

Outline

Background:
 Electrical matrix equations

Geometry of a graph

Adjacency matrix A

$$
A_{N \times N}=\left[\begin{array}{cccccc}
0 & 1 & 1 & 0 & 0 & 1 \\
1 & \mathrm{Q} & 1 & 0 & 1 & 1 \\
1 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 1 \\
1 & 1 & 0 & 0 & 1 & 0
\end{array}\right]
$$

For an undirected graph: $A=A^{\top}$ is symmetric
Number of neighbors of node i is the degree: $\quad d_{i}=\sum_{k=1}^{N} a_{i k}$
if there is a link between node i and j , then $\mathrm{a}_{\mathrm{ij}}=1$
else $\mathrm{a}_{\mathrm{ij}}=0$ TUDelft

Incidence matrix B

Col sum B is zero: $\quad u^{T} B=0$
where the all-one vector $u=(1,1, \ldots, 1)$

Laplacian matrix Q

$$
Q_{N \times N}=\left[\begin{array}{cccccc}
3 & -1 & -1 & 0 & 0 & -1 \\
-1 & 4 & -1 & 0 & -1 & -1 \\
-1 & -1 & 3 & -1 & 0 & 0 \\
0 & 0 & -1 & 2 & -1 & 0 \\
0 & -1 & 0 & -1 & 3 & -1 \\
-1 & -1 & 0 & 0 & -1 & 3
\end{array}\right]
$$

$Q=B B^{T}=\Delta-A \quad$ Since $B B^{T}$ is symmetric, so are
$\Delta=\operatorname{diag}\left(\begin{array}{llll}d_{1} & d_{2} & \ldots & d_{N}\end{array}\right)$ A and Q. Although B specifies directions, A and Q lost this info here.

Basic property: $Q u=0$
u is an eigenvector of Q Belonging to eigenvalue $\mu=0$
$Q u=B B^{T} u=0 \quad$ because $0=u^{T} B=B^{T} u$ THDelft

Function of network

- Usually, the function of a network is related to the transport of items over its underlying graph
- In man-made infrastructures: two major types of transport
- Item is a flow (e.g. electrical current, water, gas,...)
- Item is a packet (e.g. IP packet, car, container, postal letter,...)
- Flow equations (physical laws) determine transport (Maxwell equations (Kirchhoff \& Ohm), hydrodynamics, NavierStokes equation (turbulent, laminar flow equations, etc.)
- Protocols determine transport of packets (IP protocols and IETF standards, car traffic rules, etc.)

Linear dynamics on networks

Linear dynamic process: "proportional to" (\sim) graph of network

Examples:

- water (or gas) flow ~ pressure
- displacement (in spring) ~ force
- heat flow ~ temperature
- electrical current \sim voltage

$\mathrm{X}=$	Q	C		
injected				
nodal				
current				
vector			\quad	weighted
:---				
Laplacian				
of the				
graph	\quad	nodal		
:---				
potential				
vector				

Pseudoinverse of the Laplacian (review)

The inverse of the current-voltage relation $x=Q v$
is the voltage-current relation $\quad v=Q^{\dagger} \boldsymbol{X}$
subject to $u^{T} x=0$ and $u^{T} v=0$
The spectral decomposition

$$
\tilde{Q}=\sum_{k=1}^{N-1} \tilde{\mu}_{k} z_{k} z_{k}^{T}
$$

allows us to compute the pseudoinverse (or Moore-Penrose inverse)

$$
Q^{\dagger}=\sum_{k=1}^{N-1} \frac{1}{\tilde{\mu}_{k}} z_{k} z_{k}^{T}
$$

The effective resistance $N \times N$ matrix is $\widetilde{\Omega}=u \zeta^{T}+\zeta u^{T}-2 Q^{\dagger}$, where the $N \times 1$ vector $\zeta=\left(Q_{11}^{\dagger}, Q_{22}^{\dagger}, \cdots, Q_{N N}^{\dagger}\right)$
An interesting graph metric is the effective graph resistance

$$
R_{G}=N u^{T} \zeta=N \operatorname{trace}\left(Q^{\dagger}\right)=N \sum_{k=1}^{N-1} \frac{1}{\mu_{k}}
$$

Inverses: $x=Q v \Leftrightarrow v=Q^{\dagger} \boldsymbol{x} \quad$ with voltage reference $u^{T} v=0$
Q^{\dagger} : pseudoinverse of the weighted Laplacian obeying $Q Q^{\dagger}=Q^{\dagger} Q=I-\frac{1}{N} J$
$J=u u^{T}$: all-one matrix
u : all-one vector
Unit current injected in node i
nodal potential of i $v_{i}=Q_{i i}^{\dagger}$

