・ロット (雪) (日) (日)

From Fractal Weyl Laws to spectral questions on sparse directed graphs

Stéphane Nonnenmacher (Paris-sud), with Maciej Zworski (Berkeley), Quentin Gendron, Justin Trias, Mostafa Sabri (Paris-sud)

GOMAX conference, IHES, Oct. 2018

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Wave scattering and decay

Wave scattering problem: wave equation $(\partial_t^2 - \Delta_\Omega)u = 0$ outside a set of obstacles, $\Omega = \mathbb{R}^d \setminus 0$.

• Long time behaviour of $u(t)? \sim$ consider the "spectrum" of the Laplacian $-\Delta_{\Omega}$ on L^2 .

Continuous real spectrum, but complex-valued resonances govern the long time evolution:

inside
$$B(0,R)$$
, $u(t) = \sum_{\text{Im }\lambda_j > -A} e^{-it\lambda_j} \langle v_j, \partial_t u(0) \rangle v_j + \mathcal{O}(e^{-At}), \quad t \to \infty.$

High frequency resonances. Quantum open chaos

High frequency waves: need to understand the distribution of resonances in the regime $\operatorname{Re} \lambda_j \gg 1$.

- Counting resonances: $\mathcal{N}(\Lambda, \gamma) \sim ?$ when $\Lambda \gg 1?$
- Is there a resonance gap $\operatorname{Im} \lambda_j \leq -\alpha$?

High frequency \implies ray dynamics. Long times \rightarrow trapped rays are crucial.

For $n \geq 3$ convex obstacles, the trapped rays form a *fractal chaotic repeller*.

[SJÖSTRAND'90, ZWORSKI'99] conjecture a fractal Weyl law

$$\mathcal{N}(\Lambda,\gamma)\sim C\Lambda^{\nu},$$

with $\nu > 0$ related with the dimension of the trapped set. They proved the upper bound.

A chaotic toy model: the open baker's map

Difficult to compute the resonances of $-\Delta_{\Omega}$ numerically at high frequency. \implies construct toy models: discrete-time dynamics

An example of chaotic map: the **open baker's map** on $\mathbb{T}^2 \ni (q, p)$:

$$(q,p) \mapsto B(q,p) = \begin{cases} (3q \mod 1, \frac{1}{3}(p+[3q])), & q \in [0,1/3) \cup [2/3,1) \\ \infty & \text{(hole)}, & q \in [1/3,2/3) \end{cases}$$

In base 3: $(p,q) \equiv \ldots \epsilon'_2 \epsilon'_1 \bullet \epsilon_1 \epsilon_2 \ldots \mapsto \ldots \epsilon'_2 \epsilon'_1 \epsilon_1 \bullet \epsilon_2 \epsilon_3 \ldots$ if $\epsilon_1 \in \{0,2\}$.

(each color: points escaping at a given time).

Trapped set: $\Gamma_{-} = \{(p,q), B^{n}(p,q) \text{ exists for all } n \geq 1\}$ $= \{\ldots \epsilon'_2 \epsilon'_1 \bullet \epsilon_1 \epsilon_2 \ldots, \epsilon_k \neq 1\}$ $\Gamma_{-} = [0,1] \times Can$, with $\nu = \dim(Can) = \frac{\log 2}{\log 3}$. (ロ) (同) (三) (三) (三) (三) (○) (○)

Quantum open baker

One can set up a quantum mechanics associated with the *phase space* \mathbb{T}^2 : to each $N \in \mathbb{N}^*$ the quantum space $\mathcal{H}_N \equiv \mathbb{C}^N$ is generated by the basis of *position states* $\{\mathbf{q}_0, \ldots, \mathbf{q}_{N-1}\}$ localized at positions $q_j = \frac{j}{N}$ connected with *momentum states* $\{\mathbf{p}_0, \ldots, \mathbf{p}_{N-1}\}$ through the discrete Fourier transform:

$$p_k = F_N^* q_k = \sum_{j=0}^{N-1} (F_N^*)_{jk} q_j, \qquad (F_N)_{kj} = \frac{\mathrm{e}^{-2i\pi \frac{jk}{N}}}{\sqrt{N}}$$

