From Fractal Weyl Laws to spectral questions on sparse directed graphs

Stéphane Nonnenmacher (Paris-sud), with Maciej Zworski (Berkeley), Quentin Gendron, Justin Trias, Mostafa Sabri (Paris-sud)

GOMAX conference, IHES, Oct. 2018

Wave scattering and decay

Wave scattering problem: wave equation $\left(\partial_{t}^{2}-\Delta_{\Omega}\right) u=0$ outside a set of obstacles, $\Omega=\mathbb{R}^{d} \backslash \mathcal{O}$.

- Long time behaviour of $u(t)$? \leadsto consider the "spectrum" of the Laplacian $-\Delta_{\Omega}$ on L^{2}.

Continuous real spectrum, but complex-valued resonances govern the long time evolution:
inside $B(0, R), \quad u(t)=\sum_{\operatorname{Im} \lambda_{j}>-A} e^{-i t \lambda_{j}}\left\langle v_{j}, \partial_{t} u(0)\right\rangle v_{j}+\mathcal{O}\left(e^{-A t}\right), \quad t \rightarrow \infty$.

High frequency resonances. Quantum open chaos

High frequency waves: need to understand the distribution of resonances in the regime $\operatorname{Re} \lambda_{j} \gg 1$.

- Counting resonances: $\mathcal{N}(\Lambda, \gamma) \sim$? when $\Lambda \gg 1$?
- Is there a resonance gap $\operatorname{Im} \lambda_{j} \leq-\alpha$?

High frequency \Longrightarrow ray dynamics. Long times \rightarrow trapped rays are crucial.
For $n \geq 3$ convex obstacles, the trapped rays form a fractal chaotic repeller. [SJöstrand'90, Zworski'99] conjecture a fractal Weyl law

$$
\mathcal{N}(\Lambda, \gamma) \sim C \Lambda^{\nu}
$$

with $\nu>0$ related with the dimension of the trapped set. They proved the upper bound.

A chaotic toy model: the open baker's map

Difficult to compute the resonances of $-\Delta_{\Omega}$ numerically at high frequency. \Longrightarrow construct toy models: discrete-time dynamics

An example of chaotic map: the open baker's map on $\mathbb{T}^{2} \ni(q, p)$:

$$
(q, p) \mapsto B(q, p)= \begin{cases}\left(3 q \bmod 1, \frac{1}{3}(p+[3 q])\right), & q \in[0,1 / 3) \cup[2 / 3,1) \\ \infty \quad \text { (hole), } & q \in[1 / 3,2 / 3)\end{cases}
$$

In base 3: $(p, q) \equiv \ldots \epsilon_{2}^{\prime} \epsilon_{1}^{\prime} \bullet \epsilon_{1} \epsilon_{2} \ldots \mapsto \ldots \epsilon_{2}^{\prime} \epsilon_{1}^{\prime} \epsilon_{1} \bullet \epsilon_{2} \epsilon_{3} \ldots$ if $\epsilon_{1} \in\{0,2\}$.

(each color: points escaping at a given time).
Trapped set:
$\Gamma_{-}=\left\{(p, q), B^{n}(p, q)\right.$ exists for all $\left.n \geq 1\right\}$
$=\left\{\ldots \epsilon_{2}^{\prime} \epsilon_{1}^{\prime} \bullet \epsilon_{1} \epsilon_{2} \ldots, \epsilon_{k} \neq 1\right\}$
$\Gamma_{-}=[0,1] \times$ Can, with $\nu=\operatorname{dim}($ Can $)=\frac{\log 2}{\log 3}$.

