Exhaustive search of convex pentagons which tile the plane

Michaël Rao

École Normale Supérieure de Lyon / CNRS, LIP, MC2 team
Question [Karl Reinhardt (1918)]

Which convex polygon can tile the plane?
(allowing rotations/translations/mirrors)
Question [Karl Reinhardt (1918)]
Which convex polygon can tile the plane?
(allowing rotations/translations/mirrors)

- Every triangle and quadrilateral tiles the plane
Question [Karl Reinhardt (1918)]

Which convex polygon can tile the plane?
(allowing rotations/translations/mirrors)

- Every triangle and quadrilateral tiles the plane
- No convex polygon with 7 (or more) sides can tile the plane
Question [Karl Reinhardt (1918)]
Which convex polygon can tile the plane?
(allowing rotations/translations/mirrors)

- Every triangle and quadrilateral tiles the plane
- No convex polygon with 7 (or more) sides can tile the plane
- There are 3 “types” of hexagons which tile the plane
Every triangle and quadrilateral tiles the plane
No convex polygon with 7 (or more) sides can tile the plane
There are 3 “types” of hexagons which tile the plane
Question [Karl Reinhardt (1918)]

Which convex polygon can tile the plane?
(allowing rotations/translations/mirrors)

- Every triangle and quadrilateral tiles the plane
- No convex polygon with 7 (or more) sides can tile the plane
- There are 3 “types” of hexagons which tile the plane

- Only one open case: Pentagons
From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
Pentagons: history

From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
 (and announces, without proof, that the list is complete)
From 1918 to 2015, 15 types of convex pentagons tiling the plane where found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
 (and announces, without proof, that the list is complete)
- James (1975): Type 10
From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
 (and announces, without proof, that the list is complete)
- James (1975): Type 10
- Rice (1977): Types 9, 11, 12 and 13
From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
 (and announces, without proof, that the list is complete)
- James (1975): Type 10
- Rice (1977): Types 9, 11, 12 and 13
- Stein (1985): Type 14
From 1918 to 2015, 15 types of convex pentagons tiling the plane were found:

- Reinhardt (1918): Types 1 to 5
- Kershner (1968): Types 6, 7, 8
 (and announces, without proof, that the list is complete)
- James (1975): Type 10
- Rice (1977): Types 9, 11, 12 and 13
- Stein (1985): Type 14
What is a “type”?

A “type” is a set of pentagons
What is a “type”?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

Examples:
- Type 1: $\alpha_1 + \alpha_2 = \pi$
- Type 2: $\alpha_1 + \alpha_3 = \pi$ and $\ell_1 = \ell_3$
- Type 4: $\alpha_3 = \alpha_5 = \pi/2$, $\ell_2 = \ell_3$ and $\ell_4 = \ell_5$...
What is a “type”?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

A type is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $v \cdot \alpha = 2\pi$ with $v \in \mathbb{N}^5$)
- a set C_l of linear conditions on sides (form: $v \cdot \ell = 0$ with $v \in \mathbb{Z}^5$)
What is a “type”?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

A *type* is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $v \cdot \alpha = 2\pi$ with $v \in \mathbb{N}^5$)
- a set C_l of linear conditions on sides (form: $v \cdot \ell = 0$ with $v \in \mathbb{Z}^5$)

A type *tiles*: all pentagons in this set tile with a same (periodic) pattern
What is a “type”?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

A type is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $\nu \cdot \alpha = 2\pi$ with $\nu \in \mathbb{N}^5$)
- a set C_l of linear conditions on sides (form: $\nu \cdot \ell = 0$ with $\nu \in \mathbb{Z}^5$)

A type tiles: all pentagons in this set tile with a same (periodic) pattern (but other tilings are possible)
What is a “type”?

A “type” is a set of pentagons (a type is not a tiling, neither a set of tiling...)

A type is all the pentagons that respect

- a set C_a of linear conditions on angles (form: $v \cdot \alpha = 2\pi$ with $v \in \mathbb{N}^5$)
- a set C_l of linear conditions on sides (form: $v \cdot \ell = 0$ with $v \in \mathbb{Z}^5$)

A type tiles: all pentagons in this set tile with a same (periodic) pattern (but other tilings are possible)

Examples:

- Type 1: $\alpha_1 + \alpha_2 = \pi$
- Type 2: $\alpha_1 + \alpha_3 = \pi$ and $\ell_1 = \ell_3$
- Type 4: $\alpha_3 = \alpha_5 = \pi/2$, $\ell_2 = \ell_3$ and $\ell_4 = \ell_5$
- ...
We present an exhaustive search of all convex pentagons which tile the plane.
We present an exhaustive search of all convex pentagons which tile the plane.

Let \mathcal{P} be a convex pentagon which tiles the plane.

- **Part 1**: There exist a tiling by \mathcal{P} such that each vertex category has positive density.
- The set of vertex category (i.e. conditions implied by angles) must be “good”
- **Part 2**: There are only 371 good sets to consider
- **Part 3**: For each good set: we do an exhaustive search
- **Result**: we found only the 15 known families (and some special cases).
Let \mathcal{P} be a convex pentagon

- the vertices are s_1, \ldots, s_5, in clockwise order
- the angles are respectively $\alpha_1 \times \pi, \ldots, \alpha_5 \times \pi$

\[
\forall 1 \leq i \leq 5, \quad 0 < \alpha_i < 1
\]

\[
\sum_{i=1}^{5} \alpha_i = (1, 1, 1, 1, 1) \cdot \alpha = 3
\]
Let \mathcal{P} be a convex pentagon

- the vertices are s_1, \ldots, s_5, in clockwise order
- the angles are respectively $\alpha_1 \times \pi, \ldots, \alpha_5 \times \pi$

\[\forall 1 \leq i \leq 5, \quad 0 < \alpha_i < 1 \]

\[\sum_{i=1}^{5} \alpha_i = (1, 1, 1, 1, 1) \cdot \alpha = 3 \]

Let \mathcal{T} be tiling of the plane by \mathcal{P} (we allow rotation/translation/mirror)

(Note: no hypothesis on periodicity / transitivity)
Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The \textit{vector category} of s, denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s.
Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The vector category of s, denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s.

For every vertex s, $V(s) \cdot \alpha = 2$
Let s be a vertex of T (i.e. a vertex of one pentagon in T)

The vector category of s, denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s.

For every vertex s, $V(s) \cdot \alpha = 2$

\mathcal{W} : set of vectors categories of vertices in T.

Attention ! Two cases of vertices:

"Half" : s is in the border of a tile P, but not a vertex of P

"Full" : s is a vertex of every tile around s

We have to "correct" the vector category of "half" vertices.

Here, for the sake of simplicity, we do not talk about half vertices...
Vector category

Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The vector category of s, denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s.

For every vertex s, $V(s) \cdot \alpha = 2$

\mathcal{W} : set of vectors categories of vertices in \mathcal{T}. \mathcal{W} is finite
Vector category

Let s be a vertex of \mathcal{T} (i.e. a vertex of one pentagon in \mathcal{T})

The vector category of s, denoted $V(s)$, is the vector $v \in \mathbb{N}^5$ s.t. there are v_i angles s_i around s.

For every vertex s, $V(s) \cdot \alpha = 2$

\mathcal{W} : set of vectors categories of vertices in \mathcal{T}. \mathcal{W} is finite

Attention ! Two cases of vertices:

- “Half” : s is in the border of a tile P, but not a vertex of P
- “Full” : s is a vertex of every tile around s

We have to “correct” the vector category of “half” vertices.