The open map $B : \mathbb{T}^2 \to \mathbb{T}^2$ can be quantized (when 3|N) into a subunitary matrix $M_N : \mathcal{H}_N \to \mathcal{H}_N$ [BALAZS-VOROS'89]:

$$B_N = F_N^* \begin{pmatrix} F_{N/3} & & \\ & 0 & \\ & & F_{N/3} \end{pmatrix}$$

Like in the classical map, the central position states $\{1/3 \le q_j < 2/3\}$ are killed by B_N .

3N = 27

▲□▶▲□▶▲□▶▲□▶ ▲□ ショー

Spectrum of the open baker

We expect the eigenvalues $(z_{j,N})_{j=1,...,N}$ of B_N to have a similar distribution as the resonances of the Laplacian.

Large-N regime \iff High-frequency regime.

$$\{z_{j,N}\} \iff \{e^{-i\lambda_k}, \operatorname{Re}\lambda_k \approx N\}$$

Although $rank(B_N) = 2N/3$, we observe that most of the eigenvalues are very small.

We count eigenvalues in annuli $\{1 \ge |z| \ge r\}$:

 $\mathcal{N}(N,r) = \#\{|z_{j,N}| \ge r\}.$

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

Do we have $\mathcal{N}(N,r) \sim C(r)N^{\nu}$ as $N \rightarrow \infty$? (Fractal Weyl Law)

Fractal Weyl law for the open baker

We know the fractal dimension of the trapped set: $\nu = \frac{\log 2}{\log 3}$. Left: plot of $\mathcal{N}(N, r)$ as function of r, for several N. Right: plot of $\mathcal{N}(N, r)/N^{\nu}$.

A FWL has been numerically observed on various quantized chaotic maps [SCHOMERUS-TWORZYDŁO'04,N-ZWORSKI'05, N-RUBIN'07, SHEPELYANSKY'08, KOPP-SCHOMERUS'10].

(ロ) (同) (三) (三) (三) (三) (○) (○)

A toy model of the toy model

Even for a simple matrix like B_N , we have no proof of the FWL. (Only the upper bound could be proved, for a "smoothed" map.)

• $(B_N)_{jk}$ is concentrated around the "lines" discretizing the graph of $q \mapsto 3q \mod 1$ on $[0, 1/3) \cup [2/3, 1)$.

 \implies Toy² model: replace B_N by its skeleton matrix S_N , keeping only the values along the "lines" $\{j = 3k + \epsilon, \epsilon = 0, 1, 2\}$ [N-ZWORSKI'05].

Explicit spectrum of S_{3K}

 \oplus For dimensions $N = 3^K$, the spectrum of the matrix S_N can be computed explicitly thanks to a tensor product decomposition.

$$S_{9} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & \omega & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega \end{pmatrix}, \ \omega = e^{2\pi i/3} \,.$$

In base 3, $j \in \{0, \dots, N-1\}$ is written as $j \equiv \epsilon_1 \epsilon_2 \cdots \epsilon_K$, with $\epsilon_i \in \{0, 1, 2\}$. $\mathbf{q}_j \in \mathbb{C}^N$ is represented by $e_{\epsilon_1} \otimes e_{\epsilon_2} \otimes \cdots \otimes e_{\epsilon_K} \in (\mathbb{C}^3)^{\otimes K}$

 S_N acts nicely on this tensor product structure:

$$S_N(v_1 \otimes v_2 \otimes \cdots v_K) = v_2 \otimes v_3 \cdots v_K \otimes \Omega_3 v_1, \text{ with } \Omega_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 1\\ 1 & 0 & \omega^2\\ 1 & 0 & \omega \end{pmatrix}$$

