Introducing Software
Carpentry

Alan O'Cais, JSC
April 2018

-

sbftware carpentry

%) jLicH

The Mission

The Carpentries make researchers in science,
engineering, and medicine more productive by
teaching them basic lab skills for scientific
computing

The Problem

e Scientists spend more and more time building
and using software

o Most are primarily self-taught
e Hard to measure how well they do things
e But anecdotal evidence suggests "not very"

The Carpentries Solution

» Scientists teaching scientists

» Two days of hands-on learning

the Unix shell = automate repetitive tasks
Git and GitHub = track and share work
Python or R = build modular code

SQL = manage data

Advertise the tool, teach the thinking

Why Workshops?

» Scientists don't know what questions to ask

» Or how to recognize a useful answer when they
find one

e Most online tutorials are aimed at commercial
developers, not researchers

e And many focus on HPC but ignore pre-
requisite skills

Outcomes

e 10-20% improvement in productivity is common

e« 10X Isn't rare

e Do the old things faster

e Tackle new problems

» Ready for HPC, the cloud, big data, ...

o Start doing open science

The Detalls

» Materials are all open access

¢ |nstructors are volunteers

e Host site pays for instructor travel and
accommodation

e Administrative fee to cover central costs if we're
helping organize

Principles of

Computational
Thinking

sbftware carpentry

%) 10LICH

Seven Big Ideas

. It's all data.

Data Is meaningless without interpretation.

Programming_is about creating_abstractions.

Models for computers, views for people.

Paranoia makes us productive.

S I

. Algorithms beat hardware.

7. The tool shapes the hand.

Principle #1
It's All Data

» Papers, observations, and images are all stored
as 1'sand O's.

e Source code is just text files
= So it can be manipulated like text.

e A program in memory is just bytes

» Manipulating those bytes is no different from
manipulating characters or pixels.

Principle #2

Data Is Meaningless
Without Interpretation

* 01100100011000010111100001100001 Is:

= the word "data"

= or the integer 1,684,108,385

= Oor the number 1.663561360226315%9e+22

= Or a bluish-gray pixel that's slightly transparent
= Et cetera

» Because computer don't understand: they obey

Principle #3

Programming Is About
Creating Abstractions

» Short-term memory can only hold 7£2 item.
» Must put details into groups (of groups...)

» Most features of programming languages exist
to help do this.

Principle #3

Programming Is About
Creating Abstractions

1. Separate interface (what something does) from
implementation (how it works).

2. Value clarity over cleverness.

Principle #4

Models For Computers,
Views For People

» A model is a representation that is easy for a
computer to operate on.

e A view Is a display that people can understand.

e Store models - show views.

Principle #4

Title
Hello, world!

h

Title Hello

<hi>Title<’/h1> .
<p>Hello, world!<iem></p> |

Principle #5

Paranoia makes us productive.

» Best way to improve productivity is to improve
quality.

» Write tests to clarify meaning as well as to catch
errors.

o Automate, automate, automate.

Principle #6

Algorithms beat hardware.

Data Size O(logn) O(n) O(n?%) 0(2")
1 1 1 1 1
10 2.3 10 100 1024
100 4.5 100 10,000 1.26x10%°

Principle #7

The tool shapes the hand.

 Knowing how tools work gives you new ideas
about how to use them.

e And about what new tools you could create.

Software Carpentry:
Lessons Learned

sbftware carpentry

4) JoLicH

Not an Overnight Success

Los Alamos National Laboratory, July 1998

If you were born then, you can drive now.

Why We Exist

HPC, the cloud, big data the other 92%

Lesson #1

Most researchers think programming is
a tax they have to pay to do science.

"If | wanted to be a computer scientist,
| would have picked a different major in undergrad.”

Lesson #2

They don't care about reproducibility.

* Five million papers published 1990-2000.
e 100 retracted for computational reasons.
e S0 odds of retraction = 1 in 50,000.

o Average paper takes eight months to produce.

o Reproducibility worth 7715 seconds per paper.

Lesson #3

They care a lot about productivity.

 And about being able to tackle new problems.

e« And about their careers.

