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Setting

Given a graph, estimate its basic parameters 
Number of nodes 
Number of edges 
Fraction of nodes/edges of certain type 
Largest/average degree 
Local/global clustering coefficient 
Number of triangles



Applications
Business intelligence 

How many art lovers are in social network X? 
Is X’s social network in Paris as well connected 
as that of Y? 

Algorithmic reasons 
Is the triangle density unusually small in 
certain portions of the graph? 
How does the average degree vary over time?



Sampling
Critical tool to understand and analyze large 
graphs 

Study graph properties using samples 
Only realistic option in many situations 

Graph constantly changing 
Entire graph not accessible 

Important to have provably good algorithms 
Sample quality ⇒ quality of the output



Estimation by sampling

German tank problem 
Frequentist, Bayesian estimates 

Mark and recapture 
Peterson-Lincoln-Chapman indices 
Used in ecology 

Fraction of subpopulation  
Population with a specific property



Estimation by sampling

Important when population is too large to 
obtain information from everyone 
Broad uses in statistics, computer science, 
sociology, economics, … 
Eg, polling to estimate 

Political preferences 
Average income, education level, …



Sampling in graphs



How to access the graph and what information is available to 
the algorithm? 

Can query any node by its name and get its out 
neighborhood 

Subscribes to standard crawling model 
Applies to both Web and social networks 

A small number of (truly random) nodes are available 
Truly random nodes are expensive 

This access model supports random walks on the graph  
Querying is an expensive operation 

Algorithms should minimize number of queries

Graph access model
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Sampling according to a distribution

G = (V, E) be an undirected, connected graph 
n = #nodes,  m = #edges 

D = a distribution on V 
𝛆 = error parameter 

Problem. Using the graph access model, output a 
node in G according to D (to within 𝛆 additive error) 

Pr[algorithm outputs v] ≈ D(v)± 𝛆  
Measure #steps, #queries



An easy case

Degree-proportional case (ie, uniform edge) 
D1(v) ∝	d(v) 

Solution: do a uniform random walk on the 
graph 

Fact. Limiting distribution of the walk is D1 

Fact.  Expected number of steps is the mixing 
time (tmix) of the graph



Uniform distribution

Output a node uniform at random  

D0(v) = 1/n



Idea#1: Rejection sampling

Generate and reject 
Uniform random walk for tmix steps 
Reached a node u 
With probability proportional to 1/d(u),  
output u and stop 
Otherwise, go to first step starting from u



Analysis

Assume minimum degree is 1 
Claim. E[#queries] = E[#steps] = O(tmix ∙ davg) 
Proof.  Generates u according to D1 and outputs u 
wp  1/d(u).  Probability of outputting some node 

𝚺u Pr[U = u] × 1/d(u) = 𝚺u d(u)/(2m) × 1/d(u)  

= 𝚺u  1/(2m) = n / 2m = 1/davg 

Repeat this davg times to successfully get a sample



Idea#2: Max-degree (MD) walk
Make the graph uniform degree by spending more time 
at low degree nodes 

Uniform random walk on modified graph generates D0 

Use max degree (dmax) to define transitions 
#queries could be ≪ #steps
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MD Analysis

Claim. The steady-state of MD is D0 

Claim. E[#steps] spent at node u is dmax/d(u) 
Claim. For any real-valued function f 

𝚺uv (f(u) - f(v))2 d(u) d(v)              
      ———————————— —-  ≥ davg /2 

            𝚺uv (f(u) - f(v))2



MD Analysis (contd)

Use the variational characterization 
                            𝚺uv (f(u) - f(v))2 𝛑(u) P(u, v)               

1 - 𝛌2 = inff     ———————————— —-   
                  𝚺uv (f(u) - f(v))2 𝛑(u) 𝛑(v) 

Relate 𝛌2 of MD and original walk using this 
Fact. tmix ≤ 1/(1 - 𝛌2) log n 
Claim. E[#steps] = Õ(tmix ∙ davg )



Idea#3: Metropolis-Hastings (MH)

A way to sample from any target distribution D starting 
from an arbitrary transition matrix Q 

Current state = u 
Generate v ～ Q(u, ∙) 
Move to v wp min(1, (Q(v, u) D(u)) / (Q(u, v) D(v))) 

Fact.  Steady-state of MH walk is D 
If D = D0 and Q is given by the graph 

Pr[u → v] = 1/d(u)∙ min(1, d(u)/d(v)) = 1/max(d(u), d(v))



MH Analysis

Claim. E[#steps] = Õ(tmix ∙ dmax ) 

Proof. Use the variational characterization and 
steps as before



Claim.  E[steps] ≥ 𝛀(tmix dmax) 
Proof. o(k2) non-self loop 
steps will miss constant fraction 
of path nodes 
To be close to D0 we need 
𝛀(k2) steps 
Self-loop steps on path nodes 
is 𝛀(D)

Tightness of MH

KD k

n = D(k+1) 
davg = D/k 
 dmax = D 

tmix = 𝚹(k2)



Lower bounds: 𝛀(davg)

davg = d, tmix = O(log n / log d) 
Distance between D0 for c = H and c = T is 1/2 - o(1) 

#queries = o(d)⇒ query only unchanged nodes wp 1 - 

o(1)  

G(n, d/n) + $ if $ = T & wp 1/d



Lower bounds: 𝛀(tmix)

