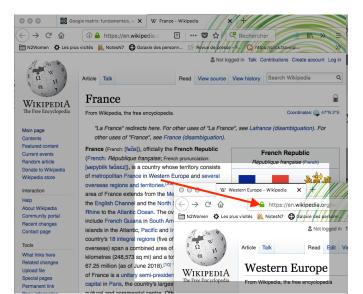
Reduced Google Matrix analysis of Wikipedia networks

Katia Jaffrès-Runser

In collaboration with Samer El Zant, Dima Shepelyanski and Klaus Frahm.

IRIT, INP-ENSEEIHT, University of Toulouse

Conference Google Matrix: fundamentals, applications and beyond Institut des Hautes Études Scientifiques Le Bois-Marie, 16 octobre 2018


Wikipedia

Is a free, collaboratively written encyclopædia

Wikipedia

Offers a hyperlinked structure for all articles

That can be directly mapped to a directed network of topics that is scale-free.

Wikipedia edition	Number of nodes	Number of links
Arabic 2013	203 326	1 896 621
English 2013	4 212 493	101 611 731
English 2017	5 416 537	122 232 932
French 2013	1 352 825	34 431 943
German 2013	1 532 977	36 781 077
Italic 2013	1 017 953	25 667 781
Russian 2013	966 284	20 853 206
Spanish 2013	974 021	23 105 758

Table: Wikipedia editions and their sizes.

Google matrix

$$G_{ij} = \alpha S_{ij} + (1-\alpha)/N$$
,

S is the matrix of Markov transitions with $S_{ij} = A_{ij}/k_{out}(j)$ giving the probability of moving from article j to i. A is the adjacency matrix and k_{out} the out-degree. If j is a dangling node : $S_{ij} = 1/N$.

PageRank eigenvector

Captures central nodes in Wikipedia

 Ranking of historical figures over 35 centuries (~ Hart ranking)

▶ Ranking of world universities (~ Shanghai Academic ranking) Good diffusion nodes are identified with CheiRank (using G* derived from the transposed version of A).

PageRank example

Top 40 countries in PageRank for EnWiki

Accounting for different editions

PageRank values depend on editions of Wikipedia:

PR Index	1	2	3	4	5	6	7	8	9	10	
EnWiki	US	FR	GB	DE	CA	IN	AU	IT	JP	CN	
RuWiki	RU	US	FR	DE	UA	IT	GB	ES	CN	ΡL	

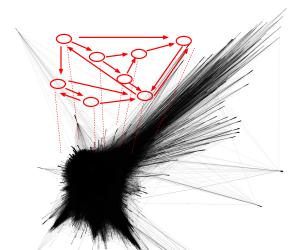
Cross-edition rank: Θ -score

Have a global ranking across several editions.

$$\Theta_P = \sum_E (101 - R_{P,E}). \tag{1}$$

Here $R_{P,E}$ is the ranking of top 100 nodes in edition E of Wikipedia. The largest Θ_P , the most important the node is accros all editions.

Accounting for different editions


Top 40 painters

 $\Theta-score$ over 7 editions: EnWiki, FrWiki, RuWiki, DeWiki, ItWiki, EsWiki and NIWiki.

Θ rank	K _{av} rank	Painter	Θ rank	K _{av} rank	Painter
1	1	Vinci	21	18	Bondone
2	2	Picasso	22	25	Kandinsky
3	6	Gogh	23	19	Botticelli
4	4	Rembrandt	24	21	Caravaggio
5	5	Rubens	25	23	Velázquez
6	8	Durer	26	30	Degas
7	9	Titian	27	26	Bruegel Eld
8	11	Monet	28	29	Dyck
9	12	Dali	29	28	Renoir
10	14	Cézanne	30	31	Chagall
11	3	Michelangelo	31	33	Lautrec
12	7	Raphael	32	27	Vermeer
13	10	Goya	33	36	Poussin
14	13	Vasari	34	37	Turner
15	16	Matisse	35	38	Braque
16	15	Warhol	36	32	Blake
17	17	Delacroix	37	34	Greco
18	22	Manet	38	39	Miró
19	20	David	39	35	Munch
20	24	Gauguin	40	40	Eyck

Reduced Google matrix

A powerful tool to create a sub-network (or *thematic view*) of the full Google matrix for a set of N_r articles.

