EIGENVECTOR OVERLAPS (AN RMT TALK)

J.-Ph. Bouchaud (CFM/Imperial/ENS)

(Joint work with Romain Allez, Joel Bun \& Marc Potters)

$\mathbf{M}=\mathbf{C}+\mathbf{O B O}^{\dagger}$

Randomly Perturbed Matrices

Questions in this talk:

> How similar are

- the eigenvectors of a « pure » matrix \mathbf{C} and those of a noisy observation of \mathbf{C} ?
- the eigenvectors of two independent noisy observations of \mathbf{C} ?
> So what?

Models of Randomly Perturbed Matrices

(Free) Additive noise
$\mathbf{M}=\mathbf{C}+\mathbf{O B O}^{\dagger}$
«Pure system » «Signal »
«Noise»
B diag,
O random rotation
(Free) Multiplicative noise $\mathbf{M}=\sqrt{\mathbf{C}} \mathbf{O B O}^{\dagger} \sqrt{\mathbf{C}}$
«Pure system» «Noise»
«Signal »

B diag,
O random rotation

Models of Randomly Perturbed Matrices

Additive noise

$\mathbf{M}=\mathbf{C}+\mathbf{O B O}^{\dagger}$

Multiplicative noise

$\mathbf{M}=\sqrt{\mathbf{C}} \mathbf{O B O}^{\dagger} \sqrt{\mathbf{C}}$
> Additive examples:

- Inference of \mathbf{C} given $\mathbf{M}+$ an observation noise model, eg $\mathbf{B}=\mathbf{W}$ (igner)
- Quantum mechanics with a time dependent perturbation; localisation
- Dyson Brownian motion: $\mathbf{O B O}^{\dagger}=\mathbf{W}(\mathrm{t})$ Brownian noise \rightarrow stochastic evolution of eigenvalues \& eigenvectors
> Multiplicative example:
- Empirical M vs. «True » covariance matrix C;
$\mathrm{OBO}^{\mathrm{t}}=\mathrm{XX}=\mathrm{W}$ (ishart), where X is a $\mathrm{N} \times \mathrm{T}$ white noise matrix

Objects of interest: Definitions

«Overlap» Eigenvector of \mathbf{M} Eigenvector of \mathbf{C}

Notes:

- $N=$ size of the matrices, $N \gg 1$ in the sequel
- $E[.$.$] : average over small intervals of \lambda \gg 1 / \mathrm{N}$
- The overlaps are quickly of order $1 / \mathrm{N}$:

In the Dyson picture, some finite hybridisation takes place at each «collision » between eigenvalues $\rightarrow t_{\text {eq }} \sim 1 / \mathrm{N}$
$d\left|\psi_{i}^{t}\right\rangle=-\frac{1}{2 N} \sum_{j \neq i} \frac{d t}{\left(\lambda_{i}(t)-\lambda_{j}(t)\right)^{2}}\left|\psi_{i}^{t}\right\rangle+\frac{1}{\sqrt{N}} \sum_{j \neq i} \frac{d w_{i j}(t)}{\lambda_{i}(t)-\lambda_{j}(t)}\left|\psi_{j}^{t}\right\rangle$

Objects of interest: Definitions

Resolvent: a central tool in RMT

$$
\mathbf{G}_{\mathbf{M}}(z):=\left(z \mathbf{I}_{N}-\mathbf{M}\right)^{-1}
$$

Stieltjes transform and spectral density (or eigenvalue distribution)

$$
\operatorname{Im} \mathfrak{g}_{\mathbf{M}}(\lambda-\mathrm{i} \eta) \equiv \operatorname{Im} \frac{1}{N} \operatorname{Tr}\left[\mathbf{G}_{\mathbf{M}}(\lambda-\mathrm{i} \eta)\right]=\pi \rho_{\mathbf{M}}(\lambda)
$$

Overlaps:

$$
\left\langle\mathbf{v}_{i}\right| \operatorname{Im} \mathbf{G}_{\mathbf{M}}(\lambda-\mathrm{i} \eta)\left|\mathbf{v}_{i}\right\rangle \approx \pi \rho_{\mathbf{M}}(\lambda) \Phi\left(\lambda, c_{i}\right)
$$