 $\implies (S_N)^K v_1 \otimes v_2 \otimes \cdots \otimes v_K = \Omega_3 v_1 \otimes \Omega_3 v_2 \otimes \cdots \otimes \Omega_3 v_K.$

◆□ ▶ ◆□ ▶ ◆ □ ▶ ◆ □ ▶ ● □ ● ● ● ●

(日) (日) (日) (日) (日) (日) (日)

Spectrum of S_{3K}

$$(S_N)^K = (\Omega_3)^{\otimes K}, \qquad \Omega_3 = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 0 & 1\\ 1 & 0 & \omega^2\\ 1 & 0 & \omega \end{pmatrix}$$

Spec $(\Omega_3) = \{0, \lambda_-, \lambda_+\} \Longrightarrow$ Spec $(S_N) = \{\lambda_+^{\ell/K} \lambda_-^{1-\ell/K} e^{2i\pi n/K}\} \cup \{0\}.$

 Large multiplicities, eigenvalues asymptotically concentrate near a circle.

Since rank $\Omega_3 = 2$, the nontrivial spectrum of S_N has dimension $2^K = N^{\log 2/\log 3}$ $\implies S_{3^K}$ satisfies a **fractal Weyl law**.

 \oplus First rigorous example of fractal Weyl law. [N.-Zworski'05]

 \ominus The spectrum is very regular, strongly depends on $\text{Spec}(\Omega_3)$. For some modified versions of S_N , the corresponding Ω_3 may accidentally have a larger kernel (rank $\Omega_3 = 1 \implies \text{rank } S_N = 1$).

What can we learn from the sole topology of the skeleton S_N ?

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Deriving the FWL from the topology of S_N

The topology of S_N is represented by a matrix A_N .

$$A_{9} = \begin{pmatrix} 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \end{pmatrix}$$

For $N = 3^K$, the tensor product structure shows that $(A_N)^K = |\Omega_3|^{\otimes K}$, with $|\Omega_3| = \begin{pmatrix} 1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \end{pmatrix}$.

 \implies all columns indexed by $j \equiv \epsilon_1 \cdots \epsilon_K$ with some $\epsilon_\ell = 1$ are null. $(A_N)^K$ has exactly $3^K - 2^K$ null columns $\implies \dim(\operatorname{gker}(S_N)) \ge 3^K - 2^K$.

• topological property: applies to S_N as well.

We may view A_N as the adjacency matrix of a directed graph G_N with $V = \{j \in \{0..., N-1\}\}$ and $E = \{(kj), A_{jk} = 1\}$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

A_N as a directed graph

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ - 三■ - のへぐ

A_N as a directed graph

Yellow vertices have no image; red vertices have for only images the yellow ones. The remaining vertices belong to the same strongly connected component (s.c.c.). They are the non-null columns of $(A_9)^2$.

<u>Def</u>: $H \subset G$ is strongly connected iff for all pair $v, w \in H$, there is a path $v \to w$ and a path $w \to v$, and H is maximal.

A_N as a directed graph

Yellow vertices have no image; red vertices have for only images the yellow ones. The remaining vertices belong to the same strongly connected component (s.c.c.). They are the non-null columns of $(A_9)^2$.

<u>Def</u>: $H \subset G$ is strongly connected iff for all pair $v, w \in H$, there is a path $v \to w$ and a path $w \to v$, and H is maximal.

<u>Fact</u>: if we contract each s.c.c. to a point, the *reduced graph* \tilde{G} we obtain is *acyclic*. One can *order* its vertices such that $\tilde{v} < \tilde{w}$ if $\tilde{v}\tilde{w} \in \tilde{E}$.

A_N as a directed graph

Yellow vertices have no image; red vertices have for only images the yellow ones. The remaining vertices belong to the same strongly connected component (s.c.c.). They are the non-null columns of $(A_9)^2$.

<u>Def</u>: $H \subset G$ is strongly connected iff for all pair $v, w \in H$, there is a path $v \to w$ and a path $w \to v$, and H is maximal.

