Random Walks & Graph Properties

Ravi Kumar

Google

Credits

Joint work with Flavio Chierichetti, Anirban
 Dasgupta, Silvio Lattanzi, Tamas Sarlos

Setting

Given a graph, estimate its basic parameters

- Number of nodes
- Number of edges
- Fraction of nodes/edges of certain type
- Largest/average degree
- Local/global clustering coefficient
- Number of triangles

Applications

- Business intelligence
 - How many art lovers are in social network X?
 - Is X's social network in Paris as well connected as that of Y?
- Algorithmic reasons
 - Is the triangle density unusually small in certain portions of the graph?
 - How does the average degree vary over time?

Sampling

- Critical tool to understand and analyze large graphs
 - Study graph properties using samples
- Only realistic option in many situations
 - Graph constantly changing
 - Entire graph not accessible
- Important to have provably good algorithms
 - Sample quality ⇒ quality of the output

Estimation by sampling

- German tank problem
 - Frequentist, Bayesian estimates
- Mark and recapture
 - Peterson-Lincoln-Chapman indices
 - · Used in ecology
- Fraction of subpopulation
 - Population with a specific property

Estimation by sampling

- Important when population is too large to obtain information from everyone
- Broad uses in statistics, computer science, sociology, economics, ...
- Eg, polling to estimate
 - Political preferences
 - Average income, education level, ...

Sampling in graphs

Graph access model

How to access the graph and what information is available to the algorithm?

- Can query any node by its name and get its out neighborhood
 - Subscribes to standard crawling model
 - Applies to both Web and social networks
- A small number of (truly random) nodes are available
 - Truly random nodes are expensive
- This access model supports random walks on the graph
- Querying is an expensive operation
 - Algorithms should minimize number of queries

Sampling according to a distribution

- G = (V, E) be an undirected, connected graph
 - n = #nodes, m = #edges
- D = a distribution on V
- ε = error parameter

Problem. Using the graph access model, output a node in G according to D (to within ϵ additive error)

 $Pr[algorithm outputs v] \approx D(v) \pm \varepsilon$

Measure #steps, #queries

An easy case

- Degree-proportional case (ie, uniform edge)
 - D₁(v) ~ d(v)
- Solution: do a uniform random walk on the graph
- Fact. Limiting distribution of the walk is D1
- Fact. Expected number of steps is the mixing
- time (t_{mix}) of the graph

Uniform distribution

- Output a node uniform at random
 - $D_0(v) = 1/n$

Idea#1: Rejection sampling

Generate and reject

- Uniform random walk for t_{mix} steps
- Reached a node u
- With probability proportional to 1/d(u),
 output u and stop
- Otherwise, go to first step starting from u

Analysis

 Assume minimum degree is 1 Claim. $E[\#queries] = E[\#steps] = O(t_{mix} \cdot d_{avg})$ Proof. Generates u according to D1 and outputs u wp 1/d(u). Probability of outputting some node $\Sigma_{u} \Pr[U=u] \times 1/d(u) = \Sigma_{u} d(u)/(2m) \times 1/d(u)$ $= \Sigma_u 1/(2m) = n/2m = 1/d_{avg}$ Repeat this davg times to successfully get a sample

Idea#2: Max-degree (MD) walk

- Make the graph uniform degree by spending more time at low degree nodes
 - Uniform random walk on modified graph generates Do
- Use max degree (d_{max}) to define transitions

#queries could be « #steps

MD Analysis

 $\Sigma_{uv} (f(u) - f(v))^2$

MD Analysis (contd)

Use the variational characterization

$$\Sigma_{uv} (f(u) - f(v))^2 \pi(u) \pi(v)$$

• Relate λ_2 of MD and original walk using this Fact. $t_{mix} \le 1/(1 - \lambda_2) \log n$ Claim. $E[\#steps] = \tilde{O}(t_{mix} \cdot d_{avg})$

Idea#3: Metropolis-Hastings (MH)

- A way to sample from any target distribution D starting from an arbitrary transition matrix Q
 - ◆ Current state = u
 - Generate v ~ Q(u, ·)
 - Move to v wp min(1, (Q(v, u) D(u)) / (Q(u, v) D(v)))
- Fact. Steady-state of MH walk is D
- If $D = D_0$ and Q is given by the graph $Pr[u \rightarrow v] = 1/d(u) \cdot min(1, d(u)/d(v)) = 1/max(d(u), d(v))$

MH Analysis

Claim. $E[\#steps] = \tilde{O}(t_{mix} \cdot d_{max})$

Proof. Use the variational characterization and steps as before

Tightness of MH

Claim. $E[steps] \ge \Omega(t_{mix} d_{max})$ Proof. o(k2) non-self loop steps will miss constant fraction of path nodes To be close to Do we need $\Omega(k^2)$ steps Self-loop steps on path nodes is $\Omega(D)$

Lower bounds: $\Omega(d_{avg})$

$$G(n, d/n) +$$

if \$ = T & wp 1/d

- $d_{avg} = d$, $t_{mix} = O(log n / log d)$
- Distance between Do for c = H and c = T is 1/2 o(1)
- * #queries ≈ o(d) ⇒ query only unchanged nodes wp 1 o(1)

Lower bounds: $\Omega(t_{mix})$

Claim. Any algorithm for D_0 must issue $\Omega(t_{mix})$ queries

Lower bounds: $\Omega(d_{avg}t_{mix})$

• (Chierichetti, Haddadan 2018)