Here, for the sake of simplicity, we do not talk about half vertices...
A toy problem

Suppose that the density of each vector category is definite.

\[
density(\nu) = \frac{\text{number of vertices } s \text{ with } V(s) = \nu}{\text{number of tiles}}
\]

What are the densities of \(\nu_a \)',s, \(\nu_b \)',s, \(\nu_c \)',s?

\[
\Rightarrow \quad density(\nu_a) + density(\nu_b) + density(\nu_c) = (1, 1, 1, 1, 1)
\]

\[
\Rightarrow \quad density(\nu_a) = 1, \quad density(\nu_b) = \frac{1}{2}, \quad density(\nu_c) = 0
\]

Can we tile only with \(\nu_a \) and \(\nu_b \)?
A toy problem

Suppose that the density of each vector category is definite.

\[
\text{density}(v) = \frac{\text{number of vertices } s \text{ with } V(s) = v}{\text{number of tiles}}
\]

and \(\mathcal{W} \) is the following:

\[v_a = (1, 1, 1, 0, 0) \]
\[v_b = (0, 0, 0, 2, 2) \]
\[v_c = (1, 1, 0, 1, 0) \]
A toy problem

Suppose that the density of each vector category is definite.

$$\text{density}(\nu) = \frac{\text{number of vertices } s \text{ with } V(s) = \nu}{\text{number of tiles}}$$

and \mathcal{W} is the following:

$v_a = (1, 1, 1, 0, 0)$
$v_b = (0, 0, 0, 2, 2)$
$v_c = (1, 1, 0, 1, 0)$

What are the densities of ν’s?
A toy problem

Suppose that the density of each vector category is definite.

\[\text{density}(\nu) = \frac{\text{number of vertices } s \text{ with } V(s) = \nu}{\text{number of tiles}} \]

and \(W \) is the following:
\(\nu_a = (1, 1, 1, 0, 0) \)
\(\nu_b = (0, 0, 0, 2, 2) \)
\(\nu_c = (1, 1, 0, 1, 0) \)

What are the densities of \(\nu \)'s?

\[\Rightarrow d_a \nu_a + d_b \nu_b + d_c \nu_c = (1, 1, 1, 1, 1) \]
A toy problem

Suppose that the density of each vector category is definite.

\[
\text{density}(\nu) = \frac{\text{number of vertices } s \text{ with } V(s) = \nu}{\text{number of tiles}}
\]

and \(\mathcal{W} \) is the following:
\[
\begin{align*}
\nu_a &= (1, 1, 1, 0, 0) \\
\nu_b &= (0, 0, 0, 2, 2) \\
\nu_c &= (1, 1, 0, 1, 0)
\end{align*}
\]

What are the densities of \(\nu \)'s?

\[
\Rightarrow \ d_a \nu_a + d_b \nu_b + d_c \nu_c = (1, 1, 1, 1, 1)
\]

\[
\Rightarrow \ d_a = 1, \ d_b = \frac{1}{2}, \ d_c = 0
\]
A toy problem

Suppose that the density of each vector category is definite.

\[\text{density}(\nu) = \frac{\text{number of vertices } s \text{ with } V(s) = \nu}{\text{number of tiles}}\]

and \(\mathcal{V}\) is the following:

\[\nu_a = (1, 1, 1, 0, 0)\]
\[\nu_b = (0, 0, 0, 2, 2)\]
\[\nu_c = (1, 1, 0, 1, 0)\]

What are the densities of \(\nu\)'s ?

\[\Rightarrow d_a \nu_a + d_b \nu_b + d_c \nu_c = (1, 1, 1, 1, 1)\]

\[\Rightarrow d_a = 1, \ d_b = \frac{1}{2}, \ d_c = 0\]

Can we tile only with \(\nu_a\) and \(\nu_b\) ?
Definition (Positive density tiling)

\(T \) has *positive density* if for every \(v \in \mathcal{W} \), the density of \(V(s) \) is positive.
Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling...
Definition (Positive density tiling)

\(\mathcal{T} \) has *positive density* if for every \(v \in \mathcal{W} \), the density of \(V(s) \) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.
Definition (Positive density tiling)

\mathcal{T} has *positive density* if for every $v \in \mathcal{W}$, the density of $V(s)$ is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \mathcal{P} exists, then a tiling of positive density by \mathcal{P} exists.
Definition (Positive density tiling)

\(T \) has \textit{positive density} if for every \(v \in \mathcal{W} \), the density of \(V(s) \) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \(\mathcal{P} \) exists, then a tiling of positive density by \(\mathcal{P} \) exists.

- Otherwise, suppose \(v \in \mathcal{W} \) with density 0
Positive density tilings

Definition (Positive density tiling)

\(\mathcal{T}\) has *positive density* if for every \(v \in \mathcal{W}\), the density of \(V(s)\) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \(\mathcal{P}\) exists, then a tiling of positive density by \(\mathcal{P}\) exists.

- Otherwise, suppose \(v \in \mathcal{W}\) with density 0
- There are sub-tilings of an arbitrarily large disk without a vertex \(v\)
 positive density tiling

Definition (Positive density tiling)

\(\mathcal{T} \) has *positive density* if for every \(v \in \mathcal{W} \), the density of \(V(s) \) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \(\mathcal{P} \) exists, then a tiling of positive density by \(\mathcal{P} \) exists.

- Otherwise, suppose \(v \in \mathcal{W} \) with density 0
- There are sub-tilings of an arbitrarily large disk without a vertex \(v \) (take a grid of girth \(x \): if there is a \(v \) in every cell \(\rightarrow \) contradiction)
Definition (Positive density tiling)

\(\mathcal{T} \) has positive density if for every \(v \in \mathcal{W} \), the density of \(V(s) \) is positive.

Problem: the density is not always defined for an arbitrary tiling... But everything works as if.

Lemma

If a tiling by \(\mathcal{P} \) exists, then a tiling of positive density by \(\mathcal{P} \) exists.

- Otherwise, suppose \(v \in \mathcal{W} \) with density 0
- There are sub-tilings of an arbitrarily large disk without a vertex \(v \)
 (take a grid of girth \(x \): if there is a \(v \) in every cell \(\rightarrow \) contradiction)
- By compactness one can construct a tiling without \(v \)
Back to the toy problem

\[\nu_a = (1, 1, 1, 0, 0) \text{ of density } d_a \quad \nu_b = (0, 0, 0, 2, 2) \text{ of density } d_b \]

\[\nu_c = (1, 1, 0, 1, 0) \text{ of density } d_c \quad \mathcal{W} = \{ \nu_a, \nu_b, \nu_c \} \]
Back to the toy problem

\[\nu_a = (1, 1, 1, 0, 0) \text{ of density } d_a \]
\[\nu_b = (0, 0, 0, 2, 2) \text{ of density } d_b \]
\[\nu_c = (1, 1, 0, 1, 0) \text{ of density } d_c \]

\[\mathcal{W} = \{ \nu_a, \nu_b, \nu_c \} \]

Density of angle 1 = \(d_a + d_c \)

Density of angle 3 = \(d_a \)

Density of angle 5 = 2\(d_b \)
Back to the toy problem

\(\nu_a = (1, 1, 1, 0, 0) \) of density \(d_a \) \hspace{1cm} \(\nu_b = (0, 0, 0, 2, 2) \) of density \(d_b \)
\(\nu_c = (1, 1, 0, 1, 0) \) of density \(d_c \) \hspace{1cm} \(\mathcal{W} = \{ \nu_a, \nu_b, \nu_c \} \)

Density of angle 1 = \(d_a + d_c \) \hspace{1cm} Density of angle 3 = \(d_a \)
Density of angle 5 = 2\(d_b \)
Density of angle 1 - Density of angle 3 = \(d_c \)
Back to the toy problem

\[\nu_a = (1, 1, 1, 0, 0) \text{ of density } d_a \quad \nu_b = (0, 0, 0, 2, 2) \text{ of density } d_b \]
\[\nu_c = (1, 1, 0, 1, 0) \text{ of density } d_c \quad \mathcal{W} = \{ \nu_a, \nu_b, \nu_c \} \]

Density of angle 1 = \(d_a + d_c \)
Density of angle 3 = \(d_a \)
Density of angle 5 = \(2d_b \)

Density of angle 1 - Density of angle 3 = \(d_c \)

Densities of angles must be the same (1 for all)

Density of angle 1 - Density of angle 3 = 0, thus \(d_c = 0 \)
Back to the toy problem

\(v_a = (1, 1, 1, 0, 0) \) of density \(d_a \)
\(v_b = (0, 0, 0, 2, 2) \) of density \(d_b \)
\(v_c = (1, 1, 0, 1, 0) \) of density \(d_c \)
\(\mathcal{W} = \{ v_a, v_b, v_c \} \)