<u>Fact</u>: if we contract each s.c.c. to a point, the *reduced graph* \tilde{G} we obtain is *acyclic*. One can *order* its vertices such that $\tilde{v} < \tilde{w}$ if $\tilde{v}\tilde{w} \in \tilde{E}$.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

Ordered reduced graph \equiv Jordan structure

If we *permute* the indices of the reduced graph G_N according to this order, the (reduced) adjacency matrix becomes lower triangular, with the nonzero diagonal elements representing the s.c.c.

(日) (日) (日) (日) (日) (日) (日)

Ordered reduced graph \equiv Jordan structure

If we *permute* the indices of the reduced graph G_N according to this order, the (reduced) adjacency matrix becomes lower triangular, with the nonzero diagonal elements representing the s.c.c.

Restoring the s.c.c., we obtain for $A(G_N)$ a **block-lower triangular matrix**, where each diagonal block represents a s.c.c.

The same permutation P applies to S_N .

 \implies the nontrivial spectrum of S_N is given by the spectrum of the diagonal block (= spectrum of the s.c.c.).

(ロ) (同) (三) (三) (三) (三) (○) (○)

The strongly connected component of S_{3K}

$$\begin{array}{c} 2 \\ \hline \\ 0 \\ \hline \\ 8 \\ \hline \\ \end{array} \qquad A_9^{scc} = \frac{2}{6} \begin{pmatrix} 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 & 1 \\ 1 & 1 \\ \end{array} \end{pmatrix}, S_9^{scc} = \frac{1}{\sqrt{3}} \begin{pmatrix} 1 & 1 & 1 \\ 1 & \omega & 1 \\ 1 & 0 \\ 1 & 1 \\ 1 & \omega \end{pmatrix}$$

The only s.c.c. in G_9 is the *De Bruijn graph* $D_B(2,2)$ (alphabet of 2 symbols, words of length 2): we recover the rule $\epsilon_1 \epsilon_2 \rightarrow \epsilon_2 \epsilon_3$, with $\epsilon_i \in \{0,2\}$.

- Similar structure for $N = 3^K$: G_N has a unique s.c.c., $D_B(2, K)$.
- Nontrivial spectrum depends on $\{\lambda_{-}, \lambda_{+}\}$, eigenvalues of $\tilde{\Omega}_{3} = \begin{pmatrix} 1 & 1 \\ 1 & \omega \end{pmatrix}$.

Questions:

- 1. what happens if we modify the nontrivial entries of S_{3^K} ?
- 2. what happens if we take $N \neq 3^K$?
- 3. what happens for other types of directed graphs?

(日) (日) (日) (日) (日) (日) (日)

1. Inserting random phases: a new random matrix model To make the spectrum more "generic", we randomize our skeleton S_N : replace its nonzero entries by *independent random numbers*. Ex: z_{ik} uniformly distributed random phases.

$$R_{9} = \begin{pmatrix} z_{0,0} & 0 & 0 & 0 & 0 & 0 & z_{0,6} & 0 & 0 \\ z_{1,0} & 0 & 0 & 0 & 0 & 0 & z_{1,6} & 0 & 0 \\ z_{2,0} & 0 & 0 & 0 & 0 & 0 & z_{2,6} & 0 & 0 \\ 0 & z_{3,1} & 0 & 0 & 0 & 0 & 0 & z_{3,7} & 0 \\ 0 & z_{4,1} & 0 & 0 & 0 & 0 & 0 & z_{4,7} & 0 \\ 0 & z_{5,1} & 0 & 0 & 0 & 0 & 0 & z_{5,7} & 0 \\ 0 & 0 & z_{6,2} & 0 & 0 & 0 & 0 & z_{6,8} \\ 0 & 0 & z_{7,2} & 0 & 0 & 0 & 0 & z_{7,8} \\ 0 & 0 & z_{8,2} & 0 & 0 & 0 & 0 & z_{8,8} \end{pmatrix}$$

(ロ) (同) (三) (三) (三) (○) (○)

1. Inserting random phases: a new random matrix model To make the spectrum more "generic", we randomize our skeleton S_N : replace its nonzero entries by *independent random numbers*.

