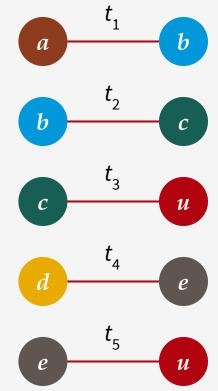
Temporal Centrality Metrics for Graph Streams

Róbert Pálovics

Temporal networks

- Network changes over time
- Edge stream
 - time series of edges: each link has a timestamp
 - edges may occur several times
 - example: Twitter mention network



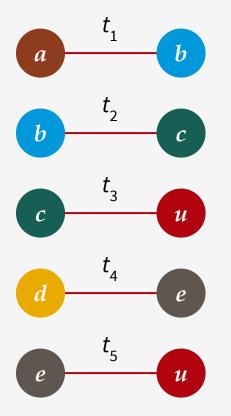
Define network centrality metrics that are
 temporal, reflect changes in the edge stream
 online updatable

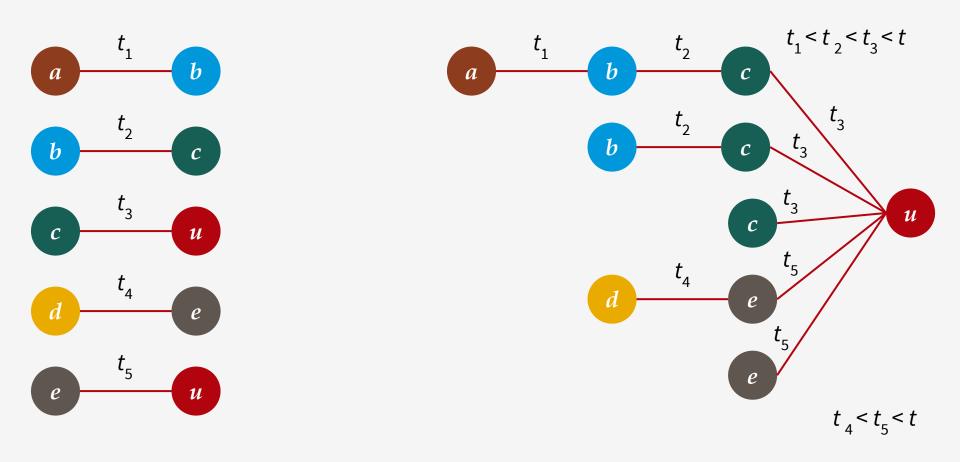
Time respective paths

- Adjacent edges that are ordered in time
- Models a flow, e.g.
 - information flow in social networks
 - $\circ~$ flow of funds or goods in the economy
- Concept
 - delay t_2 - t_1 is small, then flow is more likely

$$t_1$$
 t_2 t_3 t_3 $t_1 < t_2 < t_3$

Definition: weighted sum of all time respecting walks that end in node *u*





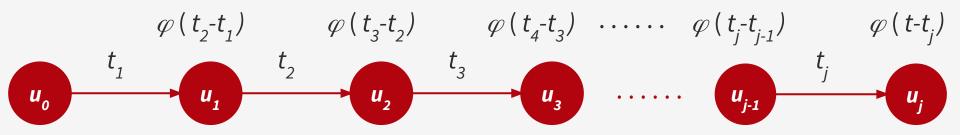
• Centrality for node *u* at time *t*

$$r_{u}(t) := \sum_{v} \sum_{\substack{\text{temporal paths } z \\ \text{from } v \text{ to } u}} \Phi(z, t)$$

• where $\Phi(z,t)$ is the weight of a single path:

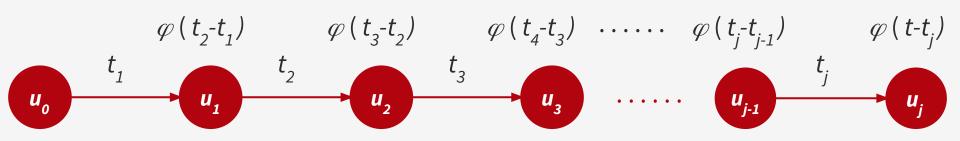
$$\Phi(z,t) := \prod_{i=1}^{\prime} \varphi(t_{i+1} - t_i)$$