Lesson #4

The curriculum is full.
» "What do | drop to make room for more

computing: quantum or thermo?"

e 5 minutes per lecture = 4 courses in a degree

e Have to fit in around the curriculum until we
achieve critical mass

What Winning Looks Like

Reviewers % Papers
2 10%

3 40%

4 40%

5 10%

P(at least one reviewer is a believer) 50%
P(single reviewer is a believer) 18.3%

We only have to change the mind of 1 scientist in 5

Lesson #5

It's all in the details.

Two days Charge a fee
Live coding Sticky notes
Group signup Peer instructors

Lesson #6

Incentives, incentives, incentives.

Save the world Make new friends
Self-defense Teach to learn

Boost their careers

Lesson #7/

There's a lot we don't know.

 How to measure programmers' productivity?

 How to measure scientists' productivity?
e The unknowns don't cancel out

Our biggest failing is lack of systematic assessment

Lesson #8

There's a lot we do know.

How to Teach
Programming

HOW gy (And Other Things)
LEARNING R

WORKS

" § Research-Based Principles
for Smart Teaching

For Example

e Subgoals improve performance

e Practice works best for facts,
worked examples for skills

e Peer instruction beats lecture

e Media-first increases retention

Lesson #9

Most people would rather fail than change.

Most scientists treat research on teaching and
programming like most politicians treat research on
climate change.

Lesson #10

Open isn't just for science.

e Our lessons have had over 150 contributors

e We can write them the way we write software
and encyclopedias

Open collaboration is the real revolution.

VWhat can we take
from this:
Teaching Tips

sbftware carpentry

4) JoLicH

Skill levels

o

b 5,

(10)

T,

MNovice

Competent
Practtioner

Expert

1)

I'm not sure what
questons to ask

2

11
I'm pretty conhdent,
but I stil look stuff up
b 99

13

I've baen dong this
on a daily basis for
years!

33

-

Expenence level

Who Teaches and Why??

o Carpentries instructors are scientists in many
career stages, from many fields

e Most are not computer scientists or software
engineers

e "Conscious competence”: still new enough to
relate to beginners

 Many follow learner — helper — instructor path

Who Teaches and Why??

o Carpentries instructors are scientists in many
career stages, from many fields

e Most are not computer scientists or software
engineers

e "Conscious competence”: still new enough to
relate to beginners

 Many follow learner — helper — instructor path

Motivation

Motivation is the best predictor of learning.

1. Explain how these skills help your own research

2. Have learners sign up in groups
3. Follow learners' questions off the lesson

4. Have helpers give individual assistance

Demotivation

Avoid crushing their enthusiasm.

1. Enforce the code of conduct.
2. Avoid the passive dismissive "just”.
3. Avoid cognitive overload.

4. If a problem can't be fixed quickly, have the
person pair up.

Active Learning

Active learning beats passive observation.

1. Have learners type along as you teach.

2. Don't go more than 10 minutes without hands-
on work.

Feedback

Everyone needs to know where they are.

1. Get real-time feedback ("OK/not OK") via
colored sticky notes.

2. Get short written feedback ("minute cards") at
every break.

3. Respond to the feedback even (especially) if it
means teaching less.

Live Coding

No slides.

1. Start with a blank window — just like they will.
2. Having to type stops you from racing ahead.

3. Seeing you make mistakes gives them
permission to.

4. Seeing you diagnose and fix mistakes shows
them how to.

Pacing

People can't concentrate for more than an hour.

» Each major topic is 4 or 5 half-hour chunks over
half a day.

e Get them out of their seats at each break.

Helpers

Never teach alone.

1. Former learners / local volunteers / the other
instructor(s).

2. Help learners with setup and challenges, take
notes on Etherpad, ...

3. Provide feedback to instructors.

Collaboration

Never learn alone.

1. Pair early, pair often.

2. Use Etherpad for note-taking and chat.
3. Use Git if/when learners are comfortable with it.

Assessment

Know your audience.

1. Pre-workshop survey drives workshop planning.

2. Challenges during workshops for formative
assessment.

3. Post-workshop survey of learners...

4. ...and debriefing for instructors.