Reduced network

Network decomposition into


- Reduced network of N_r nodes
- Rest of nodes $N_s = N N_r$

Reordering G, we have :

$$G = \left(\begin{array}{cc} G_{rr} & G_{rs} \\ G_{sr} & G_{ss} \end{array} \right)$$

And corresponding PageRank:

$$P = \left(\begin{array}{c} P_r \\ P_s \end{array}\right)$$

Reduced network

Network decomposition into

- Reduced network of N_r nodes
- Rest of nodes $N_s = N N_r$

Reordering G, we have:

$$G = \left(\begin{array}{cc} G_{rr} & G_{rs} \\ G_{sr} & G_{ss} \end{array} \right)$$

And corresponding PageRank:

$$P = \left(\begin{array}{c} P_r \\ P_s \end{array}\right)$$

Reduced Google matrix $G_{\rm R}$ We want:

$$G_{\rm R}P_r = P_r$$

And thus, if G_{ss} is not singular, we have:

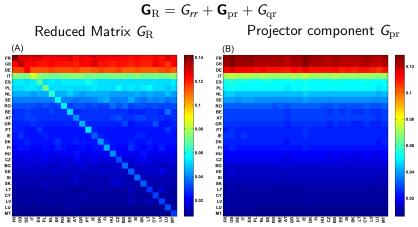
$$G_{\mathrm{R}}=G_{rr}+G_{rs}(\mathbf{1}-G_{ss})^{-1}G_{sr}$$

 N_s is too large for a direct evaluation of $(1 - G_{ss})^{-1}$.

The following numerical evaluation has been proposed by Klaus Frahm:

$$(\mathbf{1}-G_{ss})^{-1} = \mathcal{P}_c \frac{1}{1-\lambda_c} + \mathcal{Q}_c \sum_{l=0}^{\infty} \bar{G}_{ss}^l$$

where λ_c is the leading eigenvalue of G_{ss} , \mathcal{P}_c the projector onto the eigenspace of λ_c and \mathcal{Q}_c the complementary projector.

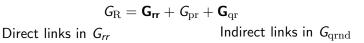

$G_{\rm R}$ has 3 components

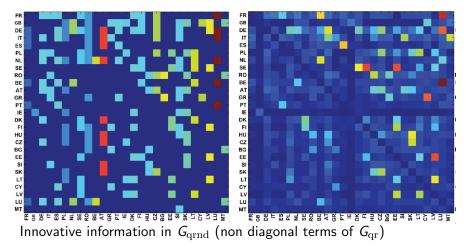
$$G_{\mathrm{R}} = G_{rr} + G_{\mathrm{pr}} + G_{\mathrm{qr}},$$

with:

- ► *G*_{rr} the **direct** interactions within the sub-network
- $G_{\rm pr} = G_{rs} \mathcal{P}_c G_{sr} / (1 \lambda_c)$, the **projector** component
- $G_{\rm qr} = G_{rs}[\mathcal{Q}_c \sum_{l=0}^{\infty} \bar{G}_{ss}^{\ l}]G_{sr}$, the **indirect** interactions through the rest of nodes.

27 EU countries for EnWiki

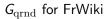

Column sums of $G_{\rm pr}$ account for \sim 95-97% of the total column sum of $G_{\rm R}.$

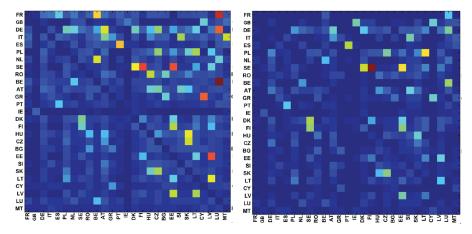

Total weight of matrices

Sum of all elements of corresponding matrices for the 27 EU network and the 40 top worldwide set of countries.

