Axioms for centrality: rank monotonicity for PageRank

Paolo Boldi
Università degli Studi di Milano
Why centrality
Why centrality
 ✤ Orienteering in the centrality jungle
Why centrality
 - Orienteering in the centrality jungle
 - Some important centrality indices
TOC

❖ Why centrality
 ❖ Orienteering in the centrality jungle
 ❖ Some important centrality indices
❖ Why axioms
Why centrality
- Orienteering in the centrality jungle
- Some important centrality indices

Why axioms
- Orienteering in the axiom jungle
Why centrality
 ✔ Orienteering in the centrality jungle
 ✔ Some important centrality indices

Why axioms
 ✔ Orienteering in the axiom jungle
 ✔ Some important axioms
Why centrality
- Orienteering in the centrality jungle
- Some important centrality indices

Why axioms
- Orienteering in the axiom jungle
- Some important axioms

Focus on rank monotonicity for PageRank
Why centrality
- Orienteering in the centrality jungle
- Some important centrality indices

Why axioms
- Orienteering in the axiom jungle
- Some important axioms

Focus on rank monotonicity for PageRank

Conclusions
IR System
IR System
IR System

Document Repertoire
- pages retrieved by Google
- items on sale on Amazon
- members of facebook
- tweets posted by your friends
- photographs on Instagram
IR System
IR System

D
IR System

Set of Queries (query language)
- SE query
- product recommendation
- new-friend suggestion
- tweets to be shown
IR System

Result
- a selected subset $S \subseteq D$
- with a score (typically: a non-negative real number) assigned to every element of S
Result
- a selected subset $S \subseteq D$
- with a score (typically: a non-negative real number) assigned to every element of S

IMPORTANT
Often D is endowed with a graph structure
IR System: 1st simplification

Result
- a selected subset $S \subseteq D$
- with a score (typically: a non-negative real number) assigned to every element of S
IR System: 1st simplification

Result
- a selected subset $S \subseteq D$
- with a score (typically: a non-negative real number) assigned to every element of S
IR System: 1st simplification

Result - a score assigned to every element of D

No selection, only scores
IR System: 1st simplification

The system can be formally represented as a function:
\[c: Q \times D \rightarrow \mathbb{R} \]

Result - a score assigned to every element of \(D \)

No selection, only scores
The system can be formally represented as a function:
\[c: Q \times D \rightarrow \mathbb{R} \]

Result
- a score assigned to every element of \(D \)
IR System: 2nd simplification

The system can be formally represented as a function:
\[c: Q \times D \rightarrow \mathbb{R} \]

Scores do not depend on the query.

Result
- a score assigned to every element of \(D \)
The system can be formally represented as a function:

\[c : Q \times D \rightarrow \mathbb{R} \]

Scores do not depend on the query.

Result:
- a score assigned to every element of \(D \)
IR System: 2nd simplification

The system can be formally represented as a function:
\[c: D \rightarrow \mathbb{R} \]

Result
- a score assigned to every element of \(D \)

Scores do not depend on the query
IR System: 3rd simplification

The system can be formally represented as a function:
\[c: D \rightarrow \mathbb{R} \]
IR System: 3rd simplification

Scores depend only on the linkage structure on D

The system can be formally represented as a function:

$c: D \rightarrow \mathbb{R}$

Result - a score assigned to every element of D
IR System: 3rd simplification

Scores depend only on the linkage structure on D

Result - a score assigned to every element of D
Centrality

- The system, given a graph G assigns a score to every node of G:

$$c_G: V_G \rightarrow \mathbb{R}$$
Centrality

- The system, given a graph G assigns a score to every node of G:

 \[c_G : V_G \rightarrow \mathbb{R} \]

- The nodes of G are precisely our documents ($V_G = D$)
Centrality

- The system, given a graph G assigns a score to every node of G:

$$c_G: V_G \rightarrow \mathbb{R}$$

- The nodes of G are precisely our documents ($V_G = D$)
- This is what people refers to as a centrality index (or measure, or score, or just “centrality”)
Centrality in social sciences
Centrality in social sciences

- First works by Bavelas at MIT (1946)
First works by Bavelas at MIT (1946)

This sparked countless works (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp 1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971; Czapiel 1974…)}
Centrality in social sciences

- First works by Bavelas at MIT (1946)
- This sparked countless works (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp 1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971; Czapiel 1974…)
- Brought to CS through IR
Centrality in social sciences

- First works by Bavelas at MIT (1946)
- This sparked countless works (Bavelas 1951; Katz 1953; Shaw 1954; Beauchamp 1965; Mackenzie 1966; Burgess 1969; Anthonisse 1971; Czapiel 1974…)
- Brought to CS through IR
- Key role in modern IR (=search engines)
Orienteering in the jungle of centrality indices
Orienteering in the jungle of centrality indices

- Path-based indices, based on the number of paths or shortest paths (geodesics) passing through a vertex [betweenness, Katz, ...]
Orienteering in the jungle of centrality indices

- *Path-based indices*, based on the number of *paths* or shortest paths (geodesics) passing through a vertex [betweenness, Katz, …]

- *Spectral indices*, based on some linear-algebra construction [PageRank, Seeley, …]
Orienteering in the jungle of centrality indices

- *Path-based indices*, based on the number of paths or shortest paths (geodesics) passing through a vertex [betweenness, Katz, …]

- *Spectral indices*, based on some linear-algebra construction [PageRank, Seeley, …]

- *Geometric indices*, based on distances from a vertex to other vertices [closeness, harmonic, …]
Orienteering in the jungle of centrality indices

- **Path-based indices**, based on the number of paths or shortest paths (geodesics) passing through a vertex [betweenness, Katz, …]

- **Spectral indices**, based on some linear-algebra construction [PageRank, Seeley, …]

- **Geometric indices**, based on distances from a vertex to other vertices [closeness, harmonic, …]

 (Actually, the first two families are largely the same, even if that wasn’t fully understood for a long time)
Path-based centralities
Path-based centralities

- Centrality depends on the paths entering (or passing through) the node
Path-based centralities

- Centrality depends on the paths entering (or passing through) the node
- Katz’s index is a paradigmatic example
Path-based centralities

- Centrality depends on the paths entering (or passing through) the node
- Katz’s index is a paradigmatic example
- Among them: betweenness (Anthonisse 1971), über-popular among social scientists
The path tribe: betweenness and Katz
(Anthonisse 1971; Katz 1953)
The path tribe: betweenness and Katz
(Anthonisse 1971; Katz 1953)

