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Wave scattering and decay

Wave scattering problem: wave equation (∂2
t −∆Ω)u = 0 outside a set of

obstacles, Ω = Rd \ O.

• Long time behaviour of u(t)? ; consider the “spectrum" of the Laplacian
−∆Ω on L2.

Continuous real spectrum, but complex-valued resonances govern the long
time evolution:

inside B(0, R), u(t) =
∑

Imλj>−A

e−itλj 〈vj , ∂tu(0)〉 vj + O(e−At) , t→∞.
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High frequency resonances. Quantum open chaos

+10

γ

Λ Λ

λ
k

B(0,R)

High frequency waves: need to understand the distribution of resonances in
the regime Reλj � 1.

• Counting resonances: N(Λ, γ) ∼ ? when Λ� 1?
• Is there a resonance gap Imλj ≤ −α?

High frequency =⇒ ray dynamics. Long times→ trapped rays are crucial.

1

2

3

For n ≥ 3 convex obstacles, the trapped rays form a fractal
chaotic repeller.
[SJÖSTRAND’90, ZWORSKI’99] conjecture a fractal Weyl law

N(Λ, γ) ∼ CΛν ,

with ν > 0 related with the dimension of the trapped set.
They proved the upper bound.
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A chaotic toy model: the open baker’s map
Difficult to compute the resonances of −∆Ω numerically at high frequency.
=⇒ construct toy models: discrete-time dynamics

8B

An example of chaotic map: the open baker’s map on T2 3 (q, p):

(q, p) 7→ B(q, p) =

{
(3q mod 1, 1

3
(p+ [3q])), q ∈ [0, 1/3) ∪ [2/3, 1)

∞ (hole), q ∈ [1/3, 2/3)
.

In base 3: (p, q) ≡ . . . ε′2ε′1•ε1ε2 . . . 7→ . . . ε′2ε
′
1ε1•ε2ε3 . . . if ε1 ∈ {0, 2}.

1q0

p

1 (each color: points escaping at a given time).

Trapped set:
Γ− = {(p, q), Bn(p, q) exists for all n ≥ 1}
= {. . . ε′2ε′1•ε1ε2 . . . , εk 6= 1}

Γ− = [0, 1]× Can, with ν = dim(Can) = log 2
log 3

.
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Quantum open baker

One can set up a quantum mechanics associated with the phase space T2:
to each N ∈ N∗ the quantum space HN ≡ CN is generated by the basis of
position states {q0, . . . ,qN−1} localized at positions qj = j

N
connected with

momentum states {p0, . . . ,pN−1} through the discrete Fourier transform:

pk = FN
∗qk =

N−1∑
j=0

(F ∗N )jk qj , (FN )kj =
e−2iπ j k

N

√
N

The open map B : T2 → T2 can be quantized (when 3|N ) into a subunitary
matrix MN : HN → HN [BALAZS-VOROS’89]:

BN = F ∗N

FN/3 0
FN/3


Like in the classical map, the central position states
{1/3 ≤ qj < 2/3} are killed by BN .



Open quantum maps A specific family of directed graphs More general directed graphs

Spectrum of the open baker

We expect the eigenvalues (zj,N )j=1,...,N of BN to have a similar distribution
as the resonances of the Laplacian.
Large-N regime⇐⇒ High-frequency regime.
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{zj,N} ⇐⇒ {e−iλk , Reλk ≈ N}

Although rank(BN ) = 2N/3,
we observe that most of the
eigenvalues are very small.

We count eigenvalues in
annuli {1 ≥ |z| ≥ r}:

N(N, r) = #{|zj,N | ≥ r}.

Do we have
N(N, r) ∼ C(r)Nν as
N →∞?
(Fractal Weyl Law)
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Fractal Weyl law for the open baker

We know the fractal dimension of the trapped set: ν = log 2
log 3

.
Left: plot of N(N, r) as function of r, for several N . Right: plot of N(N, r)/Nν .
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A FWL has been numerically observed on various quantized chaotic maps
[SCHOMERUS-TWORZYDŁO’04,N-ZWORSKI’05, N-RUBIN’07, SHEPELYANSKY’08,
KOPP-SCHOMERUS’10].



Open quantum maps A specific family of directed graphs More general directed graphs

A toy model of the toy model

Even for a simple matrix like BN , we have no proof of the FWL.
(Only the upper bound could be proved, for a "smoothed" map.)

• (BN )jk is concentrated around the “lines" discretizing the graph of
q 7→ 3q mod 1 on [0, 1/3) ∪ [2/3, 1).