Ex: z_{jk} uniformly distributed random phases.

$$R_{9} = \begin{pmatrix} z_{0,0} & 0 & 0 & 0 & 0 & 0 & z_{0,6} & 0 & 0 \\ z_{1,0} & 0 & 0 & 0 & 0 & 0 & z_{1,6} & 0 & 0 \\ z_{2,0} & 0 & 0 & 0 & 0 & 0 & z_{2,6} & 0 & 0 \\ 0 & z_{3,1} & 0 & 0 & 0 & 0 & 0 & z_{3,7} & 0 \\ 0 & z_{4,1} & 0 & 0 & 0 & 0 & 0 & z_{5,7} & 0 \\ 0 & z_{5,1} & 0 & 0 & 0 & 0 & 0 & z_{5,7} & 0 \\ 0 & 0 & z_{6,2} & 0 & 0 & 0 & 0 & z_{7,8} \\ 0 & 0 & z_{7,2} & 0 & 0 & 0 & 0 & z_{7,8} \\ 0 & 0 & z_{8,2} & 0 & 0 & 0 & 0 & z_{8,8} \end{pmatrix}$$
 $\sim R_{9}^{scc} = \widetilde{R}_{4} \stackrel{\text{def}}{=} \begin{pmatrix} z_{0,0} & z_{0,6} \\ z_{2,0} & z_{2,6} \\ z_{8,2} & z_{8,8} \end{pmatrix}$

The nontrivial spectrum reduces to R_9^{scc} , equal to a random matrix \widetilde{R}_4 . (Generalizes to $N = 3^K \rightsquigarrow \widetilde{R}_{2^K}$).

 \rightarrow (New) random matrix problem: how does the spectrum of \widetilde{R}_M look like?

1. Inserting random phases: a new random matrix model To make the spectrum more "generic", we randomize our skeleton S_N : replace its nonzero entries by *independent random numbers*. Ex: z_{ik} uniformly distributed random phases.

$$R_{9} = \begin{pmatrix} z_{0,0} & 0 & 0 & 0 & 0 & 0 & z_{0,6} & 0 & 0 \\ z_{1,0} & 0 & 0 & 0 & 0 & 0 & z_{1,6} & 0 & 0 \\ z_{2,0} & 0 & 0 & 0 & 0 & 0 & z_{3,7} & 0 \\ 0 & z_{3,1} & 0 & 0 & 0 & 0 & 0 & z_{3,7} & 0 \\ 0 & z_{4,1} & 0 & 0 & 0 & 0 & 0 & z_{5,7} & 0 \\ 0 & z_{5,1} & 0 & 0 & 0 & 0 & 0 & z_{5,7} & 0 \\ 0 & 0 & z_{6,2} & 0 & 0 & 0 & 0 & z_{7,8} \\ 0 & 0 & z_{7,2} & 0 & 0 & 0 & 0 & z_{7,8} \\ 0 & 0 & z_{8,2} & 0 & 0 & 0 & 0 & z_{8,8} \end{pmatrix} \sim \mathcal{R}_{9}^{scc} = \widetilde{R}_{4} \stackrel{\text{def}}{=} \begin{pmatrix} z_{0,0} & z_{0,6} \\ z_{2,0} & z_{2,6} \\ z_{8,2} & z_{8,8} \end{pmatrix}$$

The nontrivial spectrum reduces to R_9^{scc} , equal to a random matrix \widetilde{R}_4 . (Generalizes to $N = 3^K \rightsquigarrow \widetilde{R}_{2^K}$).

 \rightarrow (New) random matrix problem: how does the spectrum of \widetilde{R}_M look like?