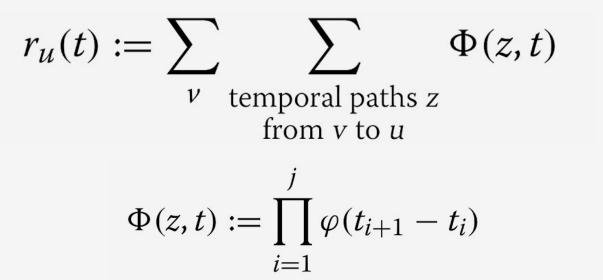
• where edges appeared at (t_1, t_2, \ldots, t_j) for walk z



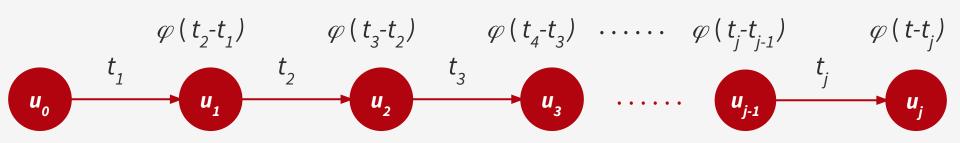
Weighting functions

- Constant $\beta < 1$
 - $\circ \varphi(\tau) = \beta$
 - \circ walk length penalized with β
 - $\circ \quad \boldsymbol{\Phi}(z,t) = \boldsymbol{\beta}^{|z|}$
- Exponential decay
 - $\circ \varphi(\tau) = \beta \exp\{-c\tau\}$
 - as $\varphi(a) \cdot \varphi(b) = \varphi(a + b)$, for an arbitrary path
 - $\bigcirc \quad \Phi(z,t) = \beta \exp\left(-c\left[t-t_j\right]\right) \dots \beta \exp\left(-c\left[t_2-t_1\right]\right) = \beta^{|z|} \exp\left(-c\left[t-t_1\right]\right)$





 $\Phi(z,t) = \beta \exp\left(-c\left[t - t_j\right]\right) \dots \beta \exp\left(-c\left[t_2 - t_1\right]\right) = \beta^{|z|} \exp\left(-c\left[t - t_1\right]\right)$



Relation to Katz Centrality

• Katz centrality

$$\vec{\text{Katz}} = \mathbf{1} \cdot \sum_{k=0}^{\infty} \beta^k A^k,$$

$$\vec{\text{Katz}}(u) := \sum_{v} \sum_{k=0}^{\infty} \beta^{k} |\{\text{paths of length } k \text{ from } v \text{ to } u\}|$$

- Given an underlying graph with edge set of size *E*
- We sample uniform random *T* edges

Goal: calculate the expected value of temporal Katz centrality

Expected value - φ : = β

- Given an underlying graph with edge set of size *E*
- We sample uniform random *T* edges
- The expected number of times the edges of a *given* path of length *k* appear in a given order:

$$s_{T,k} = \binom{T}{k} \cdot E^{-k}$$

as a given edge has a probability of 1/E to appear at a given position

Expected value - φ : = β

• The expected number of times the edges of a *given* path of length *k* appear in a given order:

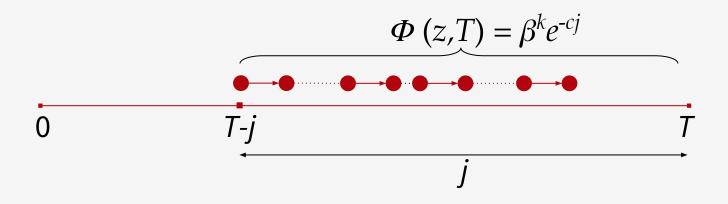
$$s_{T,k} = \binom{T}{k} \cdot E^{-k}$$

TemporalKatz =
$$\mathbf{1} \cdot \sum_{k=0}^{K} \beta^k A^k \binom{T}{k} \cdot E^{-k} \simeq \mathbf{1} \cdot \sum_{k=0}^{K} \beta^k A^k (T/E)^k / k!$$

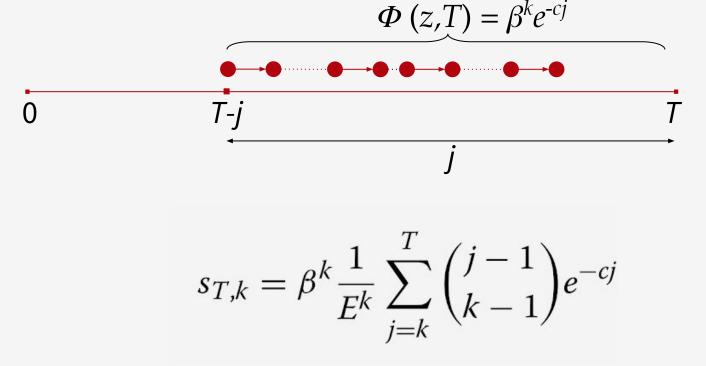
• *s*_{*T,k*}: the expected total weight of a *given* path of length *k*

$$\tilde{\text{TemporalKatz}} = \lim_{T \to \infty} \mathbf{1} \cdot \sum_{k=0}^{K} A^k s_{T,k} = \mathbf{1} \cdot \sum_{k=0}^{K} A^k \lim_{T \to \infty} s_{T,k}$$