Note: everywhere the «resolution » $\eta \rightarrow 0$ but >> 1/N

Objects of interest: Definitions

R-Transform

$$
\mathcal{B}_{\mathbf{M}}\left(\mathfrak{g}_{\mathbf{M}}(z)\right)=z . \quad \mathcal{R}_{\mathbf{M}}(z):=\mathcal{B}_{\mathbf{M}}(z)-\frac{1}{z}
$$

e.g. the R-transform of a Wigner matrix is $R(z)=\sigma^{2} z$

S-Transform

$$
\mathcal{T}_{\mathbf{M}}(z)=z \mathfrak{g}_{\mathbf{M}}(z)-1, \quad \mathcal{S}_{\mathbf{M}}(z):=\frac{z+1}{z \mathcal{T}_{\mathbf{M}}^{-1}(z)}
$$

e.g. the S-transform of a Wishart matrix is $S(z)=1 /(1+q z)$ with: $q=N / T$

Main Theoretical Result (J. Bun, R. Allez JPB, M. Potters, IEEE 2016)

Additive noise

$$
\left\langle\mathbf{G}_{\mathbf{M}}(z)\right\rangle=\mathbf{G}_{\mathbf{C}}(Z(z))
$$

$$
Z(z)=z-\mathcal{R}_{\mathbf{B}}\left(\mathfrak{g}_{\mathbf{M}}(z)\right)
$$

Multiplicative noise

$$
\begin{gathered}
z\left\langle\mathbf{G}_{\mathbf{M}}(z)\right\rangle=Z(z) \mathbf{G}_{\mathbf{C}}(Z(z)) \\
Z(z)=z \mathcal{S}_{\mathbf{B}}\left(z \mathfrak{g}_{\mathbf{M}}(z)-1\right)
\end{gathered}
$$

8

Notes:

- Results obtained using a replica representation of the resolvent + low rank HCIZ
- Taking the trace of these matrix equalities recovers the « free » convolution rules:

$$
\mathcal{R}_{\mathbf{M}}(z)=\mathcal{R}_{\mathbf{C}}(z)+\mathcal{R}_{\mathbf{B}}(z)
$$

$$
\mathcal{S}_{\mathbf{M}}(u)=\mathcal{S}_{\mathbf{C}}(u) \mathcal{S}_{\mathbf{B}}(u)
$$

Overlaps: simplified results

Additive noise when $\mathbf{B}=\mathbf{W}$ (not necessarily Gaussian)

$$
\Phi(\lambda, c)=\frac{\sigma^{2}}{\left(c-\lambda+\sigma^{2} \mathfrak{h}_{\mathbf{M}}(\lambda)\right)^{2}+\sigma^{4} \pi^{2} \rho_{\mathbf{M}}(\lambda)^{2}}
$$

Notes:

- Tends to a delta function when $\sigma=0$ (no noise)
- Cauchy-like formula with power-law tail decrease for large $|\mathrm{c}-\lambda|$
- Note: True for all « Wigner-like » matrices (not necessarily Gaussian)

Empirical covariance matrices (multipicative noise)

$$
\Phi(\lambda, c)=\frac{q c \lambda}{\left(c(1-q)-\lambda+q c \lambda \mathfrak{h}_{\mathbf{M}}(\lambda)\right)^{2}+q^{2} \lambda^{2} c^{2} \pi^{2} \rho_{\mathbf{M}}(\lambda)^{2}}
$$

Notes:

- Result first obtained by Ledoit \& Péché
- Tends to a delta function when $\mathrm{q}=0$ (infinite T for a fixed N)

Overlaps: the case of an outlier

Suppose \mathbf{C} is of rank one, with its single non zero eigenvalue γ and $\mathbf{B}=\mathbf{W}(t)$ a Brownian matrix noise
$>$ Applying the above formalism (to order $1 / \mathrm{N}$) in the additive case leads to a spectrum of \mathbf{M} composed of

- A Wigner semi-circle of radius $2 \sigma \mathrm{t}^{1 / 2}$
- An isolated eigenvalue $\lambda^{*}=\gamma+\sigma^{2 t} / \gamma$ as long as $\mathrm{t}<\mathrm{t}^{*}=(\gamma / \sigma)^{2}$

$>$ For $t>t^{*}$ the isolated eigenvalue disappears in the Wigner sea (BBP transition)
$>$ As for the overlaps, the above results hold for the bulk; the isolated eigenvector keeps an overlap $=1-\left(\mathrm{t} / \mathrm{t}^{*}\right)$ with its initial direction (conj: $\sim \mathrm{N}^{-1 / 3}$ at $\mathrm{t}^{\star} ? ?$)