=⇒ Toy2 model: replace BN by its skeleton matrix SN , keeping only the
values along the “lines" {j = 3k + ε, ε = 0, 1, 2} [N-ZWORSKI’05].
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Explicit spectrum of S3K

⊕ For dimensions N = 3K , the spectrum of the matrix SN can be computed
explicitly thanks to a tensor product decomposition.

S9 =
1√
3



1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 ω2 0 0
1 0 0 0 0 0 ω 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 ω2 0
0 1 0 0 0 0 0 ω 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 ω2

0 0 1 0 0 0 0 0 ω


, ω = e2πi/3 .

In base 3, j ∈ {0, . . . , N − 1} is written as j ≡ ε1ε2 · · · εK , with εi ∈ {0, 1, 2}.
qj ∈ CN is represented by eε1 ⊗ eε2 ⊗ · · · ⊗ eεK ∈ (C3)⊗K

SN acts nicely on this tensor product structure:

SN (v1 ⊗ v2 ⊗ · · · vK) = v2 ⊗ v3 · · · vK ⊗ Ω3v1, with Ω3 = 1√
3

(
1 0 1
1 0 ω2

1 0 ω

)
=⇒ (SN )Kv1 ⊗ v2 ⊗ · · · vK = Ω3v1 ⊗ Ω3v2 ⊗ · · ·Ω3vK .
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Spectrum of S3K

(SN )K = (Ω3)⊗K , Ω3 =
1√
3

(
1 0 1
1 0 ω2

1 0 ω

)
Spec(Ω3) = {0, λ−, λ+} =⇒ Spec(SN ) = {λ`/K+ λ

1−`/K
− e2iπn/K} ∪ {0}.
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Large multiplicities, eigenvalues asymptotically
concentrate near a circle.

Since rank Ω3 = 2, the nontrivial spectrum of SN has
dimension 2K = N log 2/ log 3

=⇒ S3K satisfies a fractal Weyl law.

⊕ First rigorous example of fractal Weyl law.
[N.-ZWORSKI’05]

	 The spectrum is very regular, strongly depends on Spec(Ω3).
For some modified versions of SN , the corresponding Ω3 may accidentally
have a larger kernel (rank Ω3 = 1 =⇒ rankSN = 1).

What can we learn from the sole topology of the skeleton SN?
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Deriving the FWL from the topology of SN

The topology of SN is represented by a matrix AN .

A9 =



1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
1 0 0 0 0 0 1 0 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 1 0 0 0 0 0 1 0
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1
0 0 1 0 0 0 0 0 1


For N = 3K , the tensor product structure shows that (AN )K = |Ω3|⊗K , with

|Ω3| =
(

1 0 1
1 0 1
1 0 1

)
.

=⇒ all columns indexed by j ≡ ε1 · · · εK with some ε` = 1 are null.
(AN )K has exactly 3K − 2K null columns =⇒ dim(gker(SN )) ≥ 3K − 2K .

• topological property: applies to SN as well.

We may view AN as the adjacency matrix of a directed graph GN with
V = {j ∈ {0 . . . , N − 1}} and E = {(kj), Ajk = 1}.
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AN as a directed graph

G

20 6 8

3 4 5

1 7

9

Yellow vertices have no image; red vertices have for only images the yellow
ones. The remaining vertices belong to the same strongly connected
component (s.c.c.). They are the non-null columns of (A9)2.

Def: H ⊂ G is strongly connected iff for all pair v, w ∈ H, there is a path
v → w and a path w → v, and H is maximal.

Fact: if we contract each s.c.c. to a point, the reduced graph G̃ we obtain is
acyclic. One can order its vertices such that ṽ < w̃ if ṽw̃ ∈ Ẽ.
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AN as a directed graph
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AN as a directed graph
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Ordered reduced graph ≡ Jordan structure

If we permute the indices of the reduced graph G̃N according to this order,
the (reduced) adjacency matrix becomes lower triangular, with the nonzero
diagonal elements representing the s.c.c.

0268
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P̃ ÃP̃−1 =

s.c.c.
1
7
3
4
5


1
1 0
1 0

1 1 0
1 1 0
1 1 0



Restoring the s.c.c., we obtain for A(GN ) a block-lower triangular matrix,
where each diagonal block represents a s.c.c.

The same permutation P applies to SN .