Each occurrence of a path of length k starting at time (T – j) has the weight β k exp (-cj)



• Each occurrence of a path of length k starting at time (T - j) has the weight $\beta k \exp(-cj)$



Since
$$\sum_{n=m}^{\infty} {n \choose m} x^n = x^m / (1-x)^{m+1}$$
,
 $\lim_{T \to \infty} s_{T,k} = \lim_{T \to \infty} \left(\frac{\beta}{E}\right)^k \sum_{j=k}^T {j-1 \choose k-1} e^{-cj}$
 $= \left(\frac{\beta}{E}\right)^k e^{-c} \sum_{j=k}^\infty {j-1 \choose k-1} e^{-c(j-1)}$
 $= \left(\frac{\beta}{E}\right)^k \frac{e^{-ck}}{(1-e^{-c})^k} = \left(\frac{\beta}{E}\right)^k \frac{1}{(e^c-1)^k}.$

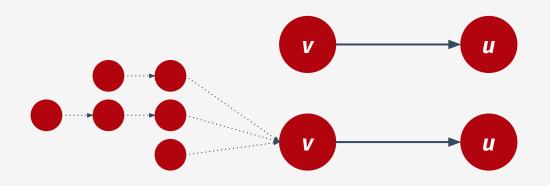
TemporalKatz =
$$\mathbf{1} \cdot \sum_{k=0}^{K} A^k \lim_{T \to \infty} s_{T,k} = \mathbf{1} \cdot \sum_{k=0}^{K} A^k \left(\frac{\beta}{E}\right)^k \left(\frac{1}{e^c - 1}\right)^k$$

- let *c*:= *c*'/*E* with *c*' <<*E*
- hence c/E << 1 and $\exp\{c\} = \exp\{c'/E\} \approx 1 + c'/E$

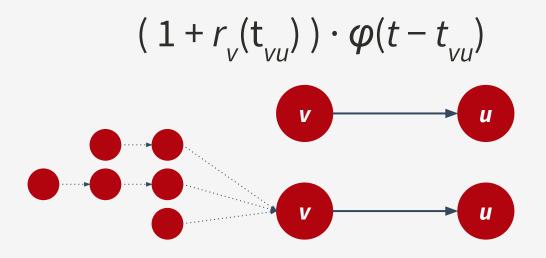
$$\vec{\text{TemporalKatz}} = \mathbf{1} \cdot \sum_{k=0}^{K} A^k \left(\frac{\beta}{E}\right)^k \left(\frac{1}{1+c'/E-1}\right)^k = \mathbf{1} \cdot \sum_{k=0}^{K} A^k \left(\frac{\beta}{c'}\right)^k$$

Temporal Katz converges to static Katz on uniformly sampled edge streams

- When edge *vu* appears at time *t*_{vu}
- The centrality of node *u* at time *t* increases as
 - a new time respecting walk appears
 - all walks that ended in in v continue via edge
 vu to u



- When edge *vu* appears at time *t*_{vu}
- The centrality of node *u* at time *t* increases as
 - a new time respecting walk appears
 - all walks that ended in in v continue via edge
 vu to u
- Hence the total increase is



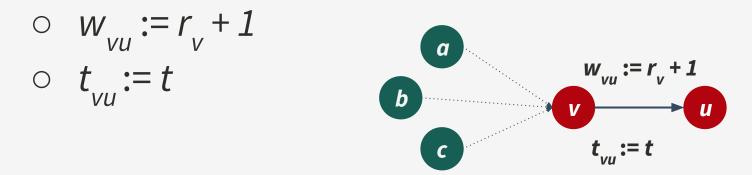
Recursive definition

$$r_u(t) = \sum_{vu \in E(t)} \left(1 + r_v(t_{vu})\right) \varphi(t - t_{vu})$$

• Note that $w_{vu} := r_v(t_{vu})$ does not depend on time!