- Betweenness centrality:

\[c_{\text{betw}}(x) = \sum_{y,z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{yz}} \]
The path tribe: betweenness and Katz
(Anthonisse 1971; Katz 1953)

Betweenness centrality:

\[
c_{\text{betw}}(x) = \sum_{y,z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{yz}}
\]

Fraction of shortest paths from y to z passing through x
Betweenness centrality:

\[c_{\text{betw}}(x) = \sum_{y,z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{yz}} \]
The path tribe: betweenness and Katz
(Anthonisse 1971; Katz 1953)

- **Betweenness** centrality:
 \[c_{betw}(x) = \sum_{y, z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{yz}} \]

- **Katz** centrality:
The path tribe: betweenness and Katz
(Anthonisse 1971; Katz 1953)

- **Betweenness centrality:**
 \[
 c_{\text{betw}}(x) = \sum_{y,z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{y z}}
 \]

- **Katz centrality:**
 \[
 c_{Katz}(x) = \sum_{t=0}^{\infty} \alpha^t \Pi_x(t) = 1 \sum_{t=0}^{\infty} \alpha^t G^t
 \]
The path tribe: betweenness and Katz
(Anthonisse 1971; Katz 1953)

- **Betweenness centrality:**

 \[c_{\text{betw}}(x) = \sum_{y,z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{yz}} \]

- **Katz centrality:**

 \[c_{\text{Katz}}(x) = \sum_{t=0}^{\infty} \alpha^t \Pi_x(t) = 1 \sum_{t=0}^{\infty} \alpha^t G^t \]
The path tribe: betweenness and Katz
(Anthonisse 1971; Katz 1953)

- **Betweenness centrality:**
 \[
 c_{\text{betw}}(x) = \sum_{y,z \neq x} \frac{\sigma_{yz}(x)}{\sigma_{yz}}
 \]

- **Katz centrality:**
 \[
 c_{\text{Katz}}(x) = \sum_{t=0}^{\infty} \alpha^t \Pi_x(t) = 1 \sum_{t=0}^{\infty} \alpha^t G^t
 \]
Spectral centralities (1)
Spectral centralities (1)

- **Eigenvector centrality**: consider the left or right dominant eigenvector of the adjacency matrix
Spectral centralities (1)

- **Eigenvector centrality**: consider the left or right dominant eigenvector of the adjacency matrix
 - First works by Edmund Landau in 1895 on matrices coming from *chess tournaments*
Spectral centralities (1)

- **Eigenvector centrality**: consider the left or right dominant eigenvector of the adjacency matrix
 - First works by Edmund Landau in 1895 on matrices coming from chess tournaments
 - Motivation: take a matrix M that in entry M_{xy} has 1 if x won playing with y, 0 if he/she lost, $1/2$ for a draw
Spectral centralities (1)

- **Eigenvector centrality**: consider the left or right dominant eigenvector of the adjacency matrix
 - First works by Edmund Landau in 1895 on matrices coming from *chess tournaments*
 - Motivation: take a matrix M that in entry M_{xy} has 1 if x won playing with y, 0 if he/she lost, 1/2 for a draw
 - $M1^T$ (the row sums) are a nice score; M^21^T even better, but it oscillates: so take score s such that $Ms^T = \lambda s^T$
Spectral centralities (1)

- **Eigenvector centrality**: consider the left or right dominant eigenvector of the adjacency matrix

- First works by Edmund Landau in 1895 on matrices coming from chess tournaments

- Motivation: take a matrix M that in entry M_{xy} has 1 if x won playing with y, 0 if he/she lost, 1/2 for a draw

- $M1^T$ (the row sums) are a nice score; M^21^T even better, but it oscillates: so take score s such that $Ms^T = \lambda s^T$

- Berge (1958) extends to general social graphs and develops the theory
Spectral centralities (1)

- **Eigenvector centrality**: consider the left or right dominant eigenvector of the adjacency matrix
 - First works by Edmund Landau in 1895 on matrices coming from chess tournaments
 - Motivation: take a matrix M that in entry M_{xy} has 1 if x won playing with y, 0 if he/she lost, 1/2 for a draw
 - $M1^T$ (the row sums) are a nice score; M^21^T even better, but it oscillates: so take score s such that $Ms^T = \lambda s^T$
 - Berge (1958) extends to general social graphs and develops the theory
 - A similar idea was proposed by Seeley to evaluate children popularity
The spectral tribe: Seeley index
(Seeley 1949)
The spectral tribe: Seeley index
(Seeley 1949)

- Basic idea: in a group of children, a child is as popular as the sum of the popularities of the children who like him, but popularities are divided evenly among friends:
Basic idea: in a group of children, a child is as popular as the sum of the popularities of the children who like him, but popularities are divided evenly among friends:

\[
c_{\text{Seeley}}(x) = \sum_{y \rightarrow x} \frac{c_{\text{Seeley}}(y)}{d^+(y)}
\]
The spectral tribe: Seeley index
(Seeley 1949)

- Basic idea: in a group of children, a child is as popular as the sum of the popularities of the children who like him, but popularities are divided evenly among friends:

\[c_{Seeley}(x) = \sum_{y \rightarrow x} \frac{c_{Seeley}(y)}{d^+(y)} \]

- In general it is a left dominant eigenvector of \(G_r \)
Spectral centralities (2)
In 1998, Page, Brin, Motwani and Winograd propose a spectral ranking for the web: PageRank
In 1998, Page, Brin, Motwani and Winograd propose a spectral ranking for the web: PageRank

After some changes in the definition, it stabilizes to a Markov chain $\alpha G_r + (1 - \alpha) 1^T v$
Spectral centralities (2)

- In 1998, Page, Brin, Motwani and Winograd propose a spectral ranking for the web: PageRank

- After some changes in the definition, it stabilizes to a Markov chain $\alpha G_r + (1 - \alpha)1^T \nu$

- G_r is Seeley’s matrix, α is the damping factor and ν the preference vector
In 1998, Page, Brin, Motwani and Winograd propose a spectral ranking for the web: \textbf{PageRank}

After some changes in the definition, it stabilizes to a Markov chain $\alpha G_r + (1 - \alpha)1^T \nu$

G_r is Seeley’s matrix, α is the\textit{damping factor} and ν the\textit{preference vector}