Quantum open baker

One can set up a quantum mechanics associated with the phase space \mathbb{T}^{2} : to each $N \in \mathbb{N}^{*}$ the quantum space $\mathcal{H}_{N} \equiv \mathbb{C}^{N}$ is generated by the basis of position states $\left\{\mathbf{q}_{0}, \ldots, \mathbf{q}_{N-1}\right\}$ localized at positions $q_{j}=\frac{j}{N}$ connected with momentum states $\left\{\mathbf{p}_{0}, \ldots, \mathbf{p}_{N-1}\right\}$ through the discrete Fourier transform:

$$
\boldsymbol{p}_{k}=F_{N}{ }^{*} \boldsymbol{q}_{k}=\sum_{j=0}^{N-1}\left(F_{N}^{*}\right)_{j k} \boldsymbol{q}_{j}, \quad\left(F_{N}\right)_{k j}=\frac{\mathrm{e}^{-2 i \pi \frac{j k}{N}}}{\sqrt{N}}
$$

The open map $B: \mathbb{T}^{2} \rightarrow \mathbb{T}^{2}$ can be quantized (when $3 \mid N$) into a subunitary matrix $M_{N}: \mathscr{H}_{N} \rightarrow \mathscr{H}_{N}$ [BALAZs-Voros'89]:

$$
B_{N}=F_{N}^{*}\left(\begin{array}{ccc}
F_{N / 3} & & \\
& 0 & \\
& & F_{N / 3}
\end{array}\right)
$$

Like in the classical map, the central position states $\left\{1 / 3 \leq q_{j}<2 / 3\right\}$ are killed by B_{N}.

Spectrum of the open baker

We expect the eigenvalues $\left(z_{j, N}\right)_{j=1, \ldots, N}$ of B_{N} to have a similar distribution as the resonances of the Laplacian.
Large- N regime \Longleftrightarrow High-frequency regime.

$\left\{z_{j, N}\right\} \Longleftrightarrow\left\{e^{-i \lambda_{k}}, \operatorname{Re} \lambda_{k} \approx N\right\}$

Although $\operatorname{rank}\left(B_{N}\right)=2 N / 3$, we observe that most of the eigenvalues are very small.

We count eigenvalues in annuli $\{1 \geq|z| \geq r\}$:
$\mathcal{N}(N, r)=\#\left\{\left|z_{j, N}\right| \geq r\right\}$.
Do we have
$\mathcal{N}(N, r) \sim C(r) N^{\nu}$ as $N \rightarrow \infty$?
(Fractal Weyl Law)

Fractal Weyl law for the open baker

We know the fractal dimension of the trapped set: $\nu=\frac{\log 2}{\log 3}$. Left: plot of $\mathcal{N}(N, r)$ as function of r, for several N. Right: plot of $\mathcal{N}(N, r) / N^{\nu}$.

A FWL has been numerically observed on various quantized chaotic maps [Schomerus-TworzydŁo'04,N-ZWORSKI'05, N-Rubin'07, SHEPELYANSKY'08, Kopp-Schomerus'10].

A toy model of the toy model

Even for a simple matrix like B_{N}, we have no proof of the FWL. (Only the upper bound could be proved, for a "smoothed" map.)

- $\left(B_{N}\right)_{j k}$ is concentrated around the "lines" discretizing the graph of $q \mapsto 3 q \bmod 1$ on $[0,1 / 3) \cup[2 / 3,1)$.
\Longrightarrow Toy ${ }^{2}$ model: replace B_{N} by its skeleton matrix S_{N}, keeping only the values along the "lines" $\{j=3 k+\epsilon, \epsilon=0,1,2\}$ [N -Zworski'05].

Explicit spectrum of $S_{3 K}$

For dimensions $N=3^{K}$, the spectrum of the matrix S_{N} can be computed explicitly thanks to a tensor product decomposition.

$$
S_{9}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccccccccc}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & \omega & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega^{2} \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & \omega
\end{array}\right), \omega=e^{2 \pi i / 3} .
$$