Claim. Any algorithm to obtain, with probability at least 1- δ , an ϵ -additive approximation of the average of a bounded function on the nodes of a graph, must issue $\Omega(d_{avg}t_{mix})$ queries

Construction

Experiments

- Uniformity of the samples
 - Strict criterion
- Quality of estimators based on samples
 - Size of the network
 - Average degree
 - Clustering coefficient

Results

Results (contd)

Other distributions

 $d(v) = n^{1/(1+\epsilon)} + \delta$ constant

conductance

Claim. For D= D1+2 and for MH, $E[steps] \ge \Omega(poly(n))$ Proof. A random walk will take time $n^{1-1/(1+\epsilon)}$ - δ to even visit the high degree node, so the MH algorithm will take this much time

Estimating parameters

Estimating n = #nodes

- Birthday paradox: expected #collisions in k uniform random samples is roughly k²/(2n)
- Collision-counting (Katzir, Liberty, Somekh)
 - Sample nodes proportional to degree
 - Let $x_1,...,x_k$ be the samples and let $d_i = deg(x_i)$
 - Output $(\sum d_i)$ $(\sum 1/d_i)$ / #collisions

Collision counting

 $E[\#collisions] = {}_{k}C_{2} \cdot \sum (d_{i}/2m)^{2}$

Theorem. To get a relative estimate, #samples can be written as a function of (certain norms of) the degree distribution

- If graph is regular, then $O(\sqrt{n})$ samples suffice
- If graph has Zipfian degrees with parameter 2, then $O(n^{1/4})$ samples suffice

Can use return times (Cooper, Radzik, Siantos)

Estimating average degree

How to estimate average degree davg = m/n?

- Estimate n and m using collision-counting
 - Uses $O(\sqrt{m} + \sqrt{n})$ samples
- Estimate using just node collisions
 - Output $k^2/2n(\sum Collision_{ij}^u/deg(u))$
 - Uses $O(\sqrt{(n d_{avg}/d_{min})})$ samples
- · Similarly can use just edge collisions

A natural algorithm

- Algorithm:
 - Sample nodes uniformly at random
 - Output the average of their degrees
- ◆ Theorem (Feige). If #samples is $O(\sqrt{n/L})$, where L < d_{avg} , then it is a $(2+\epsilon)$ -estimate

Limitations

- Naive bound will involve maximum degree
- Cannot get better than a 2approximation
- This bound is tight

A different estimator

Goldreich, Ron

- · Bucket uniformly sampled nodes by degrees
- Discard small buckets (high variance)
 - Estimator is not unbiased

If a random neighbor is available for a node

Theorem. If #samples is $O(\sqrt{n/L})$, where $L < d_{avg}$, then it is a $(1+\epsilon)$ -estimate

Can we do better?

- Sample lower bound of $\Omega(\sqrt{n})$
 - Uniform sampling
- What about nonuniform sampling?
 - Eg, degree-biased

Boosting low degrees

- Uniform: harsh for high-degrees
- Degree-biased: harsh for low-degrees
 - How to boost the degrees?
- Sample nodes with probability proportional to degree + smoothing constant
 - Sampling still random-walk friendly
 - How to choose the smoothing constant?

Algorithm: Three steps

- Coarse estimator: Gets constant approximation
- Refined estimator: Gets arbitrary approximation
- Combined estimator:
 - Run the coarse estimator
 - Use coarse estimate as the smoothing constant and run the refined estimator

Refined estimator

Given a coarse estimate c, sample k nodes $x_1, ..., x_k$ with probability proportional to degree + c, and output

$$\sum \frac{d_i}{(d_i+c)} A$$

$$\sum \frac{1}{(d_i+c)} B$$

 $E[A]/E[B] = d_{avg}$

Key property

Theorem. If $c = \alpha d_{avg}$ and $k = (1+\alpha)/\epsilon^2$, then Refined Estimator outputs a $(1+\epsilon)$ -estimate

Proof sketch:

Show A and B are concentrated

- ·Analyze second moment and use Bernstein inequality
- B needs the coarse estimate:

$$|B - E[B]| < 2/(d_{min} + c)$$

Other properties

- · Bias and variance are bounded
 - Bias at most $(\alpha d_{avg} + d_{avg}/\alpha)/k + o(1/k)$
 - Small if α is small
- Random walk version
 - Sample complexity in terms of eigenvalue gap

Coarse estimator

Guess and verify

For c in {1, 2, 4, 8, ...}

- Sample nodes with probability proportional to degree + c
- If the fraction of low-degree nodes (ie, degree below c) is more than 5/12, return c as a coarse approximation

Why does this work?

If $c = \alpha d_{avg}$, then

$$(\alpha-1)/(\alpha+1) < \Pr[d_i \le c] < 2\alpha/(\alpha+1)$$

Using this, can show that

- $c < d_{avg}/3 \Rightarrow fraction of low-degree nodes is < 5/12$
- $c > 3d_{avg} \Rightarrow$ fraction of low-degree nodes is > 5/12

Final bound

Theorem. Can $(1+\epsilon)$ -estimate the average degree, wp 1- δ , by using

 $(\log U \log \log U + 1/\epsilon^2) \log 1/\delta$

degree-biased node samples, where U(< n) is an upper bound on the maximum degree

Experiments • SNAP (Skitter, DBLP, LiveJournal, Orkut)

Summary

- Random walks are powerful
- Bounds on generating a uniform node
 - Can extend to other distributions on V
- A better notion of mixing time for social graphs
 - Average-case notion?
- Power of non-uniform sampling
 - Other estimation problems

Thank you!

Questions/Comments: ravi.k53 @ gmail