Instructor Training

Two-day class with the following overall goals:

1. Introduce evidence-based best-practices of teaching.
2. Teach you how to create a positive environment for learners.

3. Provide opportunities for you to practice and build your
teaching skills.

4. Help you become integrated into the community.

5. Prepare you to use these teaching skills in workshops.

VWhat can we take
from this:
Hosting a Workshop

—

sbftware carpentry

4) JoLicH

Format

e 40 learners + 2 instructors per room

e Plus as many (local) helpers as possible

e Two (or more) rooms in parallel lets us stream
people by prior experience

e Dinner-style seating, good WiFi, lots of power
plugs, unlocked washrooms, ...

Flying Solo

o All materials are open access including a
workshop template

e You can run a workshop on your own whenever
you want without a fee

e Or use materials in other courses

e Must have at least one certified instructor and
cover core topics to use the Carpentries name

and logo
= See FAQ for details

VWhat can we take
from this:
Creating a lesson

sbftware carpentry

4) JoLicH

VWhat

Create a new lesson for Software Carpentry

https://github.com/swcarpentry/styles

Why a Template?

1. Simplify contribution

2. Ensure uniform appearance and metadata

How

1. Use GitHub Import to create a new repository
with material from styles

2. Clone to desktop
3. Edit according to rules in lesson-example

4. Check

Why?

e Authors may work on many lessons

» But a user can only fork a repo once on GitHub

Template vs. Example

 styles has CSS, tools, etc. that may be updated
centrally

e lesson-example is explanations that shouldn't
be merged into lessons over and over again

e Separate repositories are less confusing than
two "main” branches in one repository

1. Create Repository

» Not a fork of styles
e Use GitHub Import with

source URL

e Name it topic-level or topic-level-something
= E.g., shell-novice
= Or python-novice-inflammation

e Can be owned by anyone

2. Clone to Desktop

$ git clone -b gh-pages git@github.com:user/some-lesson.git

e Make sure you're not already in a Git repository

e -b gh-pages to put it in the gh-pages branch

3. Edit and Check

» See the README for general instructions

= And lesson layout for details
= There are notes on design
= And an FAQ (additions welcome)

What's in the Template?

e Page layout templates
e CSS and images

» Validation tool
» Please run this before pushing changes

What's in the Example?

e Example lesson files (home page, topics, etc.)

» Description of required files and formatting rules

Updating
» We occasionally update the CSS, icons, etc.

$ git remote add template
https://github.com/swcarpentry/styles.git
$ git pull template gh-pages

e Call the remote template rather than upstream

Source Formats

» |Python Notebooks are difficult to diff and merge

» Other formats (e.g., reStructured Text) are only
used by one community

Template Contents

Sub-directories for formatting

e layouts: page templates

e includes: included HTML snippets
« Named to be consistent with workshop-template

Required Files

Index.md: lesson’'s home page

discussion.md: general discussion and pointers
instructors.md: instructor's guide

reference.md: reference guide for learners

Required Files

nn-topic.md: topics within lesson

e E.g., O1-select.md

e Each should be 10-15 minutes long

These are for instructors and offline reference,
not to be shown to learners during teaching

Required Files

Sub-directories for lesson files

e code: source code
e data: data files
e fig: figures

Existing Lessons

» Please let them know when you start to work on
another one so we can advertise it

HPC Carpentry

HPC Carpentry:
Teaching basic skills for high-performance computing.

HETLI This by Vha dbeaf) B aepaaloy seleasr, Cormmaals snd bepdbad b sre mrleen,

HPC Carpentry

What has been done?

e Two HPC novice lessons in the wild
e BoF session at SC17

Site specifics in HPC space make lesson
collaboration that much harder

CSA could look at application-specific lessons for
HPC

Thank you for listening!

ﬂmrm versity'€ ife.fiﬁF
- NTRYCO ;201_8

Bu I:HI;J; ally, Cor lﬁ'fﬂﬂé_{fblu_}

] o ClrT panei
l-"" -

This slide deck is based on
https://github.com/swcarpentry/slideshows