In base $3, j \in\{0, \ldots, N-1\}$ is written as $j \equiv \epsilon_{1} \epsilon_{2} \cdots \epsilon_{K}$, with $\epsilon_{i} \in\{0,1,2\}$. $\mathbf{q}_{j} \in \mathbb{C}^{N}$ is represented by $e_{\epsilon_{1}} \otimes e_{\epsilon_{2}} \otimes \cdots \otimes e_{\epsilon_{K}} \in\left(\mathbb{C}^{3}\right)^{\otimes K}$
S_{N} acts nicely on this tensor product structure:
$S_{N}\left(v_{1} \otimes v_{2} \otimes \cdots v_{K}\right)=v_{2} \otimes v_{3} \cdots v_{K} \otimes \Omega_{3} v_{1}$, with $\Omega_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}1 & 0 & 1 \\ 1 & 0 & \omega^{2} \\ 1 & 0 & \omega\end{array}\right)$
$\Longrightarrow\left(S_{N}\right)^{K} v_{1} \otimes v_{2} \otimes \cdots v_{K}=\Omega_{3} v_{1} \otimes \Omega_{3} v_{2} \otimes \cdots \Omega_{3} v_{K}$.

Spectrum of $S_{3 K}$

$$
\left(S_{N}\right)^{K}=\left(\Omega_{3}\right)^{\otimes K}, \quad \Omega_{3}=\frac{1}{\sqrt{3}}\left(\begin{array}{ccc}
1 & 0 & 1 \\
1 & 0 & \omega^{2} \\
1 & 0 & \omega
\end{array}\right)
$$

$\operatorname{Spec}\left(\Omega_{3}\right)=\left\{0, \lambda_{-}, \lambda_{+}\right\} \Longrightarrow \operatorname{Spec}\left(S_{N}\right)=\left\{\lambda_{+}^{\ell / K} \lambda_{-}^{1-\ell / K} e^{2 i \pi n / K}\right\} \cup\{0\}$.

Large multiplicities, eigenvalues asymptotically concentrate near a circle.

Since rank $\Omega_{3}=2$, the nontrivial spectrum of S_{N} has dimension $2^{K}=N^{\log 2 / \log 3}$
$\Longrightarrow S_{3 K}$ satisfies a fractal Weyl law.
\oplus First rigorous example of fractal Weyl law.
[N.-ZWORSKI'05]
\ominus The spectrum is very regular, strongly depends on $\operatorname{Spec}\left(\Omega_{3}\right)$.
For some modified versions of S_{N}, the corresponding Ω_{3} may accidentally have a larger kernel $\left(\operatorname{rank} \Omega_{3}=1 \Longrightarrow \operatorname{rank} S_{N}=1\right)$.

What can we learn from the sole topology of the skeleton S_{N} ?

Deriving the FWL from the topology of S_{N}

The topology of S_{N} is represented by a matrix A_{N}.

$$
A_{9}=\left(\begin{array}{lllllllll}
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 & 1
\end{array}\right)
$$

For $N=3^{K}$, the tensor product structure shows that $\left(A_{N}\right)^{K}=\left|\Omega_{3}\right|^{\otimes K}$, with
$\left|\Omega_{3}\right|=\left(\begin{array}{lll}1 & 0 & 1 \\ 1 & 0 & 1 \\ 1 & 0 & 1 \\ 0 & 1\end{array}\right)$.
\Longrightarrow all columns indexed by $j \equiv \epsilon_{1} \cdots \epsilon_{K}$ with some $\epsilon_{\ell}=1$ are null.
$\left(A_{N}\right)^{K}$ has exactly $3^{K}-2^{K}$ null columns $\Longrightarrow \operatorname{dim}\left(\operatorname{gker}\left(S_{N}\right)\right) \geq 3^{K}-2^{K}$.

- topological property: applies to S_{N} as well.

We may view A_{N} as the adjacency matrix of a directed graph G_{N} with $V=\{j \in\{0 \ldots, N-1\}\}$ and $E=\left\{(k j), A_{j k}=1\right\}$.

A_{N} as a directed graph

A_{N} as a directed graph

Yellow vertices have no image; red vertices have for only images the yellow ones. The remaining vertices belong to the same strongly connected component (s.c.c.). They are the non-null columns of $\left(A_{9}\right)^{2}$.