The best spreader is node k with $\boldsymbol{Q}_{\boldsymbol{k} \boldsymbol{k}}^{\dagger} \leq \boldsymbol{Q}_{\boldsymbol{i} \boldsymbol{i}}^{\dagger}$ for $1 \leq i \leq N$

Outline

Background: Electrical matrix equations

Geometry of a graph

THDelft

Three representations of a graph

Topology domain

$A_{N \times N}=\left[\begin{array}{cccccc}0 & 1 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 1 \\ 1 & 1 & 0 & 0 & 1 & 0\end{array}\right]$

Devriendt, K. and P. Van Mieghem, 2018, "The Simplex Geometry of Graphs Delft University of Technology, report20180717. (http://arxiv.org/abs/1807.06475).

Spectral domain
$A=A^{T}=X \Lambda X^{T}$
$X_{N \times N}$: orthogonal eigenvector matrix
$\Lambda_{N \times N}$: diagonal eigenvalue matrix

Geometric domain

Undirected graph on N nodes
= simplex in Euclidean (N -1)-dimensional space
is book comprises, in addition to auxiliary material, the research on which I have worked for over 50 years."
Cambridge
Cambridge

What is a simplex?

Roughly: a simplex is generalization of a triangle to N dimensions

Potential: Euclidean geometry is the oldest, mathematical theory

Spectral decomposition weighted Laplacian

Spectral decomposition: $\quad Q=Z M Z^{T}$
where $M=\operatorname{diag}\left(\mu_{1}, \mu_{2}, \cdots, \mu_{N-1}, 0\right)$, because $Q u=0$
and the eigenvector matrix Z obeys $Z^{\top} Z=Z Z^{\top}=I$ with structure
$\begin{aligned} \text { node } \underset{Z}{\Longrightarrow}\end{aligned}\left[\begin{array}{cccc}\left(z_{1}\right)_{1} & \left(z_{2}\right)_{1} & \cdots & \left(z_{N}\right)_{1} \\ \left(z_{1}\right)_{2} & \left(z_{2}\right)_{2} & \cdots & \left(z_{N}\right)_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \left(z_{1}\right)_{N} & \left(z_{2}\right)_{N} & \cdots & \left(z_{N}\right)_{N}\end{array}\right]=\left[\begin{array}{cccc}\left(z_{1}\right)_{1} & \left(z_{2}\right)_{1} & \cdots & 1 / \sqrt{N} \\ \left(z_{1}\right)_{2} & \left(z_{2}\right)_{2} & \cdots & 1 / \sqrt{N} \\ \vdots & \vdots & \ddots & \vdots \\ \left(z_{1}\right)_{N} & \left(z_{2}\right)_{N} & \cdots & 1 / \sqrt{N}\end{array}\right]$

Spectral decomposition weighted Laplacian (2)

Only for a positive semi-definite matrix, it holds that

$$
Q=Z M Z^{T}=(Z \sqrt{M})(Z \sqrt{M})^{T}
$$

The matrix $S=(Z \sqrt{M})^{T}$ obeys $Q=S^{T} S$ and has rank $N-1$ (row $N=0$ due to $\mu_{N}=0$)

$$
S=\left[\begin{array}{cccc}
\sqrt{\mu_{1}}\left(z_{1}\right)_{1} & \sqrt{\mu_{1}}\left(z_{1}\right)_{2} & & \cdots \\
\sqrt{\mu_{1}}\left(z_{1}\right)_{N} \\
\sqrt{\mu_{2}}\left(z_{2}\right)_{1} & \sqrt{\mu_{2}}\left(z_{2}\right)_{2} & & \cdots \\
\vdots & \sqrt{\mu_{2}}\left(z_{2}\right)_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\sqrt{\mu_{N-1}}\left(z_{N-1}\right)_{1} & \sqrt{\mu_{N-1}}\left(z_{N-1}\right)_{2} & \ldots & \sqrt{\mu_{N-1}}\left(z_{N-1}\right)_{N} \\
0 & 0 & & 0
\end{array}\right]
$$

