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Temporal networks

● Network changes over time
● Edge stream

○ time series of edges: each link has a timestamp
○ edges may occur several times
○ example: Twitter mention network
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Objective

● Define network centrality metrics that are
○ temporal, reflect changes in the edge stream
○ online updatable



Time respective paths

● Adjacent edges that are ordered in time
● Models a flow, e.g.

○ information flow in social networks
○ flow of funds or goods in the economy

● Concept
○ delay t2-t1 is small, then flow is more likely
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Temporal Katz Centrality

Definition: weighted sum of all time respecting 
walks that end in node u



Temporal Katz Centrality
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● Centrality for node u at time t

● where Φ(z,t) is the weight of a single path:

● where edges appeared at (t1 , t2 , . . . , tj ) for walk z
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Weighting functions
● Constant β < 1

○ φ(τ)  = β
○ walk length penalized with β 
○ Φ(z,t) = β |z|

● Exponential decay
○ φ (τ)  = β exp { − c τ }
○ as φ(a) · φ(b) = φ(a + b), for an arbitrary path
○
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Relation to Katz Centrality

● Katz centrality

● Given an underlying graph with edge set of size E
● We sample uniform random T edges

Goal: calculate the expected value of temporal 
Katz centrality



Expected value - φ: = β

● Given an underlying graph with edge set of size E
● We sample uniform random T edges
● The expected number of times the edges of a 

given path of length k appear in a given order:

as a given edge has a probability of 1/E to appear 
at a given position



Expected value - φ: = β

● The expected number of times the edges of a 
given path of length k appear in a given order:



Expected value - exponential decay

● sT,k: the expected total weight of a given path of 
length k

● Each occurrence of a path of length k starting at 
time (T − j) has the weight β k exp (−cj)
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Expected value - exponential decay

● Each occurrence of a path of length k starting at 
time (T − j) has the weight β k exp (−cj)

0 TT-j
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𝛷 (z,T) = 𝛽ke-cj



Expected value - exponential decay



● let c:= c’/E with c’ <<E
● hence c/E << 1 and exp{c} = exp{c’/E} ≈ 1 + c’/E

Temporal Katz converges to static Katz on 
uniformly sampled edge streams 

Expected value - exponential decay



Temporal Katz Centrality - computation

● When edge vu appears at time tvu 
● The centrality of node u at time t increases as

○ a new time respecting walk appears
○ all walks that ended in in v continue via edge 

vu  to u
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Temporal Katz Centrality - computation

● When edge vu appears at time tvu 
● The centrality of node u at time t increases as

○ a new time respecting walk appears
○ all walks that ended in in v continue via edge 

vu  to u
● Hence the total increase is

( 1 + rv(tvu) ) · φ(t − tvu)
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Temporal Katz Centrality - computation

● Recursive definition

● Note that wvu := rv(tvu) does not depend on time!



Temporal Katz Centrality - computation

● For each node u we initialize r(u) : = 0
● We maintain ru(t) , wvu and tvu
● When edge uv appears

○ we calculate the current value of rv 

○ wvu := rv + 1
○ tvu := t
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Special case: exponential decay

○ as φ(a) · φ(b) = φ(a + b)

○ no need to store wvu

update rv

update old walks ending in u

add new walks ending in u



Related work

● Related result: Temporal PageRank
● Polina Rozenstein & Aris Gionis
● Different φ () weighting function

○ for adjacent edges (a, b, t1) and (b, c, t2)
○ L := number of edges (b, x ,t) where t1< t <t2
○ φ ~ |α|L , α < 1 
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Experiments on Twitter data

● Centrality metrics are difficult to evaluate overall
● Current need: temporal network with temporal 

labels
● Data: Twitter mentions during a tennis tournament

○ edges: user mentions
○ labels: players participating on a given day



Experiments on Twitter data



Temporal Katz Centrality - Summary

● Defined over edge time series
● Sum of time-respecting walks ending in a node
● Related to static Katz-centrality
● Online updateable



Temporal Katz - ongoing work

● Weighted count of walks starting from a node
● Past node may be more relevant, e.g. on Twitter:
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Temporal Katz - ongoing work

● Issue: no simple online update rule
● When vu edge appears, all prev. nodes in the 

temporal walks should be updated 
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Temporal Katz - ongoing work

● Compute temporal Katz, maintain wvu
● i.e. for every edge (v, u,tvu) store the weighted sum 

of walks from v to u at time tvu
● Define a time resp. random walk over the graph

○ at node v
○ stop with probability 1 / (1 + rv(tvu)) = 1 / (1 +  wvu) 
○ if continue, select edges with t < tvu proportional 

to their weight
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Temporal Katz - ongoing work

● Define a time resp. random walk over the graph
○ at node v
○ stop with probability 1 / (1 + rv(tvu)) = 1 / (1 +  wvu) 
○ if continue, select edges with t < tvu proportional 

to their weight

Results in a time respecting walk sampled 
proportional to its weight
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Temporal Katz - ongoing work

● Hence if we maintain the edge weights 
● Anytime walks can be sampled proportional to 

their weights
● By sampling walks we can approximate the 

number of tr. walks starting from a node



Network Node Embeddings



Network node embeddings - ongoing work

● Find embedding of nodes to d dimensions
● Similar nodes in the graph have embeddings that 

are close together
● Already existed, e.g.  recSys MF, graph factorization
● Revisited: random walk based methods



Network node embeddings - ongoing work

● Simple graph factorization loss function
L = Σuv[ pupv - Auv]2 

○ model parameters: pu 
○ optimization via SGD

● Random walk based methods
L = ΣD (u,v) - log( softmax(pupv ) )

○ D is a set of generated random walks, e.g. k from 
each node

u
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Network node embeddings - ongoing work

● Our objective
○ define an edge stream based
○ online updateable model
○ that generates temporal embeddings
○ adapts to concept drift



Network node embeddings - ongoing work

● Process edges in temporal order
● For each edge (u,v)

○ learn that  pu and pv are similar 
○ start random trw. walks (w,...,u,v) to the past

ending in (u,v)
○ learn for (w,v) that  pu and pv are similar
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Summary

● Temporal Katz
○ Defined over edge time series
○ Sum of time-respecting walks ending in a node
○ Related to static Katz-centrality
○ Online updateable
○ Ongoing work: sum of paths starting from a 

common node in the path
● Network embeddings

○ Time respective walk based online updates