Def: $H \subset G$ is strongly connected iff for all pair $v, w \in H$, there is a path $v \rightarrow w$ and a path $w \rightarrow v$, and H is maximal.

A_{N} as a directed graph

Yellow vertices have no image; red vertices have for only images the yellow ones. The remaining vertices belong to the same strongly connected component (s.c.c.). They are the non-null columns of $\left(A_{9}\right)^{2}$.

Def: $H \subset G$ is strongly connected iff for all pair $v, w \in H$, there is a path $v \rightarrow w$ and a path $w \rightarrow v$, and H is maximal.
Fact: if we contract each s.c.c. to a point, the reduced graph \tilde{G} we obtain is acyclic. One can order its vertices such that $\tilde{v}<\tilde{w}$ if $\tilde{v} \tilde{w} \in \tilde{E}$.

A_{N} as a directed graph

Yellow vertices have no image; red vertices have for only images the yellow ones. The remaining vertices belong to the same strongly connected component (s.c.c.). They are the non-null columns of $\left(A_{9}\right)^{2}$.

Def: $H \subset G$ is strongly connected iff for all pair $v, w \in H$, there is a path $v \rightarrow w$ and a path $w \rightarrow v$, and H is maximal.

Fact: if we contract each s.c.c. to a point, the reduced graph \tilde{G} we obtain is acyclic. One can order its vertices such that $\tilde{v}<\tilde{w}$ if $\tilde{v} \tilde{w} \in \tilde{E}$.

Ordered reduced graph \equiv Jordan structure

If we permute the indices of the reduced graph \tilde{G}_{N} according to this order, the (reduced) adjacency matrix becomes lower triangular, with the nonzero diagonal elements representing the s.c.c.

$$
\tilde{P} \tilde{A} \tilde{P}^{-1}=\begin{gathered}
\text { s.c.c. } \\
1 \\
7 \\
3 \\
4 \\
5
\end{gathered}\left(\begin{array}{lllllll}
1 & & & & & \\
1 & 0 & & & & \\
1 & & 0 & & & \\
& 1 & 1 & 0 & & \\
& 1 & 1 & & 0 & \\
& 1 & 1 & & & 0
\end{array}\right)
$$

Ordered reduced graph \equiv Jordan structure

If we permute the indices of the reduced graph \tilde{G}_{N} according to this order, the (reduced) adjacency matrix becomes lower triangular, with the nonzero diagonal elements representing the s.c.c.

Restoring the s.c.c., we obtain for $A\left(G_{N}\right)$ a block-lower triangular matrix, where each diagonal block represents a s.c.c.

The same permutation P applies to S_{N}.
\Longrightarrow the nontrivial spectrum of S_{N} is given by the spectrum of the diagonal block (= spectrum of the s.c.c.).

The strongly connected component of $S_{3^{K}}$

$$
A_{9}^{s c c}=\frac{0}{2} \begin{aligned}
& 0 \\
& 6 \\
& 8
\end{aligned}\left(\begin{array}{llll}
1 & & 1 & \\
1 & & 1 & \\
& 1 & & 1 \\
& 1 & & 1
\end{array}\right), \quad S_{9}^{s c c}=\frac{1}{\sqrt{3}}\left(\begin{array}{cccc}
1 & & 1 & \\
1 & & \omega & \\
& 1 & & 1 \\
& 1 & & \omega
\end{array}\right)
$$

The only s.c.c. in G_{9} is the De Bruijn graph $D_{B}(2,2)$ (alphabet of 2 symbols, words of length 2): we recover the rule $\epsilon_{1} \epsilon_{2} \rightarrow \epsilon_{2} \epsilon_{3}$, with $\epsilon_{i} \in\{0,2\}$.

- Similar structure for $N=3^{K}: G_{N}$ has a unique s.c.c., $D_{B}(\underset{\sim}{2}, K)$.
- Nontrivial spectrum depends on $\left\{\lambda_{-}, \lambda_{+}\right\}$, eigenvalues of $\tilde{\Omega}_{3}=\left(\begin{array}{cc}1 & 1 \\ 1 & \omega\end{array}\right)$.