Density of angle 1 = \(d_a + d_c \)
Density of angle 3 = \(d_a \)
Density of angle 5 = \(2d_b \)
Density of angle 1 - Density of angle 3 = \(d_c \)
Densities of angles must be the same (1 for all)
Density of angle 1 - Density of angle 3 = 0, thus \(d_c = 0 \)

Let \(u \in \mathbb{R}^5 \) such that \(\sum_i u_i = 0 \)
\(\Rightarrow \sum_i (\text{density of angle } i) \times u_i = 0 \)
Back to the toy problem

\(\nu_a = (1, 1, 1, 0, 0) \) of density \(d_a \) \(\nu_b = (0, 0, 0, 2, 2) \) of density \(d_b \)
\(\nu_c = (1, 1, 0, 1, 0) \) of density \(d_c \) \(\mathcal{W} = \{ \nu_a, \nu_b, \nu_c \} \)

Density of angle 1 = \(d_a + d_c \) Density of angle 3 = \(d_a \)
Density of angle 5 = \(2d_b \)
Density of angle 1 - Density of angle 3 = \(d_c \)
Densities of angles must be the same (1 for all)
Density of angle 1 - Density of angle 3 = 0, thus \(d_c = 0 \)

Let \(u \in \mathbb{R}^5 \) such that \(\sum_i u_i = 0 \)
\[\Rightarrow \sum_i (\text{density of angle } i) \times u_i = 0 \]

Moreover \(\sum_{\nu \in \mathcal{W}} d_\nu \times \nu = (1, 1, 1, 1, 1) \)
\[\Rightarrow \sum_{\nu \in \mathcal{W}} d_\nu \times (\nu \cdot u) = 0 \]
Back to the toy problem

\(v_a = (1, 1, 1, 0, 0) \) of density \(d_a \)
\(v_b = (0, 0, 0, 2, 2) \) of density \(d_b \)
\(v_c = (1, 1, 0, 1, 0) \) of density \(d_c \)

\[\mathcal{W} = \{v_a, v_b, v_c\} \]

Density of angle 1 = \(d_a + d_c \)
Density of angle 3 = \(d_a \)
Density of angle 5 = 2\(d_b \)
Density of angle 1 - Density of angle 3 = \(d_c \)

Densities of angles must be the same (1 for all)

Density of angle 1 - Density of angle 3 = 0, thus \(d_c = 0 \)

Let \(u \in \mathbb{R}^5 \) such that \(\sum_i u_i = 0 \)
\[\Rightarrow \sum_i (\text{density of angle } i) \times u_i = 0 \]

Moreover \[\sum_{v \in \mathcal{W}} d_v \times v = (1, 1, 1, 1, 1) \]
\[\Rightarrow \sum_{v \in \mathcal{W}} d_v \times (v \cdot u) = 0 \]

\[v_a \cdot u = 0 \quad v_b \cdot u = 0 \quad v_c \cdot u = 1 \quad \text{with } u = (1, 0, -1, 0, 0) \]
Back to the toy problem

\(\nu_a = (1, 1, 1, 0, 0) \) of density \(d_a \) \hspace{1cm} \(\nu_b = (0, 0, 0, 2, 2) \) of density \(d_b \)

\(\nu_c = (1, 1, 0, 1, 0) \) of density \(d_c \) \hspace{1cm} \(\mathcal{W} = \{ \nu_a, \nu_b, \nu_c \} \)

Density of angle 1 = \(d_a + d_c \) \hspace{1cm} Density of angle 3 = \(d_a \)

Density of angle 5 = \(2d_b \)

Density of angle 1 - Density of angle 3 = \(d_c \)

Densities of angles must be the same (1 for all)

Density of angle 1 - Density of angle 3 = 0, thus \(d_c = 0 \)

Let \(u \in \mathbb{R}^5 \) such that \(\sum_i u_i = 0 \)

\[\Rightarrow \sum_i (\text{density of angle } i) \times u_i = 0 \]

Moreover \(\sum_{\nu \in \mathcal{W}} d_{\nu} \times \nu = (1, 1, 1, 1, 1) \)

\[\Rightarrow \sum_{\nu \in \mathcal{W}} d_{\nu} \times (\nu \cdot u) = 0 \]

\(\nu_a \cdot u = 0 \hspace{1cm} \nu_b \cdot u = 0 \hspace{1cm} \nu_c \cdot u = 1 \) with \(u = (1, 0, -1, 0, 0) \)

\[\Rightarrow \text{density of } \nu_c \text{ must be } 0 \]
Good set

<table>
<thead>
<tr>
<th>Definition (Good set)</th>
</tr>
</thead>
</table>

\(\mathcal{X} \subseteq \mathbb{N}^5 \) is *good* if \(\forall u \in \mathbb{R}^5 \) with \(\sum u = 0 \), either:

- \(u \cdot v = 0 \) for every \(v \in \mathcal{X} \), or
- there are \(v, v' \in \mathcal{X} \) such that \(u \cdot v < 0 < u \cdot v' \).

In the toy example:

- \(v_1 = (1, 1, 1, 0, 0) \)
- \(v_2 = (0, 0, 0, 2, 2) \)
- \(v_3 = (1, 1, 0, 1, 0) \)

\(\{v_1, v_2, v_3\} \) is *not good*, with \(u = (1, 0, -1, 0, 0) \)

\(\{v_1, v_2\} \) is *good* since \(2 \times u \cdot v_1 + u \cdot v_2 = 0 \).
Good set

Definition (Good set)

\(\mathcal{X} \subseteq \mathbb{N}^5 \) is **good** if \(\forall u \in \mathbb{R}^5 \) with \(\sum u = 0 \), either:

- \(u \cdot v = 0 \) for every \(v \in \mathcal{X} \), or
- there are \(v, v' \in \mathcal{X} \) such that \(u \cdot v < 0 < u \cdot v' \).

In the toy example:

- \(v_1 = (1, 1, 1, 0, 0) \)
- \(v_2 = (0, 0, 0, 2, 2) \)
- \(v_3 = (1, 1, 0, 1, 0) \)

 - \(\{v_1, v_2, v_3\} \) is
Good set

Definition (Good set)

\(\mathcal{X} \subseteq \mathbb{N}^5 \) is good if \(\forall u \in \mathbb{R}^5 \) with \(\sum u = 0 \), either:
- \(u \cdot v = 0 \) for every \(v \in \mathcal{X} \), or
- there are \(v, v' \in \mathcal{X} \) such that \(u \cdot v < 0 < u \cdot v' \).

In the toy example:
\(v_1 = (1, 1, 1, 0, 0) \)
\(v_2 = (0, 0, 0, 2, 2) \)
\(v_3 = (1, 1, 0, 1, 0) \)

- \(\{v_1, v_2, v_3\} \) is not good, with \(u = (1, 0, -1, 0, 0) \)
Good set

Definition (Good set)

\(\mathcal{X} \subseteq \mathbb{N}^5 \) is good if \(\forall u \in \mathbb{R}^5 \) with \(\sum u = 0 \), either:

- \(u \cdot v = 0 \) for every \(v \in \mathcal{X} \), or

- there are \(v, v' \in \mathcal{X} \) such that \(u \cdot v < 0 < u \cdot v' \).

In the toy example:

\(v_1 = (1, 1, 1, 0, 0) \)
\(v_2 = (0, 0, 0, 2, 2) \)
\(v_3 = (1, 1, 0, 1, 0) \)

- \(\{v_1, v_2, v_3\} \) is not good, with \(u = (1, 0, -1, 0, 0) \)
- \(\{v_1, v_2\} \) is
Definition (Good set)

$\mathcal{X} \subseteq \mathbb{N}^5$ is good if $\forall u \in \mathbb{R}^5$ with $\sum u = 0$, either:

- $u \cdot v = 0$ for every $v \in \mathcal{X}$, or
- there are $v, v' \in \mathcal{X}$ such that $u \cdot v < 0 < u \cdot v'$.