=⇒ the nontrivial spectrum of SN is given by the spectrum of the diagonal
block (= spectrum of the s.c.c.).
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PAP−1 =


�
∗ 0
∗ 0

1 1 0
1 1 0
1 1 0



Restoring the s.c.c., we obtain for A(GN ) a block-lower triangular matrix,
where each diagonal block represents a s.c.c.

The same permutation P applies to SN .

=⇒ the nontrivial spectrum of SN is given by the spectrum of the diagonal
block (= spectrum of the s.c.c.).
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The strongly connected component of S3K

2 6

0
8

Ascc9 =

0
2
6
8


1 1
1 1

1 1
1 1

 , Sscc9 =
1√
3


1 1
1 ω

1 1
1 ω


The only s.c.c. in G9 is the De Bruijn graph DB(2, 2) (alphabet of 2 symbols,
words of length 2): we recover the rule ε1ε2 → ε2ε3, with εi ∈ {0, 2}.
• Similar structure for N = 3K : GN has a unique s.c.c., DB(2,K).
• Nontrivial spectrum depends on {λ−, λ+}, eigenvalues of Ω̃3 = ( 1 1

1 ω ).

Questions:

1. what happens if we modify the nontrivial entries of S3K ?

2. what happens if we take N 6= 3K?

3. what happens for other types of directed graphs?
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1. Inserting random phases: a new random matrix model
To make the spectrum more "generic", we randomize our skeleton SN :
replace its nonzero entries by independent random numbers.
Ex: zjk uniformly distributed random phases.

R9 =



z0,0 0 0 0 0 0 z0,6 0 0
z1,0 0 0 0 0 0 z1,6 0 0
z2,0 0 0 0 0 0 z2,6 0 0

0 z3,1 0 0 0 0 0 z3,7 0
0 z4,1 0 0 0 0 0 z4,7 0
0 z5,1 0 0 0 0 0 z5,7 0
0 0 z6,2 0 0 0 0 0 z6,8
0 0 z7,2 0 0 0 0 0 z7,8
0 0 z8,2 0 0 0 0 0 z8,8



; Rscc9 = R̃4
def
=

z0,0 z0,6

z2,0 z2,6

z6,2 z6,8

z8,2 z8,8



The nontrivial spectrum reduces to Rscc9 , equal to a random matrix R̃4.
(Generalizes to N = 3K ; R̃2K ).

→ (New) random matrix problem: how does the spectrum of R̃M look like?

⊕ for any even M , R̃M R̃∗M is block-diagonal, with independent 2× 2 blocks
→ statistics of the singular values of R̃M is easy.

Theorem ([GENDRON-N-SABRI])
∃C > 0, ∀r > 0, w.h.p. as M →∞, #{Spec(R̃M ) ∩ {|z| ≤ r}} ≤ C rM .

=⇒ Most of the 2K eigenvalues of Rscc3K are of order 1. We have obtained,
w.h.p., a lower bound for the Fractal Weyl Law of R3K .
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How does the spectrum of R3K look like?

Does the empirical measure νM = 1
M

∑
z∈Spec R̃M

δz converge to a limit
when M →∞?

Numerically, νM seems to be distributed according to a smooth density,
vanishing near the origin.

Left: the spectrum of a single realization of R̃M for M = 4096.

Right: rescaled counting function for matrices R̃M of sizes M = 100− 1000.
Observe the sharp spectral radius at r ≈

√
2.

(Plots by Q.Gendron).
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Random model RN for N 6= 3K

If we now consider random matrices RN for values N 6= 3K , the structure of
the graph GN may be more complicated.

12

1 2 30 8 109 11

4 5 6 7
G

Ex: for N = 12, the complement of the "hole" forms a s.c.c..

Rs.c.c.12 =


∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗
∗ ∗


The reduced matrix Rs.c.c.12 is less ‘regular’
than the De Bruijn type matrix, but it keeps a
similar shape.
Notice that Rs.c.c.Rs.c.c.∗ is still block diagonal,
but now with blocks of different sizes.
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Random model RN for N 6= 3K (2)

For arbitrary N (divisible by 3), [TRIAS’12] showed that

1. the nontrivial spectrum of RN has size ≤ 5Nν =⇒ upper bound for the
FWL.

2. there is always a "large" s.c.c. component of size � Nν (plus possibly
some extra "small" s.c.c.).

Combining these facts with the R̃R̃∗ trick, one can hope to prove the following

Conjecture
For any N divisible by 3, the nontrivial spectrum of RN has size � Nν .
Besides, w.h.p. this nontrivial spectrum does not have a macroscopic
accumulation near the origin.