Questions:

1. what happens if we modify the nontrivial entries of $S_{3_{K}}$?
2. what happens if we take $N \neq 3^{K}$?
3. what happens for other types of directed graphs?
4. Inserting random phases: a new random matrix model To make the spectrum more "generic", we randomize our skeleton S_{N} : replace its nonzero entries by independent random numbers.
Ex: $z_{j k}$ uniformly distributed random phases.

$$
R_{9}=\left(\begin{array}{ccccccccc}
z_{0,0} & 0 & 0 & 0 & 0 & 0 & z_{0,6} & 0 & 0 \\
z_{1,0} & 0 & & 0 & 0 & 0 & 0 & z_{1,6} & 0 \\
0 \\
z_{2,0} & 0 & 0 & 0 & 0 & 0 & z_{2,6} & 0 & 0 \\
0 & z_{3,1} & 0 & 0 & 0 & 0 & 0 & z_{3,7} & 0 \\
0 & z_{4,1} & 0 & 0 & 0 & 0 & 0 & z_{4,7} & 0 \\
0 & z_{5,1} & 0 & 0 & 0 & 0 & 0 & z_{5,7} & 0 \\
0 & 0 & z_{6,2} & 0 & 0 & 0 & 0 & 0 & z_{6,8} \\
0 & 0 & z_{7,2} & 0 & 0 & 0 & 0 & 0 & z_{7,8} \\
0 & 0 & z_{8,2} & 0 & 0 & 0 & 0 & 0 & z_{8,8}
\end{array}\right)
$$

1. Inserting random phases: a new random matrix model

To make the spectrum more "generic", we randomize our skeleton S_{N} : replace its nonzero entries by independent random numbers.
Ex: $z_{j k}$ uniformly distributed random phases.

The nontrivial spectrum reduces to $R_{9}^{s c c}$, equal to a random matrix \widetilde{R}_{4}. (Generalizes to $N=3^{K} \leadsto \widetilde{R}_{2} K$).
\rightarrow (New) random matrix problem: how does the spectrum of \widetilde{R}_{M} look like?

1. Inserting random phases: a new random matrix model

To make the spectrum more "generic", we randomize our skeleton S_{N} : replace its nonzero entries by independent random numbers.
Ex: $z_{j k}$ uniformly distributed random phases.
$R_{9}=\left(\begin{array}{ccccccccc}z_{0,0} & 0 & 0 & 0 & 0 & 0 & z_{0,6} & 0 & 0 \\ z_{1,0} & 0 & 0 & 0 & 0 & 0 & z_{1,6} & 0 & 0 \\ z_{2,0} & 0 & 0 & 0 & 0 & 0 & z_{2,6} & 0 & 0 \\ 0 & z_{3,1} & 0 & 0 & 0 & 0 & 0 & z_{3,7} & 0 \\ 0 & z_{4,1} & 0 & 0 & 0 & 0 & 0 & z_{4,7} & 0 \\ 0 & z_{5,1} & 0 & 0 & 0 & 0 & 0 & z_{5,7} & 0 \\ 0 & 0 & z_{6,2} & 0 & 0 & 0 & 0 & 0 & z_{6,8} \\ 0 & 0 & z_{7,2} & 0 & 0 & 0 & 0 & 0 & z_{7,8}\end{array}\right) \leadsto R_{9}^{s c c}=\widetilde{R}_{4} \stackrel{\text { def }}{=}\left(\begin{array}{llll}z_{0,0} & & \\ z_{2,0} & & z_{0,6} & \\ & z_{2,6} & \\ & z_{6,2} & z_{6,8} \\ & z_{8,2} & z_{8,8}\end{array}\right)$