In the toy example:

$v_1 = (1, 1, 1, 0, 0)$
$v_2 = (0, 0, 0, 2, 2)$
$v_3 = (1, 1, 0, 1, 0)$

- $\{v_1, v_2, v_3\}$ is not good, with $u = (1, 0, -1, 0, 0)$
- $\{v_1, v_2\}$ is good since $2 \times u \cdot v_1 + u \cdot v_2 = 0$
Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.
Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^{5} u_i = 0$ s.t.:

- $\forall v \in \mathcal{W}$ with $u \cdot v \geq 0$.
- there is a $v^+ \in \mathcal{W}$ with $u \cdot v^+ > 0$.

Part 1/3: Positive density tiling and good sets
Positive density imply \mathcal{W} is good

Lemma

If T has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^{5} u_i = 0$ s.t.:

- $\forall \nu \in \mathcal{W}$ with $u \cdot \nu \geq 0$.
- There is a $\nu^+ \in \mathcal{W}$ with $u \cdot \nu^+ > 0$.

We count the densities of angles in the tiling:

$$\sum_{\nu \in \mathcal{W}} \nu \times d_{\nu} = (1, 1, 1, 1, 1)$$
Positive density imply \mathcal{W} is good

Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^{5} u_i = 0$ s.t.:

- $\forall v \in \mathcal{W}$ with $u \cdot v \geq 0$.
- there is a $v^+ \in \mathcal{W}$ with $u \cdot v^+ > 0$.

We count the densities of angles in the tiling:

$$\sum_{v \in \mathcal{W}} v \times d_v = (1, 1, 1, 1, 1)$$

$$\sum_{v \in \mathcal{W}} (u \cdot v) \times d_v = 0$$
Lemma

If \mathcal{T} has positive density, then \mathcal{W} is good.

Otherwise, suppose $u \in \mathbb{R}^5$ such that $\sum_{i=1}^{5} u_i = 0$ s.t.:
- $\forall v \in \mathcal{W}$ with $u \cdot v \geq 0$.
- there is a $v^+ \in \mathcal{W}$ with $u \cdot v^+ > 0$.

We count the densities of angles in the tiling:

$$\sum_{v \in \mathcal{W}} v \times d_v = (1, 1, 1, 1, 1)$$

$$\sum_{v \in \mathcal{W}} (u \cdot v) \times d_v = 0$$

Contradiction since:

$$\sum_{v \in \mathcal{W}} (u \cdot v) \times d_v \geq (u \cdot v^+) \times d_{v^+} > 0$$
Let $\mathcal{X} \subseteq \mathbb{N}^5$

Definition (\mathcal{P}_X)

\mathcal{P}_X is the convex polytope of $\alpha = (\alpha_1, \ldots, \alpha_5) \in \mathbb{R}^5$ s.t.

- $\forall i \in \{1, \ldots, 5\}, \ 0 \leq \alpha_i \leq 1$,
- $\sum_{i=1}^{5} \alpha_i = 3$,
- $\forall \nu \in \mathcal{X}, \ \alpha \cdot \nu = 2$.

What are the good sets \mathcal{X} such that $\mathcal{P}_X \cap [0,1]^5 \neq \emptyset$?

Spoil: only finitely many...
Let $\mathcal{X} \subseteq \mathbb{N}^5$

Definition (\(\mathcal{P}_\mathcal{X}\))

\(\mathcal{P}_\mathcal{X}\) is the convex polytope of \(\alpha = (\alpha_1, \ldots, \alpha_5) \in \mathbb{R}^5\) s.t.

- \(\forall i \in \{1, \ldots, 5\}, \ 0 \leq \alpha_i \leq 1\),
- \(\sum_{i=1}^{5} \alpha_i = 3\),
- \(\forall \mathbf{v} \in \mathcal{X}, \ \alpha \cdot \mathbf{v} = 2\).

In a tiling by a convex pentagon: \(\alpha \in \mathcal{P}_\mathcal{W}\), thus \(\mathcal{P}_\mathcal{W} \cap]0, 1[^5 \neq \emptyset\).
Let $X \subseteq \mathbb{N}^5$

Definition (\mathcal{P}_X)

\mathcal{P}_X is the convex polytope of $\alpha = (\alpha_1, \ldots, \alpha_5) \in \mathbb{R}^5$ s.t.

- $\forall i \in \{1, \ldots, 5\}, \ 0 \leq \alpha_i \leq 1$,
- $\sum_{i=1}^{5} \alpha_i = 3$,
- $\forall v \in X, \ \alpha \cdot v = 2$.

In a tiling by a convex pentagon: $\alpha \in \mathcal{P}_W$, thus $\mathcal{P}_W \cap]0, 1[^5 \neq \emptyset$

What are the good sets X such that $\mathcal{P}_X \cap]0, 1[^5 \neq \emptyset$?
Let $\mathcal{X} \subseteq \mathbb{N}^5$

Definition ($\mathcal{V}_\mathcal{X}$)

$\mathcal{V}_\mathcal{X}$ is the convex polytope of $\alpha = (\alpha_1, \ldots, \alpha_5) \in \mathbb{R}^5$ s.t.
- $\forall i \in \{1, \ldots, 5\}$, $0 \leq \alpha_i \leq 1$,
- $\sum_{i=1}^{5} \alpha_i = 3$,
- $\forall \nu \in \mathcal{X}$, $\alpha \cdot \nu = 2$.

In a tiling by a convex pentagon: $\alpha \in \mathcal{V}_\mathcal{W}$, thus $\mathcal{V}_\mathcal{W} \cap]0, 1[^5 \neq \emptyset$

What are the good sets \mathcal{X} such that $\mathcal{V}_\mathcal{X} \cap]0, 1[^5 \neq \emptyset$?

Spoil: only finitely many...
What are the good sets \mathcal{X} such that $\mathcal{P}_\mathcal{X} \cap [0, 1]^5 \neq \emptyset$?
Part 2: Computation of all good sets

What are the good sets \mathcal{X} such that $\mathcal{P}_\mathcal{X} \cap]0, 1[^5 \neq \emptyset$?

- We present an algorithm which generates all good sets.
What are the good sets \(\mathcal{X} \) such that \(\Psi_{\mathcal{X}} \cap [0, 1[^5 \neq \emptyset \) ?

- We present an algorithm which generates all good sets.
- One execution of this algorithms terminates, and returns 371 good sets.
What are the good sets \mathcal{X} such that $\mathcal{P}_\mathcal{X} \cap [0, 1[^5 \neq \emptyset$?

- We present an algorithm which generates all good sets.
- One execution of this algorithms terminates, and returns 371 good sets.
- Moreover, one can show that this algorithm always terminates.
What are the good sets \mathcal{X} such that $\mathcal{P}_{\mathcal{X}} \cap [0, 1[^5 \neq \emptyset$?

- We present an algorithm which generates all good sets.
- One execution of this algorithms terminates, and returns 371 good sets.
- Moreover, one can show that this algorithm always terminates.

We suppose w.l.o.g. that:

- $1 \geq \alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \alpha_4 \geq \alpha_5 \geq 0$ (\(\mathcal{P}_{\mathcal{X}} \supseteq \mathcal{P}_{\mathcal{X}}\) instead of \(\mathcal{P}_{\mathcal{X}}\))
- \mathcal{X} is maximal, i.e. every condition implied by conditions in \mathcal{X} is in \mathcal{X}
1: procedure Recurse(\mathcal{X})
2: \hspace{1em} $\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})$ (i.e. complete \mathcal{X} to make it maximal)
3: \hspace{1em} if $\mathcal{P} \cap \mathbb{N}^5 = \emptyset$ then return end if
4: \hspace{1em} if \mathcal{X} is good then
5: \hspace{2em} Add \mathcal{X} to the list of good sets
6: \hspace{1em} end if
7: \hspace{1em} Let $u \in \mathbb{R}^5$ such that:
8: \hspace{2em} $u \cdot (1, 1, 1, 1, 1) = 0$
9: \hspace{2em} $\forall v \in \mathcal{X}, \; u \cdot v = 0$

10: $V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \}$
11: \hspace{1em} for every $w \in V \setminus \mathcal{X}$ do
12: \hspace{2em} Recurse($\mathcal{X} \cup \{w\}$)
13: \hspace{1em} end for
14: end procedure

Recurse(\mathcal{X}) computes all max good sets $Y \supseteq \mathcal{X}$ with $\mathcal{P} \cap \mathbb{N}^5 \neq \emptyset$.