	$W_{\rm pr}$	$W_{ m qr}$	W _{rr}	Sum
40 worldwide	0.96120	0.029702	0.009098	1
27 EU	0.95332	0.038346	0.008334	1

27 EU countries for EnWiki

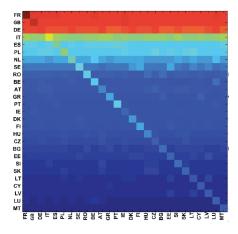




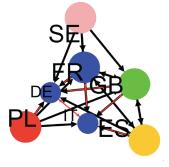
27 EU countries for EnWiki vs FrWiki

Cultural views

 $\textit{G}_{\rm qrnd}$ for EnWiki



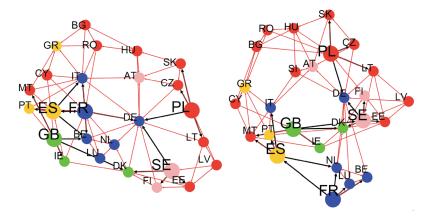
Networks of 'friends'


Top friends of country j

Ranking of countries by descending value of column j.

${\it G}_{\rm R}$ for EnWiki

Top 4 friends network



for 5 selected countries \rightarrow Dominated by PageRank

Networks of 'friends'

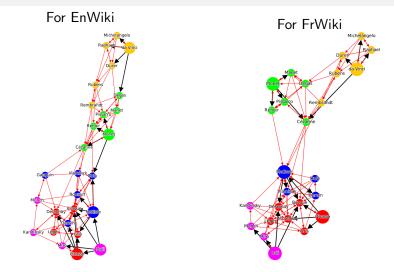
Top 'hidden' friends from $G_{\rm qrnd}$

Plotted automatically with a force-direct layout

Top 4 for EnWiki

Top 4 for FrWiki

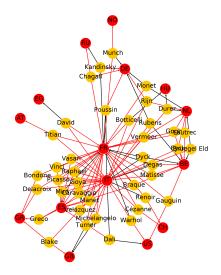
Cross-edition friendship


Friendship relations visible in all 5 editions (EnWiki, FrWiki, RuWiki, DeWiki, ArWiki)

Selected	${\it G}_{ m qr}$ Wiki friends present in				
country	all 5 editions	4 out of 5 editions	3 out of 5 editions		
FR	BE -ES	IT			
GB	IE		DK - FR		
ES	IT - PT	FR	BE		
SE	DK - FI		EE		
PL	CZ		DE - HU - LT - SK		

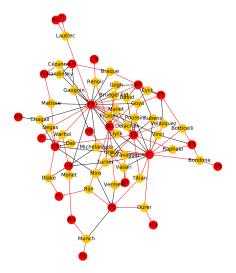
Networks of 30 Painters

Name	Category	Colour	FrWiki	EnWiki	DeWiki
Picasso	Cubism	Red	1	2	2
Braque		Red	17	20	20
Léger		Red	19	24	24
Mondrian		Red	25	22	22
Gris		Red	29	28	25
Delaunay		Red	28	27	26
Matisse	Fauvism	Blue	6	11	12
Gauguin		Blue	13	15	18
Derain		Blue	22	25	27
Dufy		Blue	27	26	29
Rouault		Blue	30	30	28
Vlaminck		Blue	24	29	30
Monet	Impressionists	Green	4	9	11
Cézanne		Green	8	12	9
Manet		Green	12	13	16
Renoir		Green	15	14	17
Degas		Green	18	16	21
Pissarro		Green	23	19	23
da Vinci	Great masters	Orange	2	1	1
Michelangelo		Orange	3	3	4
Raphael		Orange	5	4	5
Rembrandt		Orange	9	5	6
Rubens		Orange	10	7	7
Durer		Orange	14	8	3
Dali	Modern 20-21	Pink	7	10	13
Warhol		Pink	11	6	8
Kandinsky		Pink	20	17	10
Chagall		Pink	21	18	15
Miró		Pink	16	21	19
Munch		Pink	26	23	14


Networks of Painters

 $\label{eq:Grange} \begin{array}{l} \mathsf{Orange} \to \mathsf{Great} \mbox{ masters ; } \mathsf{Green} \to \mathsf{Impressionism} \mbox{ ; } \mathsf{Blue} \to \mathsf{Fauvism} \mbox{ ; } \\ \mathsf{Red} \to \mathsf{Cubism} \mbox{ ; } \mathsf{Pink} \to \mathsf{Modern} \mbox{ (20-21)}. \end{array}$

Interaction between painters and countries


Top 3 country friends for top 40 painters network from $G_{rr} + G_{qrnd}$ for EnWiki.