This is just Katz’s index with ℓ_1-normalization, i.e.,

$$(1 - \alpha)\nu \sum_{t \geq 0} \alpha^t G_r^t = (1 - \alpha)\nu(1 - \alpha G_r)^{-1}$$
The spectral tribe: PageRank
(Brin, Page, Motwani, Winograd 1999)
The recursive version of the definition (for uniform preference) is

\[c_{pr}(x) = \alpha \sum_{y \rightarrow x} \frac{c_{pr}(x)}{d^+(x)} + (1 - \alpha) v_x \]
The recursive version of the definition (for uniform preference) is

\[c_{\text{pr}}(x) = \alpha \sum_{y \rightarrow x} \frac{c_{\text{pr}}(x)}{d^+(x)} + (1 - \alpha)v_x \]
The spectral tribe: PageRank
(Brin, Page, Motwani, Winograd 1999)

❖ The recursive version of the definition (for uniform preference) is

\[c_{pr}(x) = \alpha \sum_{y \rightarrow x} \frac{c_{pr}(x)}{d^+(x)} + (1 - \alpha)v_x \]

❖ ... or the dominant eigenvector of the Google matrix

\[\alpha G_r + (1 - \alpha)1^Tv \]
Geometric centralities and neighbourhood functions
Define the *distance-count function*

\[D_G(x, t) = \# \{ z \mid d_G(z, x) = t \} \]
Define the distance-count function

\[D_G(x, t) = \#\{ z \mid d_G(z, x) = t \} \]

\[D_G(x,-) \text{ is the distance-count vector of } x \]
Geometric centralities and neighbourhood functions

- Define the *distance-count function*

 \[D_G(x, t) = \#\{ z \mid d_G(z, x) = t \} \]

- \(D_G(x,-) \) is the *distance-count vector of x*

- BTW: in 1-to-1 correspondence with the better known “neighbourhood function”
Define the distance-count function

\[D_G(x, t) = \#\{z \mid d_G(z, x) = t\} \]

\(D_G(x, -) \) is the distance-count vector of \(x \)

BTW: in 1-to-1 correspondence with the better known “neighbourhood function”

A geometric centrality is a function of the distance-count vector (i.e., two nodes with the same distance-count vector have the same centrality)
The geometric tribe: closeness and harmonic
(Bavelas 1946; B., Vigna 2013)
The geometric tribe: closeness and harmonic
(Bavelas 1946; B., Vigna 2013)

❖ Closeness centrality:

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]
Closeness centrality:

\[c_{clos}(x) = \frac{1}{\sum_y d(y, x)} \]
The geometric tribe: closeness and harmonic
(Bavelas 1946; B., Vigna 2013)

- Closeness centrality:

\[c_{clos}(x) = \frac{1}{\sum_y d(y, x)} \]
The geometric tribe: closeness and harmonic
(Bavelas 1946; B., Vigna 2013)

- **Closeness centrality:**
 \[
 c_{clos}(x) = \frac{1}{\sum_y d(y, x)}
 \]
 - The summation is over all \(y \) such that \(d(y, x) < \infty \)
The geometric tribe: closeness and harmonic (Bavelas 1946; B., Vigna 2013)

- **Closeness centrality:**

 \[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]

- The summation is over all \(y \) such that \(d(y, x) < \infty \)

- **Harmonic centrality:**

 \[c_{\text{harm}}(x) = \sum_{y \neq x} \frac{1}{d(y, x)} \]
The geometric tribe: closeness and harmonic
(Bavelas 1946; B., Vigna 2013)

- **Closeness centrality:**
 \[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]
 - The summation is over all \(y \) such that \(d(y, x) < \infty \)

- **Harmonic centrality:**
 \[c_{\text{harm}}(x) = \sum_{y \neq x} \frac{1}{d(y, x)} \]

- Inspired by (Marchiori, Latora 2000), but may be dated back to (Harris 1954)
Making sense of centrality
Making sense of centrality

- Centrality indices can be studied
Making sense of centrality

- Centrality indices can be studied
 - individually (each single centrality index is a world in its own right)
Centrality indices can be studied

individually (each single centrality index is a world in its own right)

comparatively
Making sense of centrality

- Centrality indices can be studied
 - *individually* (each single centrality index is a world in its own right)
 - *comparatively*
- Both kinds of studies can be based on
Making sense of centrality

- Centrality indices can be studied
 - *individually* (each single centrality index is a world in its own right)
 - *comparatively*

- Both kinds of studies can be based on
 - external source of *ground truth*
Making sense of centrality

- Centrality indices can be studied
 - individually (each single centrality index is a world in its own right)
 - comparatively

- Both kinds of studies can be based on
 - external source of ground truth
 - axioms (abstract desirable/undesirable properties)
Axioms for Centrality
Axioms for Centrality

- Various attempts, with different flavours: (Sabidussi 1966), (Nieminien 1973), (Kitti 2012), (Brandes et al. 2012), (B. & Vigna 2014)
Axioms for Centrality

- Various attempts, with different flavours: (Sabidussi 1966), (Nieminen 1973), (Kitti 2012), (Brandes et al. 2012), (B. & Vigna 2014)

- Sometimes aimed at specific indices (e.g. PageRank): (Chien et al. 2004), (Altman and Tennenholtz 2005)
Orienteering in the jungle of axioms
Orienteering in the jungle of axioms

- Invariance properties
Orienteering in the jungle of axioms

- Invariance properties
- Score-dominance properties
Orienteering in the jungle of axioms

- Invariance properties
- Score-dominance properties
- Rank-dominance properties
Orienteering in the jungle of axioms

- Invariance properties
- Score-dominance properties
- Rank-dominance properties
- Many other axioms that still need a classification
Invariance properties
Invariance properties
Invariance properties

- Two graphs G and G'...
Invariance properties

- Two graphs G and G'…
- ...and two nodes $x \in G$ and $x' \in G'$…
Invariance properties

- Two graphs G and G'...
- ...and two nodes $x \in G$ and $x' \in G'$...
- ...satisfying some constraints
Invariance properties

- Two graphs G and G'…
- ...and two nodes $x \in G$ and $x' \in G'$…
- ...satisfying some constraints

$$c_G(x) = c_{G'}(x')$$
Example: Invariance by isomorphism
Example: Invariance by isomorphism

- If G and G' are isomorphic (via isomorphism $f: G \rightarrow G'$)
Example: Invariance by isomorphism

- If G and G' are isomorphic (via isomorphism $f: G \rightarrow G'$)
- and $f(x) = x'$
Example: Invariance by isomorphism