Line 8: V is finite.

Line 7: such a u always exists.

Recurse always terminates: finitely many good sets with $\mathcal{P} \cap \mathbb{N}^5 \neq \emptyset$. Part 2/3: Computing all good sets
1: **procedure** `Recurse(\mathcal{X})`
2: \(\mathcal{X} \leftarrow \text{Compat}(\mathcal{X}) \) (i.e. complete \(\mathcal{X} \) to make it maximal)
3: \textbf{if} \(\mathcal{P}_{\mathcal{X}} \cap 0, 1^5 = \emptyset \) \textbf{then} \textbf{return} \textbf{end if}
4: \textbf{if} \(\mathcal{X} \) is good \textbf{then}
5: \hspace{1em} Add \(\mathcal{X} \) to the list of good sets
6: \textbf{end if}
7: \textbf{Let} \(u \in \mathbb{R}^5 \) such that:
 - \(u \cdot (1, 1, 1, 1, 1) = 0 \)
 - \(\forall v \in \mathcal{X}, u \cdot v = 0 \)
8: \(V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \} \)
9: \textbf{for} every \(w \in V \setminus \mathcal{X} \) \textbf{do}
10: \hspace{1em} \textbf{Recurse}(\mathcal{X} \cup \{w\})
11: \textbf{end for}
12: \textbf{end procedure}

\textbf{Recurse}(\mathcal{X}) \text{ computes all max good sets } \mathcal{Y} \supseteq \mathcal{X} \text{ with } \mathcal{P}_{\mathcal{Y}} \cap 0, 1^5 \neq \emptyset.
Get a finite set V

Let $m \chi \in [0, 1]^5$ be such that $(m \chi)_i = \min\{\alpha_i : \alpha \in \mathcal{P}_{\chi}^>\}$

(for short $m = m \chi$)
Get a finite set V

Let $m_X \in [0, 1]^5$ be such that $(m_X)_i = \min\{\alpha_i : \alpha \in \mathcal{P}_X^>\}$
(for short $m = m_X$)

Since $1 \geq \alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \alpha_4 \geq \alpha_5 \geq 0$ then:

$$m_1 \geq \frac{3}{5}, \ m_2 \geq \frac{1}{2}, \ m_3 \geq \frac{1}{3}, \ \text{and} \ m_i \geq m_{i+1}$$
Get a finite set V

Let $m \in [0, 1]^5$ be such that $(m)_i = \min\{\alpha_i : \alpha \in \mathcal{P}_X^>\}$
(for short $m = m_X$)

Since $1 \geq \alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \alpha_4 \geq \alpha_5 \geq 0$ then:
$m_1 \geq \frac{3}{5}, m_2 \geq \frac{1}{2}, m_3 \geq \frac{1}{3},$ and $m_i \geq m_{i+1}$

For every $v \in \mathbb{N}^5$, if $v_i \times m_i > 2$ then $\mathcal{P}_X^> \cup \{v\} \cap [0, 1]^5 = \emptyset$.

$m_i > 0 \Rightarrow v_i$ must be bounded
Get a finite set V

Let $m_{\mathcal{X}} \in [0,1]^5$ be such that $(m_{\mathcal{X}})_i = \min\{\alpha_i : \alpha \in \mathcal{P}_{\mathcal{X}}^\geq\}$
(for short $m = m_{\mathcal{X}}$)

Since $1 \geq \alpha_1 \geq \alpha_2 \geq \alpha_3 \geq \alpha_4 \geq \alpha_5 \geq 0$ then:

$m_1 \geq \frac{3}{5}, m_2 \geq \frac{1}{2}, m_3 \geq \frac{1}{3}$, and $m_i \geq m_{i+1}$

For every $v \in \mathbb{N}^5$, if $v_i \times m_i > 2$ then $\mathcal{P}_{\mathcal{X} \cup \{v\}}^\geq \cap [0,1]^5 = \emptyset$.

$m_i > 0 \Rightarrow v_i$ must be bounded

Let $u \in \mathbb{R}^5$ s.t. $\sum u = 0$ and $\forall i$ with $m_i = 0$ then $u_i > 0$
→ the “negative part” in $v \cdot m$ is bounded
→ each v_i must be bounded, otherwise $v \cdot \alpha \geq v \cdot m > 2$.

Part 2/3: Computing all good sets
1: **procedure** `Recurse(X)`
2: \[X \leftarrow \text{Compat}(X) \quad \text{(i.e. complete } X \text{ to make it maximal)} \]
3: \[\text{if } \forall X \ni 0, 1^5 = \emptyset \text{ then return end if} \]
4: \[\text{if } X \text{ is good then} \]
5: \[\text{Add } X \text{ to the list of good sets} \]
6: \[\text{end if} \]
7: \[\text{Let } u \in \mathbb{R}^5 \text{ such that:} \]
\[\item u \cdot (1, 1, 1, 1, 1) = 0 \]
\[\item \forall v \in X, u \cdot v = 0 \]
8: \[V \leftarrow \{ v \in \mathbb{N}^5 : v \cdot u \geq 0 \} \]
9: \[\text{for every } w \in V \setminus X \text{ do} \]
10: \[\text{Recurse}(X \cup \{w\}) \]
11: \[\text{end for} \]
12: \[\text{end procedure} \]

`Recurse(X)` computes all max good sets \(Y \supseteq X \) with \(\forall Y \ni 0, 1^5 \neq \emptyset \)
1: procedure \texttt{Recurse}(\mathcal{X})
2: \hspace{1em} \mathcal{X} \leftarrow \text{Compat}(\mathcal{X}) \quad (\text{i.e. complete } \mathcal{X} \text{ to make it maximal})
3: \hspace{1em} \text{if } \mathcal{P}^\geq_{\mathcal{X}} \cap]0, 1[^5 = \emptyset \text{ then return end if}
4: \hspace{1em} \text{if } \mathcal{X} \text{ is good then}
5: \hspace{2em} \text{Add } \mathcal{X} \text{ to the list of good sets}
6: \hspace{1em} \text{end if}
7: \hspace{1em} \text{Let } u \in \mathbb{R}^5 \text{ such that:}
8: \hspace{1em} \bullet \quad u \cdot (1, 1, 1, 1, 1) = 0
9: \hspace{1em} \bullet \quad \forall v \in \mathcal{X}, \ u \cdot v = 0
10: \hspace{1em} \bullet \quad \forall i \in \{4, 5\}, \ (m_{\mathcal{X}})_i = 0 \Rightarrow u_i > 0
11: \hspace{1em} V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \text{ and } v \cdot m_{\mathcal{X}} \leq 2\}
12: \hspace{1em} \text{for every } w \in V \setminus \mathcal{X} \text{ do}
13: \hspace{2em} \text{Recurse}(\mathcal{X} \cup \{w\})
14: \hspace{1em} \text{end for}
15: \hspace{1em} \text{end procedure}

$\textbf{Recurse}(\mathcal{X})$ computes all max good sets $\mathcal{Y} \supseteq \mathcal{X}$ with $\mathcal{P}^\geq_{\mathcal{Y}} \cap]0, 1[^5 \neq \emptyset$
1: **procedure** Recurse(\(\mathcal{X}\))

2: \(\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})\) (i.e. complete \(\mathcal{X}\) to make it maximal)

3: **if** \(\mathcal{Y} \supseteq \mathcal{X} \cap]0, 1[^5 = \emptyset\) **then** return **end if**

4: **if** \(\mathcal{X}\) is good **then**

5: Add \(\mathcal{X}\) to the list of good sets

6: **end if**

7: Let \(u \in \mathbb{R}^5\) such that:
 - \(u \cdot (1, 1, 1, 1, 1) = 0\)
 - \(\forall v \in \mathcal{X}, u \cdot v = 0\)
 - \(\forall i \in \{4, 5\}, (m_X)_i = 0 \Rightarrow u_i > 0\)