 \oplus for any even M, $\widetilde{R}_M \widetilde{R}_M^*$ is block-diagonal, with *independent* 2×2 blocks \rightarrow statistics of the singular values of \widetilde{R}_M is easy.

Theorem ([GENDRON-N-SABRI])

 $\exists C > 0, \forall r > 0, w.h.p. as M \to \infty, \# \{ \operatorname{Spec}(\widetilde{R}_M) \cap \{ |z| \le r \} \} \le C r M.$

 \implies Most of the 2^{K} eigenvalues of R_{3K}^{scc} are of order 1. We have obtained, w.h.p., a *lower bound* for the Fractal Weyl Law of R_{3K} .

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

How does the spectrum of R_{3^K} look like?

Does the empirical measure $\nu_M = \frac{1}{M} \sum_{z \in \text{Spec } \tilde{R}_M} \delta_z$ converge to a limit when $M \to \infty$?

Numerically, ν_M seems to be distributed according to a smooth density, vanishing near the origin.

Left: the spectrum of a single realization of \widetilde{R}_M for M = 4096.

Right: rescaled counting function for matrices \widetilde{R}_M of sizes M = 100 - 1000. Observe the sharp spectral radius at $r \approx \sqrt{2}$. (Plots by Q.Gendron).

Random model R_N for $N \neq 3^K$

If we now consider random matrices R_N for values $N \neq 3^K$, the structure of the graph G_N may be more complicated.

Ex: for N = 12, the complement of the "hole" forms a s.c.c..

$$R_{12}^{s.c.c.} = \begin{pmatrix} * & * \\ * & * \\ * & * \\ * & * \\ * & * \\ * & * \\ * & * \\ * & * \end{pmatrix}$$

The reduced matrix $R_{12}^{s.c.}$ is less 'regular' than the De Bruijn type matrix, but it keeps a similar shape.

Notice that $R^{s.c.c.}R^{s.c.c.*}$ is still block diagonal, but now with blocks of different sizes.

◆□▶ ◆□▶ ◆□▶ ◆□▶ ● ● ● ●

(ロ) (同) (三) (三) (三) (○) (○)

Random model R_N for $N \neq 3^K$ (2)

For arbitrary N (divisible by 3), [TRIAS'12] showed that

- 1. the nontrivial spectrum of R_N has size $\leq 5 N^{\nu} \implies$ upper bound for the FWL.
- 2. there is always a "large" s.c.c. component of size $\asymp N^{\nu}$ (plus possibly some extra "small" s.c.c.).

Combining these facts with the $\widetilde{R}\widetilde{R}^*$ trick, one can hope to prove the following

Conjecture

For any *N* divisible by 3, the nontrivial spectrum of R_N has size $\approx N^{\nu}$. Besides, w.h.p. this nontrivial spectrum does not have a macroscopic accumulation near the origin.

As a consequence, the matrices R_N would satisfy a FWL, in the following sense:

$$\forall r > 0, \quad \mathcal{N}(R_N, r) \stackrel{\text{def}}{=} \# \operatorname{Spec}(R_N) \cap \{ |z| \ge r \} \asymp N^{\nu}, \qquad N \to \infty.$$

What Ansatz could we have?

(ロ) (同) (三) (三) (三) (○) (○)

A limiting spectral density?

To recover a more precise version of the FWL, $\mathcal{N}(R_N, r) \sim C(r) N^{\nu}$, we would need to better understand the empirical measure of the reduced matrices \widetilde{R}_M .

[TRIAS'12] computed the rescaled counting functions $\frac{N(R_M,r)}{M}$ for all values $300 \le M \le 9300$:

The curves have a similar shape, up to a global prefactor approximately varying in the interval [0.7, 1.2].

Apart from this prefactor, is there an asymptotic curve C(r)?

◆□▶ ◆□▶ ▲□▶ ▲□▶ □ のQ@

More general directed graphs

- Above we have studied random matrices R_N constructed above a *deterministic* skeleton $G_N \rightsquigarrow$ deterministic s.c.c. \widetilde{G}_M with $M \asymp N^{\nu} \rightsquigarrow$ upper bound for the FWL.
- To get a more precise FWL, we would need to better understand the spectral distribution of the random matrices \widetilde{R}_M .