- If G and G' are isomorphic (via isomorphism $f: G \rightarrow G'$)
- and $f(x) = x'$

$$c_G(x) = c_{G'}(x')$$
Example: Invariance by isomorphism

- If G and G' are isomorphic (via isomorphism $f: G \rightarrow G'$)
- and $f(x) = x'$

$$c_G(x) = c_{G'}(x')$$

This is so fundamental that it is often given for granted as part of the notion of *centrality*!
Example: Invariance by neighbours
Example: Invariance by neighbours

- Let G be a graph and x, x' be two nodes such that
Example: Invariance by neighbours

- Let G be a graph and x, x' be two nodes such that

- $N_G^-(x) = N_G^-(x')$ and $N_G^+(x) = N_G^+(x')$
Example: Invariance by neighbours

Let G be a graph and x, x' be two nodes such that

$N_G^-(x) = N_G^-(x')$ and $N_G^+(x) = N_G^+(x')$

$c_G(x) = c_G(x')$
Example: Invariance by neighbours

- Let G be a graph and x, x' be two nodes such that
- $N_G^-(x)=N_G^-(x')$ and $N_G^+(x)=N_G^+(x')$

$$c_G(x) = c_G(x')$$

“Two nodes with the same (in- and out-)neighbours have the same centrality”
Invariance by neighbours...
Invariance by neighbours...

- It is easy to verify that all geometric centralities are invariant by neighbours.
Invariance by neighbours...

- It is easy to verify that all geometric centralities are invariant by neighbours.
- Same for spectral centralities.
Example: Invariance by in-neighbours
Example: Invariance by in-neighbours

- Let G be a graph and x, x' be two nodes such that
Example: Invariance by in-neighbours

- Let G be a graph and x, x' be two nodes such that
- $N_G^-(x) = N_G^-(x')$
Example: Invariance by in-neighbours

- Let G be a graph and x, x' be two nodes such that

- $N_G^-(x) = N_G^-(x')$

\[c_G(x) = c_G(x') \]
Example: Invariance by in-neighbours

- Let G be a graph and x, x' be two nodes such that
- $N_G^-(x) = N_G^-(x')$

$$c_G(x) = c_G(x')$$

“Two nodes with the same in-neighbours have the same centrality”
Invariance by in-neighbours...

- A superficial observer *may* believe that geometric centralities satisfy invariance by in-neighbours
A superficial observer *may* believe that geometric centralities satisfy invariance by in-neighbours

\[N_G^-(x) = N_G^-(x') \]
Invariance by in-neighbours...

- A superficial observer *may* believe that geometric centralities satisfy invariance by in-neighbours.

A shortest path from z to x
Invariance by in-neighbours...

- A superficial observer *may* believe that geometric centralities satisfy invariance by in-neighbours
A superficial observer *may* believe that geometric centralities satisfy invariance by in-neighbours.

\[\forall z \notin \{x, x', z\} \quad d_G(z, x) = d_G(z, x') \]
A superficial observer *may* believe that geometric centralities satisfy invariance by in-neighbours...
A superficial observer *may* believe that geometric centralities satisfy invariance by in-neighbours

The difference (+1 in one position, -1 in another position) depends on the values of $d(x,x')$ and $d(x',x)$

$D_G(x, -)$ and $D_G(x', -)$ are almost the same...
Invariance by in-neighbours...
Invariance by in-neighbours...

- So, in general, geometric centralities are not invariant by in-neighbours
Invariance by in-neighbours...

- So, in general, geometric centralities are not invariant by in-neighbours.
- They are on symmetric (i.e. undirected) graphs, though.
So, in general, geometric centralities are not invariant by in-neighbours.

They are on symmetric (i.e. undirected) graphs, though.

But spectral centralities (e.g. PageRank) are invariant by in-neighbours.
Score-dominance properties
Score-dominance properties
Score-dominance properties

- Two graphs G and G'...
Score-dominance properties

- Two graphs G and G'...
- ...and two nodes $x \in G$ and $x' \in G'$...
Score-dominance properties

- Two graphs G and G'...
- ...and two nodes $x \in G$ and $x' \in G'$...
- ...satisfying some constraints
Score-dominance properties

- Two graphs G and G'…
- …and two nodes $x \in G$ and $x' \in G'$…
- …satisfying some constraints

$$c_G(x) \geq c_{G'}(x')$$
Score-dominance properties

- Two graphs G and G'...
- ...and two nodes $x \in G$ and $x' \in G'$...
- ...satisfying some constraints

\[c_G(x) \geq c_{G'}(x') \]

- Sometimes $>$ is required (strict dominance)
Example: Dominance by in-neighbours (Schoch and Brandes, 2016)
Example: Dominance by in-neighbours
(Schoch and Brandes, 2016)

- Let G be a graph and x, x' be two nodes such that
Example: Dominance by in-neighbours (Schoch and Brandes, 2016)

- Let G be a graph and x, x' be two nodes such that
- $\mathcal{N}^-_G(x) \subseteq \mathcal{N}^-_G(x')$
Example: Dominance by in-neighbours (Schoch and Brandes, 2016)

- Let G be a graph and x, x' be two nodes such that
- $N_G^{-}(x) \subseteq N_G^{-}(x')$

$$c_G(x) \leq c_G(x')$$
Example: Dominance by in-neighbours (Schoch and Brandes, 2016)

- Let G be a graph and x, x' be two nodes such that
- $N^-_G(x) \subseteq N^-_G(x')$

\[c_G(x) \leq c_G(x') \]

- **Observe:** if a measure satisfies this property, it is also invariant by in-neighbours
Example: Dominance by in-neighbours
(Schoch and Brandes, 2016)

- Let G be a graph and x, x' be two nodes such that

 $$N_G^-(x) \subseteq N_G^-(x')$$

 $$c_G(x) \leq c_G(x')$$

- **Observe:** if a measure satisfies this property, it is also invariant by in-neighbours

 $$\Rightarrow$$ geometric centralities do not satisfy “dominance by in-neighbours”
Example: Score-dominance by arc addition
(a.k.a. score monotonicity)
Example: Score-dominance by arc addition
(a.k.a. score monotonicity)

- If G is a graph not containing the arc $x \rightarrow y$
Example: Score-dominance by arc addition
(a.k.a. score monotonicity)

- If G is a graph not containing the arc $x \rightarrow y$
- And $G' = G \cup \{x \rightarrow y\}$
Example: Score-dominance by arc addition
(a.k.a. *score monotonicity*)