8: \(V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0\ \text{and} v \cdot m_X \leq 2\}\)

9: for every \(w \in V \setminus \mathcal{X}\) do

10: Recurse(\(\mathcal{X} \cup \{w\}\))

11: **end for**

12: **end procedure**

Recurse(\(\mathcal{X}\)) computes all max good sets \(\mathcal{Y} \supseteq \mathcal{X}\) with \(\mathcal{Y} \supseteq \mathcal{X} \cap]0, 1[^5 \neq \emptyset\)

Line 8: \(V\) is finite
Choice for u

Note: if α and $\alpha' \in \mathcal{P}_{\geq X}$, then with $u = \alpha - \alpha'$:

- $\sum u = 0$
- $u \cdot v = 0$
Choice for u

Note: if α and $\alpha' \in \mathcal{P}^\geq X$, then with $u = \alpha - \alpha'$:

- $\sum u = 0$
- $u \cdot v = 0$

For the last condition on m_X:

If $m_4 > 0$ and $m_5 = 0$, there is $\alpha' \in \mathcal{P}^\geq X$ s.t. $\alpha'_5 = 0$

If $m_4 = m_5 = 0$, there is $\alpha' \in \mathcal{P}^\geq X$ s.t. $\alpha'_4 = \alpha'_5 = 0$

(and take $\alpha \in \mathcal{P}^\geq X \cap]0, 1[^5$)
1: \textbf{procedure} \textsc{Recurse}(\mathcal{X})
2: \quad \mathcal{X} \leftarrow \text{Compat}(\mathcal{X}) \quad \text{(i.e. complete } \mathcal{X} \text{ to make it maximal)}
3: \quad \text{if } \mathcal{Y}^\geq \mathcal{X} \cap 0, 1^5 = \emptyset \text{ then return end if}
4: \quad \text{if } \mathcal{X} \text{ is good then}
5: \quad \quad \text{Add } \mathcal{X} \text{ to the list of good sets}
6: \quad \text{end if}
7: \quad \text{Let } u \in \mathbb{R}^5 \text{ such that:}
8: \quad \quad u \cdot (1, 1, 1, 1, 1) = 0
9: \quad \quad \forall v \in \mathcal{X}, \; u \cdot v = 0
10: \quad \quad \forall i \in \{4, 5\}, \; (m_\mathcal{X})_i = 0 \Rightarrow u_i > 0
11: \quad V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \text{ and } v \cdot m_\mathcal{X} \leq 2\}
12: \quad \text{for every } w \in V \setminus \mathcal{X} \text{ do}
13: \quad \quad \text{\textsc{Recurse}(\mathcal{X} \cup \{w\})}
14: \quad \text{end for}
15: \quad \text{end procedure}

\textsc{Recurse}(\mathcal{X}) \text{ computes all max good sets } \mathcal{Y} \supseteq \mathcal{X} \text{ with } \mathcal{Y}^\geq \mathcal{X} \cap 0, 1^5 \neq \emptyset

Line 8: \(V \) is finite
1: **procedure** `Recurse`(\(\mathcal{X}\))

2: \(\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})\) (i.e. complete \(\mathcal{X}\) to make it maximal)

3: **if** \(\mathcal{P}_{\mathcal{X}} \geq \) \([0, 1]^5 = \emptyset\) **then** return **end if**

4: **if** \(\mathcal{X}\) is good **then**

5: Add \(\mathcal{X}\) to the list of good sets

6: **end if**

7: Let \(u \in \mathbb{R}^5\) such that:
 - \(u \cdot (1, 1, 1, 1, 1) = 0\)
 - \(\forall v \in \mathcal{X}, u \cdot v = 0\)
 - \(\forall i \in \{4, 5\}, (m_{\mathcal{X}})_i = 0 \Rightarrow u_i > 0\)

8: \(V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0\ \text{and}\ v \cdot m_{\mathcal{X}} \leq 2\}\)

9: **for** every \(w \in V \setminus \mathcal{X}\) **do**

10: `Recurse`(\(\mathcal{X} \cup \{w\}\))

11: **end for**

12: **end procedure**

`Recurse`(\(\mathcal{X}\)) computes all max good sets \(\mathcal{Y} \supseteq \mathcal{X}\) with \(\mathcal{P}_{\mathcal{Y}} \geq \) \([0, 1]^5 \neq \emptyset\)

Line 8: \(V\) is finite
Line 7: such a \(u\) always exists
1: procedure Recurse(\(\mathcal{X}\))
2: \(\mathcal{X} \leftarrow \text{Compat}(\mathcal{X})\) (i.e. complete \(\mathcal{X}\) to make it maximal)
3: if \(\mathcal{Y}_{X} \cap [0,1[^5] = \emptyset\) then return end if
4: if \(\mathcal{X}\) is good then
5: Add \(\mathcal{X}\) to the list of good sets
6: end if
7: Let \(u \in \mathbb{R}^5\) such that:
 - \(u \cdot (1,1,1,1,1) = 0\)
 - \(\forall v \in \mathcal{X}, u \cdot v = 0\)
 - \(\forall i \in \{4,5\}, (m_{\mathcal{X}})_i = 0 \Rightarrow u_i > 0\)
8: \(V \leftarrow \{v \in \mathbb{N}^5 : v \cdot u \geq 0 \text{ and } v \cdot m_{\mathcal{X}} \leq 2\}\)
9: for every \(w \in V \setminus \mathcal{X}\) do
10: Recurse(\(\mathcal{X} \cup \{w\}\))
11: end for
12: end procedure

\textbf{Recurse}(\(\mathcal{X}\)) computes all max good sets \(\mathcal{Y} \supseteq \mathcal{X}\) with \(\mathcal{Y}_{X} \cap [0,1[^5] \neq \emptyset\)

Line 8: \(V\) is finite Line 7: such a \(u\) always exists
\textbf{Recurse} always terminates: finitely many good sets with \(\mathcal{Y}_{X} \cap [0,1[^5] \neq \emptyset\).
We execute \texttt{Recurse}(\emptyset) and it finds 193 non-empty sets.
We execute \textsc{Recurse}(\emptyset) and it finds 193 non-empty sets.

- 193 non-empty maximal good sets \mathcal{X} with $\mathbb{P}^{\geq}_{\mathcal{X}} \cap [0, 1[^5 \neq \emptyset$
Good sets: results

We execute \textsc{Recurse}(\emptyset) and it finds 193 non-empty sets.

- 193 non-empty maximal good sets \(\mathcal{X} \) with \(\mathcal{Y}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset \)
- Take all permutations: 3495 non-empty maximal good sets \(\mathcal{X} \) with \(\mathcal{Y}_{\mathcal{X}} \cap]0, 1[^5 \neq \emptyset \)
Good sets: results

We execute \texttt{RECURSE}(\emptyset) and it finds 193 non-empty sets.

- 193 non-empty maximal good sets \mathcal{X} with $\mathcal{P}_{\mathcal{X}} \supseteq \mathcal{X} \cap [0, 1[^5 \neq \emptyset$
- Take all permutations: 3495 non-empty maximal good sets \mathcal{X} with $\mathcal{P}_{\mathcal{X}} \cap [0, 1[^5 \neq \emptyset$
- Keep only one represents for each class up to rotation/mirror, one have the 371 sets.
Good sets: results

371 sets to consider:

- 2 s.t. \mathcal{P}_X has dimension 3
- 26 s.t. \mathcal{P}_X has dimension 2
- 92 s.t. \mathcal{P}_X has dimension 1
- 251 s.t. \mathcal{P}_X has dimension 0
Good sets: results

371 sets to consider:

- 2 s.t. \mathcal{P}_X has dimension 3
- 26 s.t. \mathcal{P}_X has dimension 2
- 92 s.t. \mathcal{P}_X has dimension 1
- 251 s.t. \mathcal{P}_X has dimension 0

- 90 of “Type 1” (that is $\alpha_i + \alpha_{i+1} = 1$)
For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.
For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

We chose a (maximal) good set \mathcal{X}.
We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X}.
For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

We chose a (maximal) good set \mathcal{X}. We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X}.

