n?

Estimate n and m using collision-counting

Uses O(√m + √n) samples

Estimate using just node collisions

Output k2 / 2n(∑ Collisioniju / deg(u))

Uses O(√(n davg/dmin)) samples

Similarly can use just edge collisions

A natural algorithm
Algorithm:

Sample nodes uniformly at random

Output the average of their degrees

Theorem (Feige). If #samples is O(√n/L),
where L < davg, then it is a (2+²)-estimate

Limitations
Naive bound will
involve maximum
degree

Cannot get better
than a 2-
approximation

This bound is tight

n

√nd 2√nd

A different estimator
Goldreich, Ron

Bucket uniformly sampled nodes by degrees

Discard small buckets (high variance)

Estimator is not unbiased

If a random neighbor is available for a node

Theorem. If #samples is O(√n/L), where L < davg, then it is a
(1+²)-estimate

n/4-regular

Can we do better?
Sample lower bound of
Ω(√n)

Uniform sampling

What about non-
uniform sampling?

Eg, degree-biased

n/4 3n/4

Boosting low degrees
Uniform: harsh for high-degrees

Degree-biased: harsh for low-degrees

How to boost the degrees?

Sample nodes with probability proportional to degree +
smoothing constant

Sampling still random-walk friendly

How to choose the smoothing constant?

Algorithm: Three steps
Coarse estimator: Gets constant approximation

Refined estimator: Gets arbitrary approximation

Combined estimator:

Run the coarse estimator

Use coarse estimate as the smoothing
constant and run the refined estimator

Refined estimator
Given a coarse estimate c, sample k nodes x1,...,xk with

probability proportional to degree + c, and output

∑ di/(di + c)

∑ 1/(di + c)

E[A] / E[B] = davg

A

B

Key property
Theorem. If c = ®davg and k = (1+®)/²2, then Refined Estimator
outputs a (1+²)-estimate

Proof sketch:

Show A and B are concentrated

Analyze second moment and use Bernstein inequality

B needs the coarse estimate:

|B - E[B]| < 2/(dmin + c)

Other properties
Bias and variance are bounded

Bias at most (®davg + davg/®)/k + o(1/k)

Small if ® is small

Random walk version

Sample complexity in terms of eigenvalue gap

Coarse estimator
Guess and verify

For c in {1, 2, 4, 8, ... }

Sample nodes with probability proportional to
degree + c

If the fraction of low-degree nodes (ie, degree
below c) is more than 5/12, return c as a coarse
approximation

Why does this work?

If c = ®davg, then

(®-1)/(®+1) < Pr[di ≤ c] < 2®/(®+1)

Using this, can show that

c < davg/3 ⇒ fraction of low-degree nodes is < 5/12

c > 3davg ⇒ fraction of low-degree nodes is > 5/12

Final bound

Theorem. Can (1+²)-estimate the average
degree, wp 1-± , by using

(log U log log U + 1/²2) log 1/±

degree-biased node samples, where U (< n)
is an upper bound on the maximum degree

10�4

frac samples (nsample/n)

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
ra

tio
(e

st
im

at
e/

tru
th

)

rw.feige
rw.gr
rw.sr.1
rw.mpx

Experiments
SNAP (Skitter, DBLP, LiveJournal, Orkut)

Summary
Random walks are powerful

Bounds on generating a uniform node

Can extend to other distributions on V

A better notion of mixing time for social graphs

Average-case notion?

Power of non-uniform sampling

Other estimation problems

Thank you!

Questions/Comments: ravi.k53 @ gmail