- If G is a graph not containing the arc $x \rightarrow y$
- And $G' = G \cup \{x \rightarrow y\}$
- Then

\[
c_{G'}(y) > c_G(y)
\]
Example: Score-dominance by arc addition
(a.k.a. score monotonicity)

- If G is a graph not containing the arc $x \to y$
- And $G' = G \cup \{x \to y\}$
- Then

$$c_{G'}(y) > c_G(y)$$

“Adding one arc towards y (strictly) increases its score”
Example: Score-dominance by arc addition
(a.k.a. score monotonicity)

❖ If G is a graph not containing the arc $x \rightarrow y$
❖ And $G' = G \cup \{x \rightarrow y\}$
❖ Then

$$c_{G'}(y) > c_G(y)$$

“Adding one arc towards y (strictly) increases its score”

❖ The weak version (with \geq) also makes sense
Score monotonicity
(“Axioms for Centrality”, B. & Vigna 2014)

<table>
<thead>
<tr>
<th>Centrality Metric</th>
<th>General</th>
<th>Strongly connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeley</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PageRank</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>betweenness</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Katz</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>closeness</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>harmonic</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
Score monotonicity
(“Axioms for Centrality”, B. & Vigna 2014)

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>Strongly connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeley</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PageRank</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>betweenness</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Katz</td>
<td>yes</td>
<td>yes</td>
</tr>
<tr>
<td>closeness</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>harmonic</td>
<td>yes</td>
<td>yes</td>
</tr>
</tbody>
</table>
PageRank satisfies score monotonicity
PageRank satisfies score monotonicity

- Proved by (Chien, Dwork, Kumar, Simon and Sivakumar 2003) for the case when all nodes have nonzero PageRank
PageRank satisfies score monotonicity

- Proved by (Chien, Dwork, Kumar, Simon and Sivakumar 2003) for the case when all nodes have nonzero PageRank
- Generalized in (B. and Vigna, 2014) to the case $r_x > 0$
Closeness does not satisfy score monotonicity
Closeness does not satisfy score monotonicity

\[c_G(y) = \frac{1}{\sum_i d_G(t, y)} = \frac{1}{1} = 1 \]
Closeness does not satisfy score monotonicity

\[c_G(y) = \frac{1}{\sum_i d_G(t, y)} = \frac{1}{1} = 1 \]
Closeness does not satisfy score monotonicity

\[c_G(y) = \frac{1}{\sum_t d_G(t, y)} = \frac{1}{1} = 1 \]

\[c_G'(y) = \frac{1}{\sum_t d_{G'}(t, y)} = \frac{1}{1 + 1} = \frac{1}{2} \]
Closeness satisfies score monotonicity in the strongly connected case
Closeness satisfies score monotonicity in the strongly connected case

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]
Closeness satisfies score monotonicity in the strongly connected case

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]

- On strongly connected graphs
Closeness satisfies score monotonicity in the strongly connected case

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]

- On strongly connected graphs
 - the summation includes all nodes
Closeness satisfies score monotonicity in the strongly connected case

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]

- On strongly connected graphs
 - the summation includes all nodes
 - the distances do not increase after adding the new arc
Closeness satisfies score monotonicity in the strongly connected case

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]

- On strongly connected graphs
 - the summation includes all nodes
 - the distances do not increase after adding the new arc
 - at least one distance strictly decreases
Closeness satisfies score monotonicity in the strongly connected case

\[c_{\text{clos}}(x) = \frac{1}{\sum_y d(y, x)} \]

- On strongly connected graphs
 - the summation includes all nodes
 - the distances do not increase after adding the new arc
 - at least one distance strictly decreases
- So closeness centrality is score monotone on strongly connected graphs!
Rank-dominance properties
Rank-dominance properties
Rank-dominance properties

- Two graphs \(G \) and \(G' \)…
Rank-dominance properties

- Two graphs G and G'…
- …and two nodes $x \in G$ and $x' \in G'$…
Rank-dominance properties

- Two graphs G and G'...
- ...and two nodes $x \in G$ and $x' \in G'$...
- ...satisfying some constraints
Two graphs G and G'

...and two nodes $x \in G$ and $x' \in G'$

...satisfying some constraints

The rank of x' in G' is "not less" than the rank of x in G
Rank-dominance properties

- Two graphs G and G'...
- ...and two nodes $x \in G$ and $x' \in G'$...
- ...satisfying some constraints
- The rank of x' in G' is "not less" than the rank of x in G

Typically stated on two graphs with the same set of nodes, and for a single node.
Rank-dominance properties revised
(weak version)
Rank-dominance properties revised
(weak version)

- Two graphs G and G' with the same node set V and node $x \in V$
Two graphs G and G' with the same node set V and node $x \in V$

1. $\forall z. c_G(x) > c_G(z) \implies c_{G'}(x) > c_{G'}(z)$
Rank-dominance properties revised
(weak version)

- Two graphs G and G' with the same node set V and node $x \in V$

 1. $\forall z. c_G(x) > c_G(z) \implies c_{G'}(x) > c_{G'}(z)$

 2. $\forall y. c_G(x) = c_G(y) \implies c_{G'}(x) \geq c_{G'}(y)$
Rank-dominance properties revised
(strict version)
Rank-dominance properties revised
(strict version)

- Two graphs G and G' with the same node set V and node $x \in V$

 $$\forall z \cdot c_G(x) \geq c_G(z) \implies c_{G'}(x) > c_{G'}(z)$$
Example: Rank-dominance by arc addition
(a.k.a. rank monotonicity)
Example: Rank-dominance by arc addition
(a.k.a. *rank monotonicity*)

- If G is a graph not containing the arc $x \rightarrow y$
Example: Rank-dominance by arc addition
(a.k.a. *rank monotonicity*)

- If G is a graph not containing the arc $x \rightarrow y$
- And $G' = G \cup \{x \rightarrow y\}$
Example: Rank-dominance by arc addition
(a.k.a. rank monotonicity)

- If G is a graph not containing the arc $x \to y$
- And $G' = G \cup \{x \to y\}$
- Then, for all z

 $\forall z. c_G(y) > c_G(z) \implies c_{G'}(y) > c_{G'}(z)$

 $\forall z. c_G(y) = c_G(z) \implies c_{G'}(y) \geq c_{G'}(z)$
Example: Rank-dominance by arc addition
(a.k.a. rank monotonicity)