We backtrack if the conditions (angles and lengths) imply
For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

We chose a (maximal) good set \mathcal{X}. We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X}.

We backtrack if the conditions (angles and lengths) imply

- we are in a known case: known family (Types 1 to 15 in Table 1), or a special case of a known family (Types 16 to 19)
For each family in the 371 families of maximal good sets, we do an exhaustive search of a tiling.

We chose a (maximal) good set \mathcal{X}.
We do an exhaustive search of all tilings, allowing only “vector categories” in \mathcal{X}.

We backtrack if the conditions (angles and lengths) imply

- we are in a known case: known family (Types 1 to 15 in Table 1), or a special case of a known family (Types 16 to 19)
- or no convex pentagon exists with these conditions
Backtracking: general idea

The object on which we work and backtrack is a pair \((G, Q)\):

- \(G\) is a embedded planar graph which represent the partial tiling ("Tiling graph")
- \(Q\) is a set of conditions we know on the lengths of the pentagon: \(i.e.\) a linear program (LP) on \(\ell_1 \ldots \ell_5\)

We add linear conditions on sides "on the fly"
Tiling graph

Tiling graph: embedded planar graph with labels on angles and edges

Two types of faces: usual and special

- usual: corresponds to a pentagon in the tiling. The degree is 5, and the angles are marked from 1 to 5 (in CW or CCW)

- special: corresponds to frontier between tiles, or an unknown area of the plane. Angles are marked with \emptyset, π or ?

A special face is complete if there no “?”
Example of a tiling graph (Type 15). Unmarked angles are labeled “?”
Length suppositions

A *run* on a special face is a succession of consecutive \emptyset and π angles.
Length suppositions

A *run* on a special face is a succession of consecutive \emptyset and π angles. Each run corresponds to aligned points in the tiling.
A *run* on a special face is a succession of consecutive \emptyset and π angles. Each run corresponds to aligned points in the tiling.

Let s and s' be two vertices on a same run.

- If Q implies that s and s' have the same position, then we merge s and s'
Length suppositions

A run on a special face is a succession of consecutive \emptyset and π angles. Each run corresponds to aligned points in the tiling.

Let s and s' be two vertices on a same run.

- If Q implies that s and s' have the same position, then we merge s and s'
- If Q does not permit to decide among the 3 possibilities: $s < s'$, $s = s'$ and $s > s'$, then we branch on the 3 possibilities:
A *run* on a special face is a succession of consecutive \emptyset and π angles.

Each run corresponds to aligned points in the tiling.

Let s and s' be two vertices on a same run.

- If Q implies that s and s' have the same position, then we merge s and s'
- If Q does not permit to decide among the 3 possibilities: $s < s'$, $s = s'$ and $s > s'$, then we branch on the 3 possibilities: we add the corresponding condition in Q and recurse
Branching on length suppositions: example

\[Q : \]

\[\ell_4 - \ell_5 = 0 \]

\((y, z)\) is a complete face. So we (already) have \(\ell_4 = \ell_5\) in the LP.

\((w, t, w')\) is a run. The length \(wt\) is \(\ell_3\), and the length \(tw'\) is \(\ell_3\). So we merge \(w\) and \(w'\), and mark angle \((t, w, t)\) as \(\emptyset\).
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\((y,z)\) is a complete face. So we (already) have \(\ell_4 = \ell_5\) in the LP \(Q\)
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\((y,z)\) is a complete face. So we (already) have \(\ell_4 = \ell_5\) in the LP \(Q\)

\((w,t,w')\) is a run. the length \(wt\) is \(\ell_3\), and the length \(tw'\) is \(\ell_3\). so we merge \(w\) and \(w'\),
Branching on length suppositions: example

\(Q : \ell_4 - \ell_5 = 0 \)

\((y,z)\) is a complete face. So we (already) have \(\ell_4 = \ell_5 \) in the LP \(Q \)

\((w,t,w')\) is a run. the length \(wt \) is \(\ell_3 \), and the length \(tw' \) is \(\ell_3 \). so we merge \(w \) and \(w' \),
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\((y, z)\) is a complete face. So we (already) have \(\ell_4 = \ell_5\) in the LP \(Q\).

\((w, t, w')\) is a run. The length \(wt\) is \(\ell_3\), and the length \(tw'\) is \(\ell_3\). So we merge \(w\) and \(w'\), and mark angle \((t, w, t)\) as \(\emptyset\).
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

(y,z) is a complete face. So we (already) have \(\ell_4 = \ell_5 \) in the LP \(Q \)

(w,t,w’) is a run. the length \(wt \) is \(\ell_3 \), and the length \(tw' \) is \(\ell_3 \). so we merge \(w \) and \(w' \), and mark angle \((t, w, t) \) as \(\emptyset \)
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\((u, t, y, u')\) is also a run.
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\((u, t, y, u')\) is also a run.

Is \(u\) and \(u'\) the same vertex?
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\((u, t, y, u')\) is also a run.

Is \(u\) and \(u'\) the same vertex? Is \(\ell_3 = \ell_4 + \ell_5\)?
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\((u, t, y, u')\) is also a run.

Is \(u\) and \(u'\) the same vertex? Is \(\ell_3 = \ell_4 + \ell_5\)?

We don’t know. We branch.
Branching on length suppositions: example

\[Q : \ell_4 - \ell_5 = 0 \]

\[(u, t, y, u')\] is also a run.

Is \(u\) and \(u'\) the same vertex? Is \(\ell_3 = \ell_4 + \ell_5\)?

We don’t know. We branch.

first case : add \(\ell_3 > \ell_4 + \ell_5\) to \(Q\) and branch

second case : add \(\ell_3 = \ell_4 + \ell_5\) to \(Q\) and branch
Branching on length suppositions: example

\[(\text{case 2}) \ Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0\]
Branching on length suppositions: example

\[(\text{case 2}) \quad Q: \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0\]

\((u, t, y, u')\) is a run, and we know that \(u\) and \(u'\) have the same position: we merge \(u\) and \(u'\).
Branching on length suppositions: example

\[(\text{case 2}) \quad Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0\]

\((u, t, y, u')\) is a run, and we know that \(u\) and \(u'\) have the same position: we merge \(u\) and \(u'\),

Branching on length suppositions: example

(case 2) \(Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0 \)

\((u, t, y, u')\) is a run, and we know that \(u\) and \(u'\) have the same position: we merge \(u\) and \(u'\), and the angle \((t, u, y)\) is labeled \(\pi\).
(case 2) \(Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0 \)

\((u, t, y, u')\) is a run, and we know that \(u\) and \(u'\) have the same position: we merge \(u\) and \(u'\), and the angle \((t, u, y)\) is labeled \(\pi\).

\(u\) is now complete: the angle \(r, u, r'\) is labeled \(\emptyset\)
Branching on length suppositions: example

\[(case 2) \quad Q : \ell_4 - \ell_5 = 0, \ell_3 - \ell_4 - \ell_5 = 0\]

\((u, t, y, u')\) is a run, and we know that \(u\) and \(u'\) have the same position: we merge \(u\) and \(u'\), and the angle \((t, u, y)\) is labeled \(\pi\).

\(u\) is now complete: the angle \(r, u, r'\) is labeled \(\emptyset\)

in the run \((r, u, r')\), \(r\) and \(r'\) have the same position: we merge...
Branching on a new tile

In other cases, we add a new tile (a new “usual face”)
Branching on a new tile

In other cases, we add a new tile (a new “usual face”)

We take a non-complete vertex w in the graph, and we try (branch on) every possibility to add a new face adjacent to w
Existence of the pentagon

Given the LP Q, we denote by Q the set of solutions ℓ of Q with $\sum \ell = 1$

Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i - 1) - \sum_{j=1}^{i-1} \alpha_i$.

One have:

$$\sum_{i} \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0.$$ (1)
Existence of the pentagon

Given the LP Q, we denote by \mathcal{Q} the set of solutions ℓ of Q with $\sum \ell = 1$

Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i - 1) - \sum_{j=1}^{i-1} \alpha_i$.

