Augmented systems in fluid mechanics

Didier Bresch

LAMA UMR5127 CNRS

E-mail: didier.bresch@univ-smb.fr

Based on joint works with:

B. Desjardins (FMJH, Moma group) & C.K. Lin (NCTU, Taiwan)
V. Giovangigli (Ecole Polytechnique) & E. Zatorska (Polish Academy of Sciences)
F. Couderc, P. Noble & J.–P. Vila (Insa Toulouse)
M. Gisclon (Univ. Savoie Mont-Blanc), I. Lacroix-Violet (Lille)

Merci à Carine, Laurent et Thierry

GdR EGRIN, Le Lioran 2018

Main objectives of my talk

- ▶ Enlarge the number of eqs are already present in some manipulations.
- ▶ Enlarge the number of eqs may help for modeling, mathematics, numerics.

1st Lecture:

An example around Compressible Euler-Korteweg

2nd Lecture:

Some recent references in fluid mechanics: Shallow-water, Green-Nagdhi etc..... The case of the Compressible Navier-Stokes equations

In all the talk, we consider a periodic domain Ω :

- Get rid of the difficulties due to the boundary
- Play with the structure of the equations only.
- Comments will be done on bounded domains.

Compressible Euler system:

$$\partial_t \rho + \operatorname{div}(\rho u) = 0$$

$$\partial_t (\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla p(\rho) = 0$$
 with $p(\rho) = a \rho^{\gamma}$ with $a > 0$ and $\gamma > 1$.

Energy:

$$\frac{d}{dt}\int_{\Omega}\frac{1}{2}\rho|u|^2+\frac{a}{\gamma-1}\rho^{\gamma}=0.$$

$$\begin{split} \left(\int_{\Omega} \partial_{t}(\rho u) + \operatorname{div}(\rho u \otimes u)\right) \cdot u &= \int_{\Omega} \rho(\partial_{t} u + u \cdot \nabla u) \cdot u \\ &= \frac{1}{2} \int_{\Omega} \rho(\partial_{t} |u|^{2} + u \cdot \nabla |u|^{2}) \\ &= \frac{1}{2} \frac{d}{dt} \int_{\Omega} \rho |u|^{2} \end{split}$$

$$\implies \frac{1}{2} \frac{d}{dt} \int_{\Omega} \rho |u|^2 + \int_{\Omega} \nabla p(\rho) \cdot u = 0 \tag{1}$$

Energy equation:

$$\partial_t(\rho e(\rho)) + \operatorname{div}(\rho e(\rho)u) + p(\rho)\operatorname{div}u = 0 \tag{2}$$

with
$$e(\rho) = \int_{0}^{\rho} p(\tau)/\tau^{2} d\tau = a\rho^{\gamma-1}/(\gamma-1)$$
.

Add (1) and $\int_{a}^{b} (2) \implies$

$$E(\rho, u) = \int_{\Omega} \left(\frac{1}{2}\rho|u|^{2} + \frac{a}{\gamma - 1}\rho^{\gamma}\right)$$

$$= \int_{\Omega} \left(\frac{1}{2}\rho|u|^{2} + \frac{a}{\gamma - 1}\rho^{\gamma}\right)$$

$$= \int_{\Omega} \left(\frac{1}{2}\rho_{0}|u_{0}|^{2} + \frac{a}{\gamma - 1}\rho_{0}^{\gamma}\right)$$
(4)

Modulated energy with target (r, U)

$$E(\rho, u|r, U) = \int_{\Omega} \frac{1}{2} \rho |u - U|^2 + \left(H(\rho) - H(r) - H'(r)(\rho - r) \right)$$

with $H(\rho) = \rho e(\rho)$ convex with $p(\rho) = a\rho^{\gamma}$..

Note that we write $\rho |u|^2 = |m|^2/\rho$ where $m = \rho u$ \implies modulation with convex properties :

$$\frac{|\rho u|^2}{\rho} - \frac{|rU|^2}{r} - \frac{2rU \cdot (\rho u - rU)}{r} + \frac{|rU|^2}{r^2} (\rho - r) = \rho |u - U|^2$$

Note that we have used an augmented system namely:

Mass, Momentum, Internal energy.