From Overlaps to Rotationally Invariant Estimators

> Assume one has no prior about \mathbf{C}
$>$ What is the best L_{2} estimator $\boldsymbol{\Xi}(\mathbf{M})$ of \mathbf{C} knowing \mathbf{M} ?
$>$ Without any indication about the directions of the eigenvectors of \mathbf{C}, one is stuck with those of M:
where the ξ must be determined

$$
\boldsymbol{\Xi}(\mathbf{M})=\sum_{i=1}^{N} \xi_{i}\left|\mathbf{u}_{i}\right\rangle\left\langle\mathbf{u}_{i}\right|
$$

$>$ From L_{2} optimality, the ξ are in principle given by

$$
\widehat{\xi}_{i}=\sum_{j=1}^{N}\left\langle\mathbf{u}_{i} \mid \mathbf{v}_{j}\right\rangle^{2} c_{j}
$$

$>$ But the c's and v's are unknown...(« Oracle » estimator)

From Overlaps to Rotationally Invariant Estimators

$$
\widehat{\xi}_{i}=\sum_{j=1}^{N}\left\langle\mathbf{u}_{i} \mid \mathbf{v}_{j}\right\rangle^{2} c_{j}
$$

$>$ The high dimensional « miracle »

$$
\begin{aligned}
\widehat{\xi}_{i} & =\int c \rho_{\mathbf{C}}(c) \Phi\left(\lambda_{i}, c\right) \mathrm{d} c \\
& =\frac{1}{N \pi \rho_{\mathbf{M}}\left(\lambda_{i}\right)} \lim _{z \rightarrow \lambda_{i}-i 0^{+}} \operatorname{Im} \operatorname{Tr}\left[\mathbf{G}_{\mathbf{M}}(z) \mathbf{C}\right]
\end{aligned}
$$

$>$ In the additive case: $\quad \widehat{\xi}_{i}=F_{1}\left(\lambda_{i}\right) ; \quad F_{1}(\lambda)=\lambda-\alpha_{1}(\lambda)-\beta_{1}(\lambda) \mathfrak{h}_{\mathbf{M}}(\lambda)$
Note 1: everything only depends on \mathbf{M} ! Note 2: the formula is $\mathrm{F}(\mathrm{x})=\mathrm{Sx} /(\mathrm{S}+\mathrm{N})$ for Gaussian C and B

$$
\left\{\begin{aligned}
\alpha_{1}(\lambda) & :=\operatorname{Re}\left[\mathcal{R}_{\mathbf{B}}\left(\mathfrak{h}_{\mathbf{M}}(\lambda)+\mathrm{i} \pi \rho_{\mathbf{M}}(\lambda)\right)\right] \\
\beta_{1}(\lambda) & :=\frac{\operatorname{Im}\left[\mathcal{R}_{\mathbf{B}}\left(\mathfrak{h}_{\mathbf{M}}(\lambda)+\mathrm{i} \pi \rho_{\mathbf{M}}(\lambda)\right)\right]}{\pi \rho_{\mathbf{M}}(\lambda)}
\end{aligned}\right.
$$

From Overlaps to Rotationally Invariant Estimators

$>$ The multiplicative case

$$
\widehat{\xi}_{i}=F_{2}\left(\lambda_{i}\right) ; \quad F_{2}(\lambda)=\lambda \gamma_{\mathbf{B}}(\lambda)+\left(\lambda \mathfrak{h}_{\mathbf{M}}(\lambda)-1\right) \omega_{\mathbf{B}}(\lambda)
$$

$>$ The empirical covariance matrix case (Ledoit-Péché)

$$
F_{2}(\lambda)=\frac{\lambda}{\left(1-q+q \lambda \mathfrak{h}_{\mathbf{M}}(\lambda)\right)^{2}+q^{2} \lambda^{2} \pi^{2} \rho_{\mathbf{M}}^{2}(\lambda)}
$$

> Non-linear « shrinkage », only requires \mathbf{M}
(Inverse-Wishart C with time dependent volatilities)

Overlaps between independent realisations

$>$ Extending the above techniques allows us to compute the overlap

$$
\Phi(\lambda, \tilde{\lambda}):=N \mathbb{E}\left[\left\langle\mathbf{u}_{\lambda}, \tilde{\mathbf{u}}_{\tilde{\lambda}}\right\rangle^{2}\right]
$$

for two independent realisations, e.g. $\mathbf{M}=\mathbf{C}+\mathbf{W}$ and $\mathbf{M}^{\prime}=\mathbf{C}+\mathbf{W}$
> The result is cumbersome but explicit, both for the multiplicative \& additive cases, e.g.