The nontrivial spectrum reduces to $R_{9}^{s c c}$, equal to a random matrix \widetilde{R}_{4}. (Generalizes to $N=3^{K} \leadsto \widetilde{R}_{2} K$).
\rightarrow (New) random matrix problem: how does the spectrum of \widetilde{R}_{M} look like?
\oplus for any even $M, \widetilde{R}_{M} \widetilde{R}_{M}^{*}$ is block-diagonal, with independent 2×2 blocks \rightarrow statistics of the singular values of \widetilde{R}_{M} is easy.
Theorem ([Gendron-N-SAbri])
$\exists C>0, \forall r>0$, w.h.p. as $M \rightarrow \infty, \#\left\{\operatorname{Spec}\left(\widetilde{R}_{M}\right) \cap\{|z| \leq r\}\right\} \leq C r M$.
\Longrightarrow Most of the 2^{K} eigenvalues of $R_{3 K}^{s c c}$ are of order 1 . We have obtained, w.h.p., a lower bound for the Fractal Weyl Law of $R_{3} K$

How does the spectrum of $R_{3^{K}}$ look like?

Does the empirical measure $\nu_{M}=\frac{1}{M} \sum_{z \in \operatorname{Spec} \widetilde{R}_{M}} \delta_{z}$ converge to a limit when $M \rightarrow \infty$?

Numerically, ν_{M} seems to be distributed according to a smooth density, vanishing near the origin.

Left: the spectrum of a single realization of \widetilde{R}_{M} for $M=4096$.
Right: rescaled counting function for matrices \widetilde{R}_{M} of sizes $M=100-1000$. Observe the sharp spectral radius at $r \approx \sqrt{2}$.
(Plots by Q.Gendron).

Random model R_{N} for $N \neq 3^{K}$

If we now consider random matrices R_{N} for values $N \neq 3^{K}$, the structure of the graph G_{N} may be more complicated.

Ex: for $N=12$, the complement of the "hole" forms a s.c.c..

The reduced matrix $R_{12}^{\text {s.c.c. }}$. is less 'regular' than the De Bruijn type matrix, but it keeps a similar shape.
Notice that $R^{\text {s.c.c. }} R^{\text {s.c.c.* }}$ is still block diagonal, but now with blocks of different sizes.

Random model R_{N} for $N \neq 3^{K}$ (2)

For arbitrary N (divisible by 3), [TRIAS'12] showed that

1. the nontrivial spectrum of R_{N} has size $\leq 5 N^{\nu} \Longrightarrow$ upper bound for the FWL.
2. there is always a "large" s.c.c. component of size $\asymp N^{\nu}$ (plus possibly some extra "small" s.c.c.).
Combining these facts with the $\widetilde{R} \widetilde{R}^{*}$ trick, one can hope to prove the following
Conjecture
For any N divisible by 3 , the nontrivial spectrum of R_{N} has size $\asymp N^{\nu}$. Besides, w.h.p. this nontrivial spectrum does not have a macroscopic accumulation near the origin.
As a consequence, the matrices R_{N} would satisfy a FWL, in the following sense:

$$
\forall r>0, \quad \mathcal{N}\left(R_{N}, r\right) \stackrel{\text { def }}{=} \# \operatorname{Spec}\left(R_{N}\right) \cap\{|z| \geq r\} \asymp N^{\nu}, \quad N \rightarrow \infty .
$$

What Ansatz could we have?

A limiting spectral density?

To recover a more precise version of the FWL, $\mathcal{N}\left(R_{N}, r\right) \sim C(r) N^{\nu}$, we would need to better understand the empirical measure of the reduced matrices \widetilde{R}_{M}.
[TRIAS'12] computed the rescaled counting functions $\frac{\mathcal{N}\left(\tilde{R}_{M}, r\right)}{M}$ for all values $300 \leq M \leq 9300$:

The curves have a similar shape, up to a global prefactor approximately varying in the interval $[0.7,1.2]$.

Apart from this prefactor, is there an asymptotic curve $C(r)$?

More general directed graphs

- Above we have studied random matrices R_{N} constructed above a deterministic skeleton $G_{N} \leadsto$ deterministic s.c.c. \widetilde{G}_{M} with $M \asymp N^{\nu} \leadsto$ upper bound for the FWL.
- To get a more precise FWL, we would need to better understand the spectral distribution of the random matrices \widetilde{R}_{M}.
How about considering the graph \widetilde{G}_{M} to be random as well?