An application of the relative entropy:

Definition. The pair $(\overline{\varrho}, \overline{u})$ is a dissipative solution of the compressible Euler equations if and only if $(\overline{\varrho}, \overline{u})$ satisfies the relative energy inequality

$$E(\varrho,u,\big|r,U)(t) \leq E(\varrho,u\big|r,U)(0) \exp\bigl[c_0(r)\int_0^t \|\mathrm{div} U(\tau)\|_{L^\infty(\Omega)} d\tau\bigr]$$

$$+ \int_0^t \exp\left[c_0(r)\int_s^t \|\operatorname{div} U(\tau)\|_{L^{\infty}(\Omega)}\right] \int_{\Omega} \varrho E(r,U) \cdot (U-\overline{u}) \, dx ds$$

for all smooth test functions U defined on $[0, T] \times \overline{\Omega}$) with (r, E(r, U)) given through

$$\begin{aligned} & \partial_t r + \operatorname{div}(rU) = 0, \\ & E(r, U) = \partial_t U + U \cdot \nabla U + \nabla H'(r) \end{aligned}$$

with $0 < c < r < c^{-1} < +\infty$.

See:

- P.-L. Lions: Book 1998 Oxford for incompressible Euler.
- C. Bardos, T. Nguyen: 2016
- F. Sueur: 2014

This may be helpful for:

- Weak-Strong uniqueness
- Asymptotic analysis
- Definition of weakest solution when difficulties to deal with nonlinearities.

Compressible Euler-Korteweg:

$$\begin{split} \partial_t \rho + \operatorname{div}(\rho u) &= 0 \\ \partial_t (\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \rho(\rho) &= \varepsilon^2 \operatorname{div} \mathbb{K} \end{split}$$

where

$$\mathbb{K} = \left(\rho \operatorname{div}(K(\rho)\nabla\rho) + \frac{1}{2}(K(\rho) - \rho K'(\rho))|\nabla\rho|^2\right)\mathbb{I}_{\mathbb{R}^d} - K(\rho)\nabla\rho \otimes \nabla\rho$$

Energy:

$$\frac{d}{dt}\int_{\Omega} \left(\frac{1}{2}\rho|u|^2 + \frac{a}{\gamma - 1}\rho^{\gamma} + \varepsilon^2 \frac{K(\rho)}{2}|\nabla \rho|^2\right).$$

$$E(\rho, u, \nabla \rho) = \int_{\Omega} \left(\frac{1}{2} \rho |u|^2 + \frac{a}{\gamma - 1} \rho^{\gamma} + \varepsilon^2 \frac{K(\rho)}{2} |\nabla \rho|^2 \right).$$

Modulated energy with target $(r, U, \nabla r)$

$$E(\rho, u, \nabla \rho|, r, U \nabla r) = \frac{1}{2} \int_{\Omega} \rho |u - U|^2 + \frac{1}{2} \varepsilon^2 \int_{\Omega} I_{\tau} + \int_{\Omega} H(\rho | r)$$

where

$$H(\rho|r) = H(\rho) - H(r) - H'(r)(\rho - r)$$

and

$$I_{T} = K(\rho)|\nabla \rho|^{2} - K(r)|\nabla r|^{2} - K'(r)|\nabla r|^{2}(\rho - r) - 2K(r)\nabla r \cdot (\nabla \rho - \nabla r).$$

If $K(\rho) = \rho^s$, convexity of the functional I_T requires $-1 \le s \le 0$. To get Gronwall Lemma: control of terms coming from K ask for $s+2 \le \gamma$. J. Giesselmann, C. Lattanzio, A. Tzavaras: (2017).