One have:

$$\sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0. \quad (1)$$

We backtrack if there is no convex pentagon exists with the properties, that is if the following condition is not fulfilled:

$$\exists \ell \in \mathcal{Q} \cap]0, 1[^5, \exists \alpha \in \mathcal{P} \cap]0, 1[^5, \sum \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0 \quad (2)$$
Existence of the pentagon

Given the LP Q, we denote by Q the set of solutions ℓ of Q with $\sum \ell = 1$

Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i - 1) - \sum_{j=1}^{i-1} \alpha_i$.

One have:

$$\sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0. \quad (1)$$

We backtrack if there is no convex pentagon exists with the properties, that is if the following condition is not fulfilled:

$$\exists \ell \in \Omega \cap [0, 1[^5, \exists \alpha \in \Phi \cap [0, 1[^5, \sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0 \quad (2)$$

If $\dim(\Phi) = 0$ then $\alpha \in Q^5$, and easy to decide: we compute on $Q[\cos(\pi/q)]$ for a $q \in \mathbb{N}$.

Part 3/3: Testing a family corresponding to a good set
Existence of the pentagon

Given the LP Q, we denote by Q the set of solutions ℓ of Q with $\sum \ell = 1$

Let $s(\alpha)$ be the vector such that $s(\alpha)_i = (i - 1) - \sum_{j=1}^{i-1} \alpha_i$.

One have:

$$\sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0. \quad (1)$$

We backtrack if there is no convex pentagon exists with the properties, that is if the following condition is not fulfilled:

$$\exists \ell \in \Omega \cap]0, 1[^5, \exists \alpha \in \mathcal{P} \cap]0, 1[^5, \sum_i \ell_i \exp(s(\alpha)_i \times \pi \times \sqrt{-1}) = 0 \quad (2)$$

If $\dim(\mathcal{P}) = 0$ then $\alpha \in Q^5$, and easy to decide: we compute on $Q[\cos(\pi/q)]$ for a $q \in \mathbb{N}$.

If $\dim(\mathcal{P}) > 0$: we backtrack if we have a certificate (computations in Q) that there a no solution. Problem: this cannot detect “degenerate case”. So we manually add some degenerate case. (Types 20 to 24 in Table 1).
Conditions for which we backtrack (Table 1)

<table>
<thead>
<tr>
<th>Type 1</th>
<th>$a + b + c = 2\pi$</th>
<th>Type 2</th>
<th>$a + b + d = 2\pi$</th>
<th>$C = E$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Type 3</td>
<td>$3e = 2\pi$</td>
<td>$C + E = D$</td>
<td>$a + b + d = 2\pi$</td>
<td>$D = E$</td>
</tr>
<tr>
<td></td>
<td>$d + 2e = 2\pi$</td>
<td>$A = B$</td>
<td>$2e = \pi$</td>
<td>$B = C$</td>
</tr>
<tr>
<td></td>
<td>$b + 2e = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 5</td>
<td>$3e = 2\pi$</td>
<td>$D = E$</td>
<td>$A = B$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + b + d = 2\pi$</td>
<td>$B = C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2e = \pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 6</td>
<td>$d + 2e = 2\pi$</td>
<td>$A = C = D = E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 7</td>
<td>$a + 2c = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A = C = D = E$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 8</td>
<td>$d + 2e = 2\pi$</td>
<td>$A = B = C = D$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b + c = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 9</td>
<td>$d + 2e = 2\pi$</td>
<td>$A = B = C = D$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2a + c = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 11</td>
<td>$c + 2d = 2\pi$</td>
<td>$A = B = C = 2E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b + d + e = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + 2b = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 12</td>
<td>$c + 2d = 2\pi$</td>
<td>$A + C = B = 2E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b + d + e = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + 2b = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 13</td>
<td>$b + 2d = 2\pi$</td>
<td>$A = 2B = 2C$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + b + d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2e = \pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 14</td>
<td>$c + 2d = 2\pi$</td>
<td>$A = B = 2C = 2E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b + d + e = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + 2b = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 15</td>
<td>$c + 2d = 2\pi$</td>
<td>$B = D = E$</td>
<td>$2A = D = E$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2b + e = 2\pi$</td>
<td>$C = 2B$</td>
<td>$A = C$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2a + d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2e = \pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 16</td>
<td>$b + c + e = 2\pi$</td>
<td>$D = E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2b + d = 2\pi$</td>
<td>$A = B$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + 2c = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 17</td>
<td>$c + 2e = 2\pi$</td>
<td>$A = B = C = D = E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2b + d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2e = \pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 18</td>
<td>$d + 2e = 2\pi$</td>
<td>$A = B$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$c + 2e = 2\pi$</td>
<td>$B = E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b + d + e = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 19</td>
<td>$c + 2e = 2\pi$</td>
<td>$A = B = C = D$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$b + 2d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A = B = C = D$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 20</td>
<td>$d + 2e = 2\pi$</td>
<td>$A = C + D$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2a + b = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2b + d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 21</td>
<td>$d + 2e = 2\pi$</td>
<td>$A = B = C = E$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2a + b = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$A = B = C = E$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 22</td>
<td>$2b + d = 2\pi$</td>
<td>$A = 2C = 2D$</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + b + d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2e = \pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 23</td>
<td>$2b + d = 2\pi$</td>
<td>$2c + d = 2\pi$</td>
<td>$2D = A + C$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + b + d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$2e = \pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Type 24</td>
<td>$2b + c = 2\pi$</td>
<td>$2c + d = 2\pi$</td>
<td>$2E = A + C$</td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + b + d = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>$a + 2b = 2\pi$</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Part 3: Results

For every family, the exhaustive search is finite. That is: if a pentagon does not respect condition of Type i for a $i \in \{1, \ldots, 24\}$, then it cannot tile the plane.

- Types 1 to 15 are the already known families.
- Types 16 to 19 are special cases of known families.
- Types 20 to 24 are “degenerate” ($\dim(\mathcal{P}) > 0$): there are no convex pentagons which respects these conditions.
Future

- Reproduce the exhaustive search (∼5000 lines in C++)
Future

- Reproduce the exhaustive search (∼5000 lines in C++): Done
Future

- Reproduce the exhaustive search (~ 5000 lines in C++): Done
- Re-reproduce the exhaustive search (some else ?)
Future

- Reproduce the exhaustive search (∼5000 lines in C++): Done
- Re-reproduce the exhaustive search (some else ?)
- Formal proof ? (Coq or similar)
Future

- Reproduce the exhaustive search (≈5000 lines in C++): Done
- Re-reproduce the exhaustive search (some else ?)
- Formal proof ? (Coq or similar)

Simplifications:
- Direct proof for the positive density (?)
- Direct (not algorithmic) proof for the finiteness of good sets ?
Future

- Reproduce the exhaustive search (\sim5000 lines in C++): Done
- Re-reproduce the exhaustive search (some else ?)
- Formal proof ? (Coq or similar)

Simplifications:
- Direct proof for the positive density (?)
- Direct (not algorithmic) proof for the finiteness of good sets ?

Future:
- Non-convex polygons:
Future

- Reproduce the exhaustive search (≈5000 lines in C++): Done
- Re-reproduce the exhaustive search (some else ?)
- Formal proof ? (Coq or similar)

Simplifications:

- Direct proof for the positive density (?)
- Direct (not algorithmic) proof for the finiteness of good sets ?

Future:

- Non-convex polygons :
 - Infinitely many types tiling the plane... How to manage ?
Future

- Reproduce the exhaustive search (∼5000 lines in C++): Done
- Re-reproduce the exhaustive search (some else ?)
- Formal proof ? (Coq or similar)

Simplifications:
- Direct proof for the positive density (?)
- Direct (not algorithmic) proof for the finiteness of good sets ?

Future:
- Non-convex polygons :
 - Infinitely many types tiling the plane... How to manage ?
- Search for an aperiodic polygon ("Ein-stein" tile) ?
Thanks!