As a consequence, the matrices RN would satisfy a FWL, in the following
sense:

∀r > 0, N(RN , r)
def
= # Spec(RN ) ∩ {|z| ≥ r} � Nν , N →∞.

What Ansatz could we have?
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A limiting spectral density?
To recover a more precise version of the FWL, N(RN , r) ∼ C(r)Nν , we
would need to better understand the empirical measure of the reduced
matrices R̃M .
[TRIAS’12] computed the rescaled counting functions N(R̃M ,r)

M
for all values

300 ≤M ≤ 9300:

The curves have a similar shape, up to a global prefactor approximately
varying in the interval [0.7, 1.2].

Apart from this prefactor, is there an asymptotic curve C(r)?
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More general directed graphs

Above we have studied random matrices RN constructed above a
deterministic skeleton GN ; deterministic s.c.c. G̃M with M � Nν ;

upper bound for the FWL.

To get a more precise FWL, we would need to better understand the
spectral distribution of the random matrices R̃M .

How about considering the graph G̃M to be random as well?

The reduced graphs G̃M we encoutered had the following property:

For any vertex j, d−j = 2 and d+
j ∈ {1, 2, 3}

(De Bruijn graph: d+
j = d−j = 2).

• For a given set of degrees d = (d±j )j=1,...,M (satisfying
∑
j d

+
j =

∑
j d
−
j ),

one can consider the family Gd of all directed graphs on M vertices with
these degrees: a class of random directed graphs G̃ ∈ Gd.

• equip each edge with a random phase ; obtain an ensemble of random
matrices R̃ ∈ Rd.
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upper bound for the FWL.

To get a more precise FWL, we would need to better understand the
spectral distribution of the random matrices R̃M .

How about considering the graph G̃M to be random as well?

The reduced graphs G̃M we encoutered had the following property:

For any vertex j, d−j = 2 and d+
j ∈ {1, 2, 3}

(De Bruijn graph: d+
j = d−j = 2).

• For a given set of degrees d = (d±j )j=1,...,M (satisfying
∑
j d

+
j =

∑
j d
−
j ),

one can consider the family Gd of all directed graphs on M vertices with
these degrees: a class of random directed graphs G̃ ∈ Gd.

• equip each edge with a random phase ; obtain an ensemble of random
matrices R̃ ∈ Rd.
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Spectrum of random sparse directed graphs
What do we know about spectral behaviour of the random graphs in Gd and
the matrices in Rd when M →∞

• [COOPER-FRIEZE’04]: If all vertices have d+
j ≥ 2, then w.h.p. as M →∞,

G ∈ Gd is strongly connected. If d±j = 1, then G̃ contains a s.c.c. of size
M(1− o(1)).

• The spectrum of the adjacency matrices {AG̃, G̃ ∈ Gd} has been studied.
[BORDENAVE-CHAFAÏ’12] conjecture that for the ensemble of random d-regular
digraphs (d+

j = d−j = d), the empirical measure of AG̃ converges to
1
π

d2(d−1)

(d2−|z|2)2
1l|z|<

√
ddx dy (complex Kesten-McKay measure).

0 0,25 0,5 0,75 1 1,25 1,5

0,25

0,5

0,75

1
1 d = 2: the induced counting

function seems compatible
with our numerics for R̃M (De
Bruijn graphs), including
spectral edge at

√
2.

Would adding phases to the De Brujin graph make the spectrum of R̃M more
"typical"?
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Conclusion & Perspectives

The class of random matrices RN has a large kernel because the
corresponding directed graph GN has small strongly connected
components. =⇒ upper bound for the FWL obtained from the topology
of GN .

The spectrum of the s.c.c. R̃M did not have a macroscopic kernel, nor
an accumulation of spectrum near the origin. Proved only in the case of
the De Buijn graph. =⇒ lower bound for the FWL. Asymptotic spectral
density?

Larger scope: spectrum of random matrices R̃ living on a random graph
G̃ ∈ Gd with specified (bounded) degrees. The random phases should
make the analysis easier than for the adjacency matrices.
[COSTE’17] studied the statistics of the second largest eigenvalue of AG̃
in ensembles G̃ ∈ Gd; this could give the spectral radius for R̃.

Our matrices AN were discretizing q 7→ 3q on [0, 1/3) ∪ [2/3, 1). One
could discretize any piecewise smooth open expanding maps on [0, 1],
and study the corresponding random matrices.
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