- For each node u we initialize r(u) := 0
- We maintain $r_u(t)$, w_{vu} and t_{vu}
- When edge uv appears
 - we calculate the current value of r_{v}

$$r_{\nu} := \sum_{z\nu \in E(t)} w_{z\nu} \cdot \varphi(t - t_{z\nu})$$



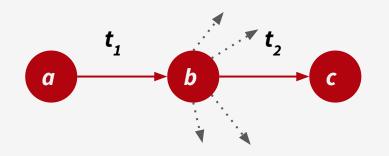
• as
$$\varphi(a) \cdot \varphi(b) = \varphi(a + b)$$

 $r_{v} := r_{v} \cdot \varphi(t - t_{v});$ update r_{v}
 $r_{u} := r_{u} \cdot \varphi(t - t_{u}) + (r_{v} + 1) \cdot \beta;$
 $t_{u} := t, \quad t_{v} := t,$ add new walks ending in u

• no need to store W_{vu}

[\]update old walks ending in *u*

- Related result: Temporal PageRank
- Polina Rozenstein & Aris Gionis
- Different φ () weighting function
 - for adjacent edges (a, b, t_1) and (b, c, t_2)
 - L := number of edges (b, x, t) where $t_1 < t < t_2$
 - $\circ \varphi \sim |\alpha|^L$, $\alpha < 1$

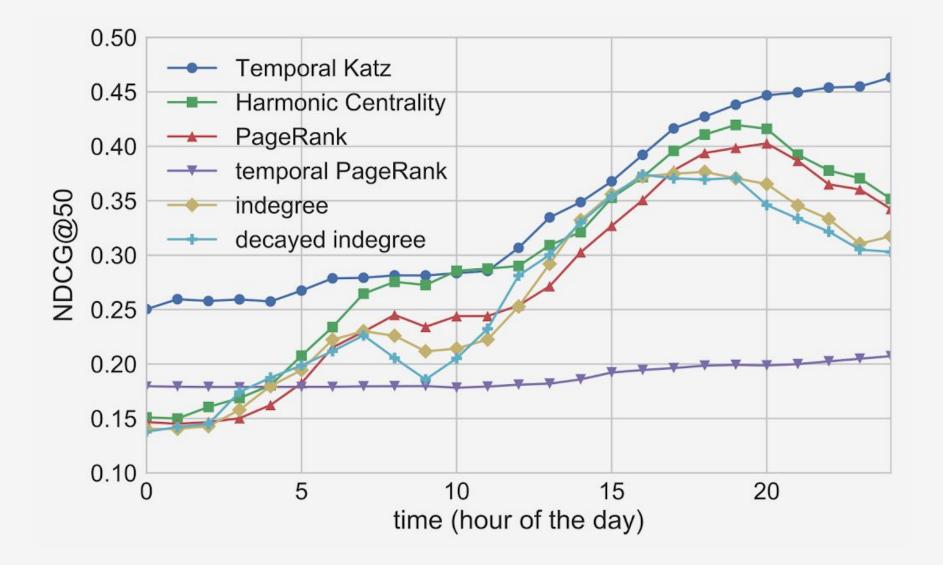


Experiments on Twitter data

- Centrality metrics are difficult to evaluate overall
- Current need: temporal network with temporal labels
- Data: Twitter mentions during a tennis tournament
 - edges: user mentions
 - labels: players participating on a given day

1	Roland-Garros	@rolandgarros	0
2	Stanislas Wawrinka	@stanwawrinka	1
3	Andy Murray	@andy_murray	1
4	Simona Halep	@Simona_Halep	0
5	Rafa Nadal	@RafaelNadal	1
6	Dominic Thiem	@ThiemDomi	1
7	Timea Bacsinszky	@TimeaOfficial	0
8	Rohan Bopanna	@rohanbopanna	0
9	Ana Ivanovic	@Analvanovic	0
10	WTA	@WTA	0
11	Gaby Dabrowski	@GabyDabrowski	0
12	Tennis Channel	@TennisChannel	0
13	Rafa Nadal Academy	@rnadalacademy	0
14	Karolina Pliskova	@KaPliskova	0
15	yonex.com	@yonex_com	0
16	Gusti Fernandez	@gustifernandez4	0
17	rolandgarrosFR	$@rolandgarros_FR$	0
18	Eurosport.es	$@Eurosport_ES$	0
19	ATP World Tour	@ATPWorldTour	0
20	Caroline Garcia	@CaroGarcia	0