Claim. Any algorithm for D0 must issue 𝛀(tmix) 
queries 



Lower bounds: 𝛀(davgtmix)

(Chierichetti, Haddadan 2018) 

Claim. Any algorithm to obtain, with probability 
at least 1−δ, an ϵ-additive approximation of the 
average of a bounded function on the nodes of 
a graph, must issue 𝛀(davgtmix) queries 



Construction

G(n, d/n) G(n, d/n)
$

$

$
davg = 𝚹(d) 

tmix = O(log n/log d)



Experiments
Uniformity of the samples 

Strict criterion 

Quality of estimators based on samples 

Size of the network 

Average degree 

Clustering coefficient



Results



Results (contd)



Claim.  For D= D1+𝛆 and for MH, 
E[steps] ≥ 𝛀(poly(n)) 
Proof. A random walk will take 
time n1 - 1/(1+𝛆) - 𝛅 to even visit the 
high degree node, so the MH 
algorithm will take this much 
time

Other distributions

d(v) = n1/(1+𝛆) + 𝛅 

constant  
conductance 

v

G(n, c/n)



Estimating parameters



Estimating n = #nodes
Birthday paradox: expected #collisions in k 
uniform random samples is roughly k2/(2n) 

Collision-counting (Katzir, Liberty, Somekh) 

Sample nodes proportional to degree 

Let x1,...,xk be the samples and let di =deg(xi) 

Output (∑ di) (∑ 1/di) / #collisions



Collision counting
E[#collisions] = kC2  ∙ ∑ (di/2m)2 

Theorem. To get a relative estimate, #samples can be written 
as a function of (certain norms of) the degree distribution 

If graph is regular, then O(√n) samples suffice 

If graph has Zipfian degrees with parameter 2, then 
O(n1/4) samples suffice 

Can use return times (Cooper, Radzik, Siantos)



Estimating average degree
How to estimate average degree davg = m/n? 

Estimate n and m using collision-counting 

Uses O(√m + √n) samples 

Estimate using just node collisions 

Output k2 / 2n(∑ Collisioniju / deg(u)) 

Uses O(√(n davg/dmin)) samples 

Similarly can use just edge collisions



A natural algorithm
Algorithm: 

Sample nodes uniformly at random 

Output the average of their degrees 

Theorem (Feige). If #samples is O(√n/L), 
where L < davg, then it is a (2+²)-estimate



Limitations
Naive bound will 
involve maximum 
degree 

Cannot get better 
than a 2-
approximation 

This bound is tight

n

√nd 2√nd



A different estimator
Goldreich, Ron 

Bucket uniformly sampled nodes by degrees 

Discard small buckets (high variance) 

Estimator is not unbiased 

If a random neighbor is available for a node 

Theorem. If #samples is O(√n/L), where L < davg, then it is a 
(1+²)-estimate 



n/4-regular

Can we do better?
Sample lower bound of 
Ω(√n) 

Uniform sampling  

What about non-
uniform sampling? 

Eg, degree-biased

n/4 3n/4



Boosting low degrees
Uniform: harsh for high-degrees 

Degree-biased: harsh for low-degrees 

How to boost the degrees? 

Sample nodes with probability proportional to degree + 
smoothing constant 

Sampling  still random-walk friendly 

How to choose the smoothing constant?



Algorithm: Three steps
Coarse estimator: Gets constant approximation 

Refined estimator: Gets arbitrary approximation 

Combined estimator: 

Run the coarse estimator 

Use coarse estimate as the smoothing 
constant and run the refined estimator



Refined estimator
Given a coarse estimate c, sample k nodes x1,...,xk with 

probability proportional to degree + c, and output 

∑  di/( di + c)  

∑ 1/(di + c) 

E[A] / E[B] = davg

A

B



Key property
Theorem. If c = ®davg and k = (1+®)/²2, then Refined Estimator 
outputs a (1+²)-estimate 

Proof sketch:  

Show A and B are concentrated 

Analyze second moment and use Bernstein inequality 

B needs the coarse estimate:  

|B - E[B]| < 2/(dmin + c)



Other properties
Bias and variance are bounded 

Bias at most (®davg + davg/®)/k + o(1/k) 

Small if ® is small 

Random walk version 

Sample complexity in terms of eigenvalue gap



Coarse estimator
Guess and verify 

For c in {1, 2, 4, 8, ... } 

Sample nodes with probability proportional to 
degree + c 

If the fraction of low-degree nodes (ie, degree 
below c) is more than 5/12, return c as a coarse 
approximation 



Why does this work?

If c = ®davg, then 

(®-1)/(®+1) < Pr[di  ≤ c] < 2®/(®+1) 

Using this, can show that 

c < davg/3 ⇒ fraction of low-degree nodes is < 5/12 

c > 3davg ⇒ fraction of low-degree nodes is > 5/12



Final bound

Theorem. Can (1+²)-estimate the average 
degree, wp 1-± , by using  

(log U log log U + 1/²2) log 1/±  

degree-biased node samples, where U (< n) 
is an upper bound on the maximum degree
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Experiments
SNAP (Skitter, DBLP, LiveJournal, Orkut)



Summary
Random walks are powerful 

Bounds on generating a uniform node 

Can extend to other distributions on V 

A better notion of mixing time for social graphs 

Average-case notion? 

Power of non-uniform sampling 

Other estimation problems



Thank you!

Questions/Comments: ravi.k53 @ gmail