❖ If \(G \) is a graph not containing the arc \(x \rightarrow y \)
❖ And \(G' = G \cup \{x \rightarrow y\} \)
❖ Then, for all \(z \)
 \[\forall z . c_G(y) > c_G(z) \implies c_{G'}(y) > c_{G'}(z) \]
 \[\forall z . c_G(y) = c_G(z) \implies c_{G'}(y) \geq c_{G'}(z) \]
❖ For the strict version, the last \(\geq \) should become a \(> \)
Rank monotonicity
(“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>Strongly connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeley</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PageRank†</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>betweenness</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Katz†</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>closeness</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>harmonic</td>
<td>yes*</td>
<td>yes*</td>
</tr>
</tbody>
</table>

† provided that no node has null preference
Rank monotonicity

(“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

<table>
<thead>
<tr>
<th></th>
<th>General</th>
<th>Strongly connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeley</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PageRank‡</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>betweenness</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Katz‡</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>closeness</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>harmonic</td>
<td>yes*</td>
<td>yes*</td>
</tr>
</tbody>
</table>

‡ provided that no node has null preference.
Rank monotonicity
(“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

<table>
<thead>
<tr>
<th>Method</th>
<th>General</th>
<th>Strongly connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeley</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PageRank†</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>betweenness</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Katz†</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>closeness</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>harmonic</td>
<td>yes*</td>
<td>yes*</td>
</tr>
</tbody>
</table>

† provided that no node has null preference
Rank monotonicity

(“Rank monotonicity in centrality measures.”, B. & Luongo & Vigna 2017)

<table>
<thead>
<tr>
<th>Method</th>
<th>General</th>
<th>Strongly connected</th>
</tr>
</thead>
<tbody>
<tr>
<td>Seeley</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>PageRank†</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>betweenness</td>
<td>no</td>
<td>no</td>
</tr>
<tr>
<td>Katz†</td>
<td>yes*</td>
<td>yes*</td>
</tr>
<tr>
<td>closeness</td>
<td>no</td>
<td>yes</td>
</tr>
<tr>
<td>harmonic</td>
<td>yes*</td>
<td>yes*</td>
</tr>
</tbody>
</table>

† provided that no node has null preference
PageRank and rank monotonicity
Loose (non-strict) rank monotonicity
Loose (non-strict) rank monotonicity

- For PageRank, with $G' = G \cup \{ x \rightarrow y \}$

\[
\forall y. \ c_G(y) > c_G(z) \quad \implies \quad c_{G'}(y) > c_{G'}(z)
\]

\[
\forall y. \ c_G(y) = c_G(z) \quad \implies \quad c_{G'}(y) \geq c_{G'}(z)
\]

holds (Chien, Dwork, Kumar, Simon & Sivakumar 2004) for everywhere nonzero score
Loose (non-strict) rank monotonicity

- For PageRank, with $G' = G \cup \{x \rightarrow y\}$

\[\forall y. \ c_G(y) > c_G(z) \implies c_{G'}(y) > c_{G'}(z)\]
\[\forall y. \ c_G(y) = c_G(z) \implies c_{G'}(y) \geq c_{G'}(z)\]

holds (Chien, Dwork, Kumar, Simon & Sivakumar 2004) for everywhere nonzero score

- The strict version was proved in (B., Luongo, Vigna 2017)

\[\forall y. \ c_G(y) \geq c_G(z) \implies c_{G'}(y) > c_{G'}(z)\]

for everywhere nonzero preference
Loose vs. strict
Loose vs. strict

- The proof in (Chien, Dwork, Kumar, Simon & Sivakumar 2004) exploits the fact that the Google matrix is a regular Markov chain
The proof in (Chien, Dwork, Kumar, Simon & Sivakumar 2004) exploits the fact that the Google matrix is a regular Markov chain.

(B., Luongo, Vigna 2017) is based on some properties of M-matrices...
Loose vs. strict

- The proof in (Chien, Dwork, Kumar, Simon & Sivakumar 2004) exploits the fact that the Google matrix is a regular Markov chain
- (B., Luongo, Vigna 2017) is based on some properties of M-matrices...
- ...the results have wider applicability (e.g., Katz)
Damped spectral ranking
Damped spectral ranking

- Let M be a nonnegative matrix, $0 < \alpha < 1/\rho(M)$, \mathbf{v} a strictly positive vector
Damped spectral ranking

Let M be a nonnegative matrix, $0 < \alpha < 1/\rho(M)$, v a strictly positive vector.

Then, the centrality vector r defined by

$$r = v(I - \alpha M)^{-1}$$

satisfies strict rank monotonicity, suitably generalised to matrices (see below).
Let M be a nonnegative matrix, $0 < \alpha < 1/\rho(M)$, v a strictly positive vector.

Then, the centrality vector r defined by

$$r = v(I - \alpha M)^{-1}$$

defines strict rank monotonicity, suitably generalised to matrices (see below).

Applies to PageRank, Katz, …
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad \mathbf{r} = \mathbf{v} \mathbf{C} \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad \mathbf{r} = \mathbf{v} C \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad \mathbf{r} = \mathbf{v}C \]

Assume \(c_{yz} > 0 \) and let \(q = c_{yy}/c_{yz} \).
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = c_{yy}/c_{yz} \)
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = c_{yy}/c_{yz} \)

- Then \(c_{wy}/c_{wz} \leq q \)
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = c_{yy}/c_{yz} \)

- Then \(c_{wy} \leq q \cdot c_{wz} \)
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = c_{yy}/c_{yz} \)

- Then \(c_{wy} \leq q c_{wz} \)

As a consequence if \(q < 1 \)...

\[r_y = \sum_w v_w c_{wy} \leq \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = \frac{c_{yy}}{c_{yz}} \)

- Then \(c_{wy} \leq q c_{wz} \)

As a consequence if \(q < 1 \)

\[
r_y = \sum_w v_w c_{wy} \leq \sum_w v_w \frac{c_{wz} c_{yy}}{c_{yz}}
\]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = \frac{c_{yy}}{c_{yz}} \)

- Then \(c_{wy} \leq q \cdot c_{wz} \)

As a consequence if \(q < 1 \)...

\[r_y = \sum_w v_w c_{wy} \leq \sum_w v_w \frac{c_{wz} c_{yy}}{c_{yz}} \leq \sum_w v_w c_{wz} = r_z \]
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = \frac{c_{yy}}{c_{yz}} \)