 $\mathsf{Black arrows}: \ \mathsf{\textit{G}}_{rr}(i,j) > \mathsf{\textit{G}}_{\mathrm{qrnd}}(i,j) \ ; \ \mathsf{Red arrows} \ \ \mathsf{\textit{G}}_{rr}(i,j) \leq \mathsf{\textit{G}}_{\mathrm{qrnd}}(i,j).$

Interaction between painters and countries

Top 3 country friends for top 40 painters network from $G_{rr} + G_{qrnd}$ for **FrWiki**.

 $\mathsf{Black} \text{ arrows }: \ \textit{G}_{rr}(i,j) > \textit{G}_{\mathrm{qrnd}}(i,j) \text{ ; Red arrows } \textit{G}_{rr}(i,j) \leq \textit{G}_{\mathrm{qrnd}}(i,j).$

How does a relative link variation impact the reduced network structure?

Sensitivity analysis

For the relationship from nation j
ightarrow i in ${\it G}_{
m R}$

- Modify element $\tilde{G}_{\mathrm{R}}(i,j) = (1+\delta)G_{\mathrm{R}}(i,j)$
- Normalize column j of $\tilde{G}_{\rm R}$.
- Calculate modified PageRank P
 with G
 G
 R.

 We observe a change of importance of nodes in the network.
- Calculate the logarithmic derivative of the PageRank probability of a given node k:

$$D_{(j \to i)}(k) = (\mathrm{d}P_k/\mathrm{d}\delta_{ij})/P_k = (\tilde{P}_k - P_k)/(\delta_{ij}P_k)$$

This measures the sensitivity of nation k to the link $j \rightarrow i$.

27 EU countries average sensitivity

Average sensitivity across editions

Following sensitivity results \overline{D} are averaged over 3 editions: EnWiki, FrWiki and DeWiki

Figure: Axial representation of \overline{D} for a link modification from {IT} to {FR}. Here $\overline{D}(IT) = -0.0159$ and $\overline{D}(FR) = 0.0701$ are not represented.

Slovenia is mostly hit by an increase of Italy \rightarrow France link

40 worldwide countries average sensitivity

Impact of China \rightarrow US

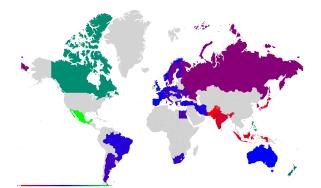


Figure: Map representation of \overline{D} for link modification from CN to US. Non represented values: $\overline{D}(CN) = -0.0056$, $\overline{D}(US) = 0.0210$ and $\overline{D}(TW) = -0.0087$. Lower values in red, median blue and larger in green

40 worldwide countries average sensitivity

Clusters of countries

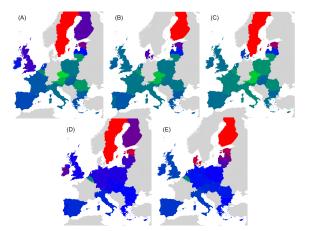
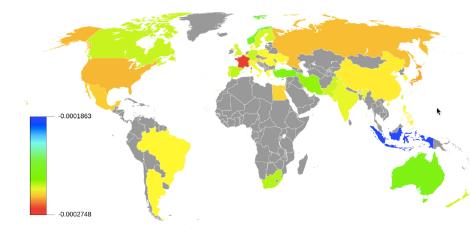
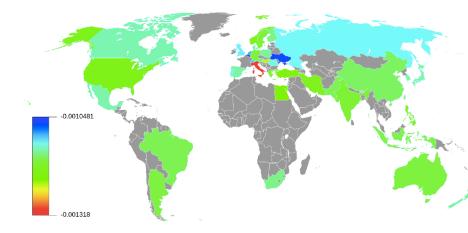