More general directed graphs

- Above we have studied random matrices R_{N} constructed above a deterministic skeleton $G_{N} \leadsto$ deterministic s.c.c. \widetilde{G}_{M} with $M \asymp N^{\nu} \leadsto$ upper bound for the FWL.
- To get a more precise FWL, we would need to better understand the spectral distribution of the random matrices \widetilde{R}_{M}.
How about considering the graph \widetilde{G}_{M} to be random as well?
The reduced graphs \widetilde{G}_{M} we encoutered had the following property:

- For a given set of degrees $\mathbf{d}=\left(d_{j}^{ \pm}\right)_{j=1, \ldots, M}$ (satisfying $\sum_{j} d_{j}^{+}=\sum_{j} d_{j}^{-}$), one can consider the family $\mathcal{G}_{\mathbf{d}}$ of all directed graphs on M vertices with these degrees: a class of random directed graphs $\widetilde{G} \in \mathcal{G}_{\mathbf{d}}$.
- equip each edge with a random phase \sim obtain an ensemble of random matrices $\widetilde{R} \in \mathcal{R}_{\mathrm{d}}$.

Spectrum of random sparse directed graphs

What do we know about spectral behaviour of the random graphs in $\mathcal{G}_{\mathbf{d}}$ and the matrices in \mathcal{R}_{d} when $M \rightarrow \infty$

- [Cooper-Frieze'04]: If all vertices have $d_{j}^{+} \geq 2$, then w.h.p. as $M \rightarrow \infty$, $G \in \mathcal{G}_{\boldsymbol{d}}$ is strongly connected. If $d_{j}^{ \pm}=1$, then \widetilde{G} contains a s.c.c. of size $M(1-o(1))$.
- The spectrum of the adjacency matrices $\left\{A_{\widetilde{G}}, \widetilde{G} \in \mathcal{G}_{\mathbf{d}}\right\}$ has been studied. [Bordenave-Chafai' 12] conjecture that for the ensemble of random d-regular digraphs ($d_{j}^{+}=d_{j}^{-}=d$), the empirical measure of $A_{\widetilde{G}}$ converges to $\frac{1}{\pi} \frac{d^{2}(d-1)}{\left(d^{2}-|z|^{2}\right)^{2}} \mathbb{1}_{|z|<\sqrt{d}} d x d y$ (complex Kesten-McKay measure).

$d=2$: the induced counting function seems compatible with our numerics for \widetilde{R}_{M} (De Bruijn graphs), including spectral edge at $\sqrt{2}$.

Would adding phases to the De Brujin graph make the spectrum of \widetilde{R}_{M} more "typical"?

Conclusion \& Perspectives

- The class of random matrices R_{N} has a large kernel because the corresponding directed graph G_{N} has small strongly connected components. \Longrightarrow upper bound for the FWL obtained from the topology of G_{N}.
- The spectrum of the s.c.c. \widetilde{R}_{M} did not have a macroscopic kernel, nor an accumulation of spectrum near the origin. Proved only in the case of the De Buijn graph. \Longrightarrow lower bound for the FWL. Asymptotic spectral density?
- Larger scope: spectrum of random matrices \widetilde{R} living on a random graph $\widetilde{G} \in \mathcal{G}_{\boldsymbol{d}}$ with specified (bounded) degrees. The random phases should make the analysis easier than for the adjacency matrices. [COSTE'17] studied the statistics of the second largest eigenvalue of $A_{\widetilde{G}}$ in ensembles $\widetilde{G} \in \mathcal{G}_{\mathbf{d}}$; this could give the spectral radius for \widetilde{R}.
- Our matrices A_{N} were discretizing $q \mapsto 3 q$ on $[0,1 / 3) \cup[2 / 3,1)$. One could discretize any piecewise smooth open expanding maps on $[0,1]$, and study the corresponding random matrices.