$$
\Phi_{q, \tilde{q}}(\lambda, \tilde{\lambda})=\frac{2(\tilde{q} \lambda-q \tilde{\lambda}) \alpha(\lambda, \tilde{\lambda})+(\tilde{q}-q) \beta(\lambda, \tilde{\lambda})}{\lambda \tilde{\lambda} \gamma(\lambda, \tilde{\lambda})}
$$

> Again, the formula does not depend explicitly on the (possibly unknown) C
> It can be used to test whether \mathbf{M} and \mathbf{M} ' originate from the same (unknown) C
> Again, universal within the whole class of Wigner/Wishart like matrices

Overlaps between independent realisations

$>$ The case of financial covariance matrices: is the «true » underlying correlation structure stable in time?
(Different time periods + Bootstrap)

$>$ Large eigenvectors are unstable (cf. R. Allez, JPB)
$>$ Important for portfolio optimisation (uncontrolled risk exposure to large modes)
$>$ «Eyeballing » test: can it be turned into a true statistical test?

Overlaps between independent realisations

> An ugly formula for $\Phi(\lambda, \tilde{\lambda}):=N \mathbb{E}\left[\left\langle\mathbf{u}_{\lambda}, \tilde{\mathbf{u}}_{\tilde{\lambda}}{ }^{2}\right]\right.$ but a simple interpretation
> From the previous overlaps of M's with \mathbf{C} one gets:

$$
\begin{aligned}
\mathbf{u}_{\lambda} & =\frac{1}{\sqrt{N}} \int \mathrm{~d} \mu \varrho_{C}(\mu) \sqrt{\Phi_{0}(\mu, \lambda)} \varepsilon(\mu, \lambda) \mathbf{v}_{\mu} \\
\left\langle\mathbf{u}_{\lambda}, \mathbf{u}_{\lambda^{\prime}}^{\prime}\right\rangle & =\frac{1}{N} \int \mathrm{~d} \mu \varrho_{C}(\mu) \sqrt{\Phi_{0}(\mu, \lambda) \Phi_{0}\left(\mu, \lambda^{\prime}\right)} \varepsilon(\mu, \lambda) \varepsilon\left(\mu, \lambda^{\prime}\right)
\end{aligned}
$$

> «Ergodic hypothesis »: all $\varepsilon(\mu, \lambda)$ for different μ, λ are independent

$$
\Phi\left(\lambda, \lambda^{\prime}\right)=\int \mathrm{d} \mu \varrho_{C}(\mu) \Phi_{0}(\mu, \lambda) \Phi_{0}\left(\mu, \lambda^{\prime}\right)
$$

\rightarrow A simple « triangle » formula (that appears to depend on C)

From the convolution formula back to the Oracle estimator

\rangle Consider $\nu_{i}(q):=\left\langle\mathbf{u}_{i}, \tilde{\mathbf{S}} \mathbf{u}_{i}\right\rangle$ where $\tilde{\mathbf{S}}$ is an independent realisation of the covariance matrix
$>$ Then using the convolution formula, one can easily show that $\nu_{i}(q)$ coincides with $\widehat{\xi}_{i}$ In other words, $\tilde{\mathbf{S}}$ can be used as a proxy to \mathbf{C} in the Oracle formula
$>$ This cross-validation, or « out of sample » estimator simplifies considerably the numerical estimation of $\widehat{\xi}_{i}$

$$
\widehat{\xi}_{i}=\sum_{j=1}^{N}\left\langle\mathbf{u}_{i} \mid \mathbf{v}_{j}\right\rangle^{2} c_{j}
$$

$>$ Free Random Matrices results for Stieltjes transforms can be extended to the full resolvant matrix \rightarrow access to overlaps
> Large dimension « miracles $»$:

- The Oracle estimator can be estimated
- The hypothesis that large matrices are generated from the same underlying matrix C can be tested without knowing C
- True statistical test at large N ?
- RIE for cross-correlation SVDs (en route with F Benaych \& M Potters)
- Overlaps for covariances matrices computed on overlapping periods?
- Dyson motion description for correlation matrices?
- Generalisation of Freeness, interpolating between commuting and free?
- Beyond RIE? Prior on eigenvectors?