$Q=\sum_{k=1}^{N-1} \mu_{k} Z_{k} Z_{k}^{T}$
THDelft

Geometrical representation of a graph

$$
S=\left[\begin{array}{cccc}
\sqrt{\mu_{1}}\left(z_{1}\right)_{1} & \sqrt{\mu_{1}}\left(z_{1}\right)_{2} & \cdots & \sqrt{\mu_{1}}\left(z_{1}\right)_{N} \\
\sqrt{\mu_{2}}\left(z_{2}\right)_{1} & \sqrt{\mu_{2}}\left(z_{2}\right)_{2} & \cdots & \sqrt{\mu_{2}}\left(z_{2}\right)_{N} \\
\vdots & \vdots & \ddots & \vdots \\
\sqrt{\mu_{N-1}}\left(z_{N-1}\right)_{1} & \sqrt{\mu_{N-1}}\left(z_{N-1}\right)_{2} & \ldots & \sqrt{\mu_{N-1}}\left(z_{N-1}\right)_{N} \\
0 & 0 & & 0
\end{array}\right]
$$

The i-th column vector $s_{i}=\left(\sqrt{\mu_{1}}\left(z_{1}\right)_{i}, \sqrt{\mu_{2}}\left(z_{2}\right)_{i}, \cdots, \sqrt{\mu_{N}}\left(z_{N}\right)_{i}=0\right)$ represents a point p_{i} in ($N-1$)-dim space (because S has rank $N-1$)

18

Faces of a simplex
Each connected, undirected graph on N nodes corresponds to 1 specific simplex in $N-1$ dimensions (Fiedler)
V is a set of vertices of the simplex in \mathbb{R}^{N-1}, corresponding to a set of nodes in the graph G

1

A face $F_{V}=\left\{p \in \mathbb{R}^{N-1} \mid p=S x_{V}\right.$ with $\left(x_{V}\right)_{i} \geq 0$ and $\left.u^{T} x_{V}=1\right\}$
The vector $x_{V} \in \mathbb{R}^{N}$ is a barycentric coordinate with $\begin{cases}\left(x_{V}\right)_{i} \in \mathbb{R} & \text { if } i \in V \\ \left(x_{V}\right)_{i}=0 & \text { if } i \notin V\end{cases}$

Centroids

$$
c_{V}=S \frac{u_{V}}{|V|} \text { is the centroid of face } F_{V} \text { with }\left(u_{V}\right)_{i}=1_{i \in V}
$$

a centroid of a face is a vector

centroid of simplex is origin
$u_{V}=u-u_{V} \rightarrow|V| c_{V}=S\left(u-u_{V}\right)=-(N-V) c_{V}$ TUWDelft

Geometric representation of a graph

$\left\|s_{i}\right\|_{2}^{2}=d_{i} \quad\left\|s_{i}-s_{j}\right\|_{2}^{2}=\left(s_{i}-s_{j}\right)^{T}\left(s_{i}-s_{j}\right)=s_{i}^{T} s_{i}+s_{j}^{T} s_{j}-2 s_{i}^{T} s_{j}$

$$
\begin{aligned}
& =Q_{i i}+Q_{j j}-2 Q_{i j} \\
& =d_{i}+d_{j}+2 a_{i j} \text { for } i \neq j, \text { else zero }
\end{aligned}
$$

The matrix with off-diagonal elements $d_{i}+d_{j}+2 a_{i j}$ is a distance matrix (if the graph G is connected)

The geometric graph representation is not unique (node relabeling changes Z)
$s_{i}^{T} s_{j}=\sum_{k=1}^{N-1} \sqrt{\mu_{k}}\left(z_{k}\right)_{i} \sqrt{\mu_{k}}\left(z_{k}\right)_{j}=\sum_{k=1}^{N-1} \mu_{k}\left(z_{k} z_{k}^{T}\right)_{i j}=Q_{i j}$
$Q=\sum_{k=1}^{N-1} \mu_{k} z_{k} z_{k}^{T}$ and $Q=S^{T} S$
THDelft

Geometry of a graph (dual representation)

Spectral decomposition: $Q^{\dagger}=Z M^{\dagger} Z^{T}=\left(Z \sqrt{M^{\dagger}}\right)\left(Z \sqrt{M^{\dagger}}\right)^{T}$
The matrix $S^{\dagger}=\left(Z \sqrt{M^{\dagger}}\right)^{T}$ has rank $N-1$ and $Q^{\dagger}=\left(S^{\dagger}\right)^{T} S^{\dagger}$
The i-th column vector s_{i}^{\dagger} obeys