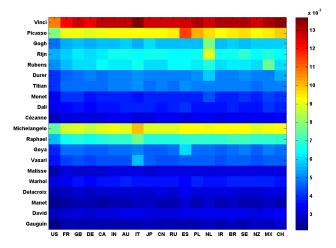
Figure: Map representation of \overline{D} for link modifications from Nordic countries to {FR or DE}. (A): DK to DE. (B): SE to DE. (C): FI to DE. (D): DK to FR. (E): SE to FR.


Average sensitivity of countries to painters

Sensitivity from Van Gogh \rightarrow Netherlands over 40 countries.

Average sensitivity of countries to painters

Sensitivity from Da Vinci \rightarrow France over 40 countries.


Sensitivity to bi-directional changes

Measures the sensitivity of a nation *a* to the changes in both directions of link $i \rightarrow j$:

$$D_{(i\leftrightarrow j)}(a) = D_{(i\rightarrow j)}(a) + D_{(j\rightarrow i)}(a)$$
⁽²⁾

2-way sensitivity for painters and countries

Diagonal sensitivity of top 20 countries of 20 top painters This is the 2-way sensitivity calculated for the top 20 countries when interaction is studied with top 20 painters.

Relationship imbalance between two nations

The 2-way sensitivity can help us know which country has the most influence on the other one. For countries a and b we define:

$$F(a,b) = D_{(a\leftrightarrow b)}(a) - D_{(a\leftrightarrow b)}(b)$$
(3)

F(a, b) > 0, b is the strongest nation
 F(a, b) < 0, a is the strongest nation

Relationship imbalance analysis

For 27 EU network

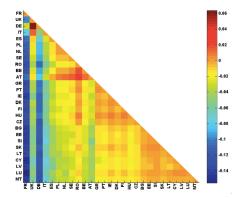
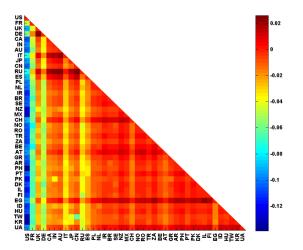



Figure: Relationship imbalance analysis: F-representation for 27 EU network. X-axis and Y-axis represent a and b respectively. If F(a, b) is negative, nation a has more influence on nation b than b on a.

Relationship imbalance analysis

For 40 worldwide network

Offers a nice framework to automatically learn embedded information:

- Importance of nodes with PageRank and derivated metrics
- Exhibit interactions within a sub-network (thematic view) with Reduced Google matrix
- Understand the influence of links and nodes on the network with the sensitivity analysis.

Very nice properties to become a major tool for Artificial Intelligence and automatic information extraction. Therefore, we have to:

- Automatically extract the articles that can constitute a good sub-network for a given study.
- Capture easily the evolution of the reduced network for a change of topology of the complete network.

Related publications

- S. E. Zant, K. Jaffrès-Runser, K. M. Frahm, and D. Shepelyansky, "Interactions and influence of world painters from reduced Google matrix of Wikipedia networks" in IEEE Access, vol. 6, pp. 47735-47750, August 2018.
- S. E. Zant, K. Jaffrès-Runser, and D. Shepelyansky, "Capturing the influence of geopolitical ties from Wikipedia with reduced Google matrix", PLOS ONE 13(8), pp. 1-31, August 2018
- S. E. Zant, K. M. Frahm, K. Jaffrès-Runser, and D. Shepelyansky, "Analysis of world terror networks from the reduced Google matrix of Wikipedia" Springer, EPJB, vol. 91, no.1, pp. 7, January 2018.
- K. M. Frahm, S. E. Zant, K. Jaffrès-Runser, and D. L. Shepelyansky, "Multi-cultural Wikipedia mining of geopolitics interactions leveraging reduced Google matrix analysis" Elsevier, PLA, vol. 381, no. 33, pp. 2677 - 2685, September 2017.