How about considering the graph \tilde{G}_M to be random as well?

More general directed graphs

- Above we have studied random matrices R_N constructed above a *deterministic* skeleton $G_N \rightsquigarrow$ deterministic s.c.c. \tilde{G}_M with $M \asymp N^{\nu} \rightsquigarrow$ upper bound for the FWL.

How about considering the graph \tilde{G}_M to be random as well?

The reduced graphs \widetilde{G}_M we encoutered had the following property:

For any vertex j, $d_j^- = 2$ and $d_j^+ \in \{1, 2, 3\}$ (De Bruijn graph: $d_j^+ = d_j^- = 2$).

• For a given set of degrees $\mathbf{d} = (d_j^{\pm})_{j=1,...,M}$ (satisfying $\sum_j d_j^+ = \sum_j d_j^-$), one can consider the family $\mathcal{G}_{\mathbf{d}}$ of all directed graphs on M vertices with these degrees: a class of random directed graphs $\widetilde{G} \in \mathcal{G}_{\mathbf{d}}$.

• equip each edge with a random phase \sim obtain an ensemble of random matrices $\widetilde{R} \in \mathcal{R}_d$.

Spectrum of random sparse directed graphs

What do we know about spectral behaviour of the random graphs in $\mathfrak{G}_{\mathbf{d}}$ and the matrices in $\mathcal{R}_{\mathbf{d}}$ when $M\to\infty$

• [COOPER-FRIEZE'04]: If all vertices have $d_j^+ \ge 2$, then w.h.p. as $M \to \infty$, $G \in \mathcal{G}_d$ is strongly connected. If $d_j^{\pm} = 1$, then \widetilde{G} contains a s.c.c. of size M(1 - o(1)).

• The spectrum of the adjacency matrices $\{A_{\widetilde{G}}, \widetilde{G} \in \mathcal{G}_{\mathbf{d}}\}$ has been studied. [BORDENAVE-CHAFAĨ'12] conjecture that for the ensemble of random *d*-regular digraphs $(d_j^+ = d_j^- = d)$, the empirical measure of $A_{\widetilde{G}}$ converges to $\frac{1}{\pi} \frac{d^2(d-1)}{(d^2-|z|^2)^2} \mathbb{1}_{|z|<\sqrt{d}} dx \, dy$ (complex Kesten-McKay measure).

d = 2: the induced counting function seems compatible with our numerics for \tilde{R}_M (De Bruijn graphs), including spectral edge at $\sqrt{2}$.

Would adding phases to the De Brujin graph make the spectrum of \widetilde{R}_M more "typical"?

・ロト・日本・日本・日本・日本・日本

Conclusion & Perspectives

- The class of random matrices R_N has a large kernel because the corresponding directed graph G_N has small strongly connected components. \implies upper bound for the FWL obtained from the topology of G_N .
- The spectrum of the s.c.c. \tilde{R}_M did not have a macroscopic kernel, nor an accumulation of spectrum near the origin. Proved only in the case of the De Buijn graph. \implies lower bound for the FWL. Asymptotic spectral density?
- Larger scope: spectrum of random matrices \widetilde{R} living on a random graph $\widetilde{G} \in \mathcal{G}_d$ with specified (bounded) degrees. The random phases should make the analysis easier than for the adjacency matrices. [COSTE'17] studied the statistics of the second largest eigenvalue of $A_{\widetilde{G}}$ in ensembles $\widetilde{G} \in \mathcal{G}_d$; this could give the spectral radius for \widetilde{R} .
- Our matrices A_N were discretizing $q \mapsto 3q$ on $[0, 1/3) \cup [2/3, 1)$. One could discretize any piecewise smooth *open expanding maps* on [0, 1], and study the corresponding random matrices.