Volume of simplex and inverse simplex of a graph

Volume of the simplex

$$
V_{G}=\frac{N}{(N-1)!} \sqrt{\xi}
$$

where the number of (weighted) spanning trees ξ is $\xi=\frac{1}{N} \prod_{k=1}^{N-1} \mu_{k}$
Volume of the inverse simplex
$V_{G}^{+}=\frac{1}{(N-1)!\sqrt{\xi}}$
Hence: $\quad \frac{V_{G}}{V_{G}^{+}}=N \xi=\prod_{k=1}^{N-1} \mu_{k}$

Steiner ellipsoid of simplex

projection $s_{1}^{T} \epsilon_{2}=\mu_{2}\left(z_{2}\right)_{1}$
semi-axis: $\left\|\epsilon_{2}\right\|=\sqrt{\frac{N}{N-1} \mu_{2}}$
volume:
$V_{\varepsilon_{S}}=\frac{\pi^{N / 2}}{\Gamma(N / 2+1)} \frac{N^{N / 2}}{(N-1)^{N / 2}} \sqrt{\prod_{k=1}^{N} \mu_{k}}$
Hence,

$$
V_{\varepsilon_{S}}^{2}=\frac{(N \pi)^{N}}{(\Gamma(N / 2+1))^{2}(N-1)^{N}} \prod_{k=1}^{N} \mu_{k}
$$

altitude(s) in a simplex

$\left\|a_{\{2\}}\right\|^{2}=\frac{1}{Q_{22}^{\dagger}}$
Fiedler

$\left\|a_{2}^{+}\right\|^{2}=\frac{1}{d_{2}}$

The altitude from a vertex s_{i}^{+}to the complementary face $F_{\{l\}}^{+}$in the inverse simplex (dual graph representation) has a length equal to the inverse degree of node i
recall that $Q_{i i}^{\dagger}=v_{i}$ (nodal potential, best spreader)
TUD ${ }^{T}$ fft

Metrics $\sqrt{\omega_{i j}}$ and $\omega_{i j}$
$\left\|s_{i}^{\dagger}-s_{j}^{\dagger}\right\|_{2}=\sqrt{\omega_{i j}}$
the Euclidean distance between vertices of inverse simplex S^{\dagger}

vertices of S^{\dagger} are an embedding of nodes of the graph G
according to the metric $\sqrt{\omega_{\mathrm{ij}}}$ (a.o. obeying the triangle inequality)

Also $\left\|s_{i}^{\dagger}-s_{j}^{\dagger}\right\|_{2}^{2}=\omega_{i j}$ is a metric
Inverse simplex S^{\dagger} of the graph G with positive link weights is hyperacute

Generalization metrics

Q^{\dagger} is the Gramm matrix of a hyperacute simplex $S^{+} \rightarrow$ determines a metric
$m_{i j}^{(f)}=\left(e_{i}-e_{j}\right)^{T}(f(Q))^{\dagger}\left(e_{i}-e_{j}\right)$ is a metric when $f(Q)$ is a Laplace matrix
"Statistical physics" metrics on a graph
$m_{i j}^{(s t a t(g))}=\left(e_{i}-e_{j}\right)^{T}\left(e^{\left(Q+p Q_{K}\right) t}-I+g Q_{K}\right)^{\dagger}\left(e_{i}-e_{j}\right)=\sum_{k=1}^{N-1} \frac{\left.\left(\left(z_{k}\right)-\left(z_{k}\right)\right)_{j}\right)^{2}}{e^{\left(\mu_{k}+p N\right) t}+g}$
with $t=\frac{1}{k_{B} T}$ and $p N=-E_{f}$ (chemical potential or Fermi energy)
$\mathrm{g}=-1 \rightarrow$ Bose-Einstein
$\mathrm{g}=0 \rightarrow$ Maxwell-Boltzmann
$\mathrm{g}=1 \rightarrow$ Fermi-Dirac

Summary

- Linearity between process and graph naturally leads to the weighted Laplacian Q and its pseudoinverse Q^{\dagger}
- Spectral decomposition of the weighted Laplacian Q and its pseudoinverse Q^{\dagger} provides an $N-1$ dimensional simplex representation of each graph,
- allowing computations in the $N-1$ dim. Euclidean space (in which a distance/norm is defined)
- geometry for (undirected) graphs
- Open: "Which network problems are best solved in the simplex representation?"

Books	
Performance Analysis of Complex Networks and Systems Piet Van Mieghem Graph Spectra for Complex Networks Piet Van Mieghem	Data Communications Networking
Articles: http://www.nas.ewi.tudelft.nl	30
	TUDelft