- Then \(c_{wy} \leq q \cdot c_{wz} \)

As a consequence if \(q < 1 \)...

\[r_y = \sum_w v_w c_{wy} \leq \sum_w v_w \frac{c_{wz} c_{yy}}{c_{yz}} \leq \sum_w v_w c_{wz} = r_z \]

Hence:
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad \mathbf{r} = \mathbf{vC} \]

Assume \(c_{yz} > 0 \) and let \(q = \frac{c_{yy}}{c_{yz}} \)

- Then \(c_{wy} \leq q c_{wz} \)

As a consequence if \(q < 1 \)... \[
\begin{align*}
r_y &= \sum_w v_w c_{wy} \\
&\leq \sum_w v_w \frac{c_{wz} c_{yy}}{c_{yz}} \\
&\leq \sum_w v_w c_{wz} = r_z
\end{align*}
\]

Hence:

- If \(r_z \leq r_y \) then \(q \geq 1 \)
- If \(r_z < r_y \) then \(q > 1 \)
Lemma (ext. Willoughby, 1977)

\[C = (I - \alpha M)^{-1} \quad r = vC \]

Assume \(c_{yz} > 0 \) and let \(q = c_{yy}/c_{yz} \)

\[\text{As a consequence if } q < 1 \ldots \]

\[r_y = \sum_w v_w c_{wy} \leq \sum_w v_w \frac{c_{wz}c_{yy}}{c_{yz}} \leq \sum_w v_w c_{wz} = r_z \]

Hence:

- If \(r_z \leq r_y \) then \(q \geq 1 \)
- If \(r_z < r_y \) then \(q > 1 \)
PageRank as a special case of damped spectral ranking
PageRank as a special case of damped spectral ranking

\[\mathbf{r} = \mathbf{v}(I - \alpha \mathbf{M})^{-1} \]
PageRank as a special case of damped spectral ranking

\[r = v(I - \alpha M)^{-1} \]

- In the case of PageRank, \(M = G_r \)
PageRank as a special case of
damped spectral ranking

\[r = v(I - \alpha M)^{-1} \]

- In the case of PageRank, \(M = G_r \)
- When adding the arc \(x \rightarrow y \) we obtain a new matrix \(M' \)
 and
PageRank as a special case of damped spectral ranking

\[\mathbf{r} = \mathbf{v}(I - \alpha \mathbf{M})^{-1} \]

- In the case of PageRank, \(\mathbf{M} = \mathbf{G}_r \)
- When adding the arc \(x \rightarrow y \) we obtain a new matrix \(\mathbf{M}' \) and

\[
\mathbf{M}' - \mathbf{M} = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0
\end{pmatrix} - \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0
\end{pmatrix} \]
PageRank as a special case of
damped spectral ranking

\[\mathbf{r} = \mathbf{v}(I - \alpha \mathbf{M})^{-1} \]

- In the case of PageRank, \(\mathbf{M} = \mathbf{G}_r \)
- When adding the arc \(x \rightarrow y \) we obtain a new matrix \(\mathbf{M}' \) and

\[
\begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & & & & & & \\
0 & -\frac{1}{d(d+1)} & \cdots & \frac{1}{d} & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0
\end{pmatrix}
\]

only row \(x \) is nonzero
PageRank as a special case of damped spectral ranking

\[\mathbf{r} = \mathbf{v}(I - \alpha M)^{-1} \]

- In the case of PageRank, \(M = \mathcal{G}_r \)
- When adding the arc \(x \to y \) we obtain a new matrix \(M' \) and

\[
M' - M = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & \cdots & \frac{1}{d(d+1)} & \cdots & \frac{1}{d} & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\end{pmatrix}
\]
PageRank as a special case of damped spectral ranking

\[\mathbf{r} = \mathbf{v}(I - \alpha \mathbf{M})^{-1} \]

- In the case of PageRank, \(\mathbf{M} = \mathbf{G}_r \)
- When adding the arc \(x \rightarrow y \) we obtain a new matrix \(\mathbf{M}' \) and

```
M' - M =
```

“old” outneighbours of x

\[
\begin{pmatrix}
0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & \frac{1}{d(d+1)} & \ldots & \frac{1}{d} & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 0
\end{pmatrix}
\]
PageRank as a special case of damped spectral ranking

\[r = v(I - \alpha M)^{-1} \]

- In the case of PageRank, \(M = G_r \)
- When adding the arc \(x \to y \) we obtain a new matrix \(M' \) and

\[
M' - M = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \vdots & \ddots & \vdots & \ddots & \vdots & \vdots \\
0 & -\frac{1}{d(d+1)} & \cdots & \frac{1}{d} & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\end{pmatrix}
\]
PageRank as a special case of damped spectral ranking

\[\mathbf{r} = \mathbf{v}(I - \alpha \mathbf{M})^{-1} \]

- In the case of PageRank, \(\mathbf{M} = \mathbf{G}_r \)
- When adding the arc \(x \rightarrow y \) we obtain a new matrix \(\mathbf{M}' \) and

\[
\mathbf{M}' - \mathbf{M} = \begin{pmatrix}
0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & -\frac{1}{d(d+1)} & \ldots & \frac{1}{d} & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 0 \\
0 & 0 & \ldots & 0 & \ldots & 0 & 0
\end{pmatrix}
\]

only the \(y \)-th column is positive
PageRank as a special case of damped spectral ranking

\[\mathbf{r} = \mathbf{v}(\mathbf{I} - \alpha \mathbf{M})^{-1} \]

- In the case of PageRank, \(\mathbf{M} = \mathbf{G}_r \)

- When adding the arc \(x \rightarrow y \) we obtain a new matrix \(\mathbf{M}' \) and

\[
\mathbf{M}' - \mathbf{M} = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & \ddots & \ddots & \ddots & \ddots & \ddots & \ddots \\
0 & \frac{1}{d(d+1)} & \cdots & \frac{1}{d} & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0
\end{pmatrix}
\]
PageRank as a special case of damped spectral ranking

\[\mathbf{r} = \mathbf{v}(I - \alpha \mathbf{M})^{-1} \]