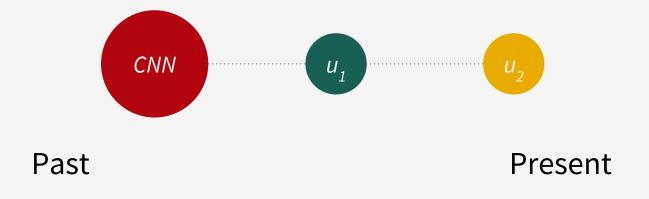
Experiments on Twitter data



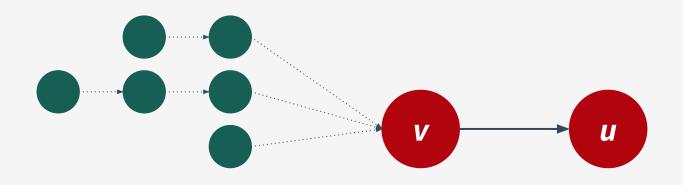
Temporal Katz Centrality - Summary

- Defined over edge time series
- Sum of time-respecting walks ending in a node
- Related to static Katz-centrality
- Online updateable

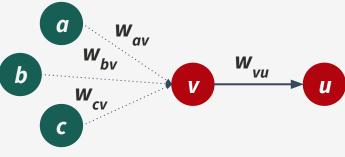
- Weighted count of walks starting from a node
- Past node may be more relevant, e.g. on Twitter:



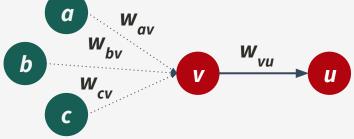
- Issue: no simple online update rule
- When *vu* edge appears, all prev. nodes in the temporal walks should be updated



- Compute temporal Katz, maintain w_{yy}
- i.e. for every edge (v, u,t_{vu}) store the weighted sum of walks from v to u at time t_{vu}
- Define a time resp. random walk over the graph
 - at node v
 - stop with probability $1/(1 + r_v(t_{vu})) = 1/(1 + w_{vu})$
 - if continue, select edges with t < t_{vu} proportional
 to their weight



- Define a time resp. random walk over the graph
 - at node v
 - stop with probability $1/(1 + r_v(t_{vu})) = 1/(1 + w_{vu})$
 - if continue, select edges with $t < t_{vu}$ proportional to their weight



Results in a time respecting walk sampled proportional to its weight

- Hence if we maintain the edge weights
- Anytime walks can be sampled proportional to their weights
- By sampling walks we can approximate the number of tr. walks starting from a node

Network Node Embeddings

- Find embedding of nodes to *d* dimensions
- Similar nodes in the graph have embeddings that are close together
- Already existed, e.g. recSys MF, graph factorization
- Revisited: random walk based methods

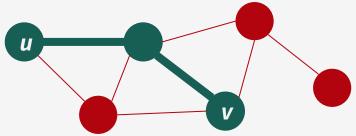
• Simple graph factorization loss function

$$L = \sum_{uv} [p_u p_v - A_{uv}]^2$$

- \circ model parameters: p_{μ}
- optimization via SGD
- Random walk based methods

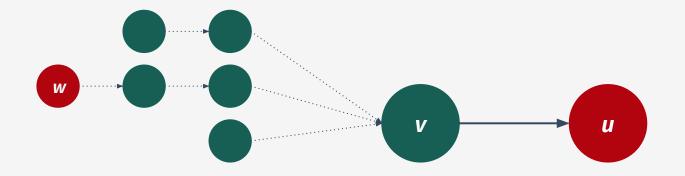
 $L = \Sigma_{D(u,v)} - \log(\operatorname{softmax}(p_u p_v))$

 D is a set of generated random walks, e.g. k from each node



- Our objective
 - define an edge stream based
 - online updateable model
 - that generates temporal embeddings
 - adapts to concept drift

- Process edges in temporal order
- For each edge (*u*,*v*)
 - \circ learn that p_{μ} and p_{ν} are similar
 - start random trw. walks (w,...,u,v) to the past ending in (u,v)
 - learn for (*w*,*v*) that p_u and p_v are similar



- Temporal Katz
 - Defined over edge time series
 - Sum of time-respecting walks ending in a node
 - Related to static Katz-centrality
 - Online updateable
 - Ongoing work: sum of paths starting from a common node in the path
- Network embeddings
 - Time respective walk based online updates