- In the case of PageRank, \(\mathbf{M} = \mathbf{G}_r \)
- When adding the arc \(x \rightarrow y \) we obtain a new matrix \(\mathbf{M}' \) and

\[
\mathbf{M}' - \mathbf{M} = \begin{pmatrix}
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\vdots & & & & & & \\
0 & -\frac{1}{d(d+1)} & \cdots & \frac{1}{d} & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
0 & 0 & \cdots & 0 & \cdots & 0 & 0 \\
\end{pmatrix}
\]
Rank monotonicity of PageRank (1)
Rank monotonicity of PageRank (1)

❖ By the Sherman-Morrison formula:

\[r' - r = \kappa \delta (I - \alpha M)^{-1} \]

for some suitable positive constant \(\kappa \). For simplicity I will assume \(\kappa = 1 \)
Rank monotonicity of PageRank (1)

- By the Sherman-Morrison formula:
 \[r' - r = \kappa \delta (I - \alpha M)^{-1} \]
 for some suitable positive constant \(\kappa \). For simplicity I will assume \(\kappa = 1 \)

- We need to prove that
 \[0 < r_z \leq r_y \] implies \(r'_z < r'_y \)
Rank monotonicity of PageRank (1)

- By the Sherman-Morrison formula:
 \(r' - r = \kappa \delta (I - \alpha M)^{-1} \)
 for some suitable positive constant \(\kappa \). For simplicity I will assume \(\kappa = 1 \)

- We need to prove that
 \(0 < r_z \leq r_y \) implies \(r'_z < r'_y \)

- We will in fact prove that
 \(0 < r_z \leq r_y \) implies \([r' - r]_z < [r' - r]_y \)
Rank monotonicity of PageRank (1)

- By the Sherman-Morrison formula:
 \[r' - r = \kappa \delta (I - \alpha M)^{-1} \]
 for some suitable positive constant \(\kappa \). For simplicity I will assume \(\kappa = 1 \)

- We need to prove that
 \[0 < r_z \leq r_y \text{ implies } r'_z < r'_y \]

- We will in fact prove that
 \[0 < r_z \leq r_y \text{ implies } [\delta(I - \alpha M)^{-1}]_z < [\delta(I - \alpha M)^{-1}]_y \]
Rank monotonicity of PageRank (2)
We aim at proving that

\[0 < r_z \leq r_y \text{ implies } [\delta(I - \alpha M)^{-1}]_z < [\delta(I - \alpha M)^{-1}]_y \]
We aim at proving that

\[0 < r_z \leq r_y \implies [\delta(I - \alpha M)^{-1}]_z < [\delta(I - \alpha M)^{-1}]_y \]

Let \(c_{yz} > 0 \) (the other case is easy), and \(q = c_{yy}/c_{yz} \)
We aim at proving that

\[0 < r_z \leq r_y \text{ implies } [\delta(I - \alpha M)^{-1}]_z < [\delta(I - \alpha M)^{-1}]_y \]

Let \(c_{yz} > 0 \) (the other case is easy), and \(q = c_{yy}/c_{yz} \)

\[[\delta(1 - \alpha M)^{-1}]_y = \delta_y c_{yy} - \sum_{w \neq y} |\delta_w| c_{wy} \geq \delta_y q c_{yz} - \sum_{w \neq y} q |\delta_w| c_{wz} \]
Rank monotonicity of PageRank (2)

- We aim at proving that

\[0 < r_z \leq r_y \text{ implies } [\delta(I - \alpha M)^{-1}]_z < [\delta(I - \alpha M)^{-1}]_y \]

- Let \(c_{yz} > 0 \) (the other case is easy), and \(q = \frac{c_{yy}}{c_{yz}} \)

\[[\delta(1 - \alpha M)^{-1}]_y = \delta_y c_{yy} - \sum_{w \neq y} |\delta_w| c_{wy} \geq \delta_y q c_{yz} - \sum_{w \neq y} q |\delta_w| c_{wz} \]

- By the Lemma, \(r_z \leq r_y \implies q \geq 1 \)
We aim at proving that

\[0 < r_z \leq r_y \text{ implies } [\delta(I - \alpha M)^{-1}]_z < [\delta(I - \alpha M)^{-1}]_y \]

Let \(c_{yz} > 0 \) (the other case is easy), and \(q = c_{yy}/c_{yz} \)

\[[\delta(1 - \alpha M)^{-1}]_y = \delta_y c_{yy} - \sum_{w \neq y} |\delta_w| c_{wy} \geq \delta_y q c_{yz} - \sum_{w \neq y} q |\delta_w| c_{wz} \]

By the Lemma, \(r_z \leq r_y \implies q \geq 1 \)

\[\geq \delta_y c_{yz} - \sum_{w \neq y} |\delta_w| c_{wz} = [\delta(1 - \alpha M)^{-1}]_z \]
Rank monotonicity of PageRank (3)
We in fact proved only

\[0 < r_z \leq r_y \text{ implies } [\delta(I - \alpha M)^{-1}]_z \leq [\delta(I - \alpha M)^{-1}]_y \]
We in fact proved only

\[0 < r_z \leq r_y \text{ implies } [\delta(I - \alpha M)^{-1}]_z \leq [\delta(I - \alpha M)^{-1}]_y \]

The strict inequality requires more work…
Take-home messages
Take-home messages

❖ Centrality is **important** and ubiquitous
Take-home messages

❖ Centrality is **important** and ubiquitous
❖ **A jungle of indices**: taxonomies (and generalizations) are of help
Take-home messages

❖ Centrality is **important** and ubiquitous
❖ A **jungle of indices**: taxonomies (and generalizations) are of help
❖ **Axiomatization** is a good way to make sense of so many indices
Take-home messages

❖ Centrality is **important** and ubiquitous
❖ **A jungle of indices**: taxonomies (and generalizations) are of help
❖ **Axiomatization** is a good way to make sense of so many indices
❖ **A jungle of axioms**: taxonomies (and generalizations) are of help
Take-home messages

❖ Centrality is important and ubiquitous
❖ A jungle of indices: taxonomies (and generalizations) are of help
❖ Axiomatization is a good way to make sense of so many indices
❖ A jungle of axioms: taxonomies (and generalizations) are of help
❖ Apparently trivial properties fail to hold, or require a lot of work to be proved
Take-home messages

❖ Centrality is **important** and ubiquitous

❖ **A jungle of indices**: taxonomies (and generalizations) are of help

❖ **Axiomatization** is a good way to make sense of so many indices

❖ **A jungle of axioms**: taxonomies (and generalizations) are of help

❖ Apparently trivial properties fail to hold, or require *a lot of work* to be proved

❖ Beware, *it’s a wild world out there*
Thanks for your attention!