$$\begin{split} E(\rho, u, \nabla \rho) &= \int_{\Omega} \left(\frac{1}{2} \rho |u|^2 + \frac{a}{\gamma - 1} \rho^{\gamma} + \varepsilon^2 \frac{1}{2} |\nabla \int_{0}^{\rho} \sqrt{K(\tau)} d\tau|^2 \right). \\ &= \int_{\Omega} \left(\frac{1}{2} \rho |u|^2 + \frac{a}{\gamma - 1} \rho^{\gamma} + \varepsilon^2 \frac{\rho}{2} |\nabla \int_{0}^{\rho} \sqrt{\frac{K(\tau)}{\tau}} d\tau|^2 \right). \end{split}$$

Euler Lagrange associated to $\int_{\Omega} \frac{1}{2} |\nabla \Psi(\rho)|^2$ where $\Psi(\rho) = \frac{1}{2} |\nabla \int_0^{\rho} \sqrt{K(\tau)} d\tau|^2$:

$$\begin{split} \int_{\Omega} \nabla \Psi(\rho) \cdot \nabla(\partial_{t} \Psi(\rho)) &= -\int_{\Omega} \Delta \Psi(\rho) \, \partial_{t} \Psi(\rho) \\ &= -\int_{\Omega} \Delta \Psi(\rho) \, \Psi'(\rho) \, \partial_{t} \rho \\ &= \int_{\Omega} \Delta \Psi(\rho) \, \Psi'(\rho) \, \mathrm{div}(\rho u) \\ &= -\int_{\Omega} u \cdot \left[\rho \, \nabla(\Psi'(\rho) \Delta \Psi(\rho)) \right] \end{split}$$

$$\begin{split} \partial_t \rho + \operatorname{div}(\rho u) &= 0 \\ \partial_t (\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \rho(\rho) &= \varepsilon^2 \rho \nabla \Big(\Psi'(\rho) \Delta \Psi(\rho) \Big) \end{split}$$

where

$$\Psi(\rho) = \int_0^\rho \sqrt{K(\tau)} \, d\tau.$$

$$K(\rho)=1/\rho \implies \text{Quantum-Euler system} \implies 2\rho\nabla(\frac{1}{\sqrt{\rho}}\Delta\sqrt{\rho}).$$
 $K(\rho)=1 \implies \text{Euler with surface tension} \implies \rho\nabla\Delta\rho.$

In compressible Euler system:

The term $e(\rho)$ was really important to deals with the pressure term.

Importance of the term
$$\nabla \int_0^{
ho} \sqrt{K(au)/ au} \, d au$$
 ?

Recall that $E(\rho, u, \nabla \rho)$ may be written as

$$ilde{\mathcal{E}}(
ho,u,v)=\int_{\Omega}\Bigl(rac{1}{2}
ho|u|^2+
ho\,\mathrm{e}(
ho)+arepsilon^2rac{
ho}{2}|v|^2\Bigr)$$

with
$$v = \nabla \int_0^\rho \sqrt{K(\tau)/\tau} \, d\tau$$

An Augmented system helping at continuous and discrete level?

Let us choose $K(\rho) = 1/\rho$ for simplicity then $\nu = \nabla \log \rho$. Remark that

$$\mathbb{K} = \left(\rho \operatorname{div}(K(\rho)\nabla\rho) + \frac{1}{2}(K(\rho) - \rho K'(\rho))|\nabla\rho|^2\right)\mathbb{I}_{\mathbb{R}^d} - K(\rho)\nabla\rho \otimes \nabla\rho$$

which may be written

$$\mathbb{K} = \Delta \rho - \rho \nabla \log \rho \otimes \nabla \log \rho$$
$$= \operatorname{div}(\rho \nabla \nabla \log \rho) = \operatorname{div}(\rho \nabla \nu). \tag{5}$$

Moreover we have, differentiating the mass equations,

$$\partial_t \nabla \rho + \nabla \operatorname{div}(\rho u) = 0$$

and therefore

$$\partial_t(\rho \mathbf{v}) + \operatorname{div}(\rho \mathbf{v} \otimes \mathbf{u}) = -\nabla \operatorname{div}(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{v} \otimes \mathbf{u}) = -\operatorname{div}(\rho^t \nabla \mathbf{u})$$

In the variable (ρ,u,\bar{v}) with $\bar{v}=\varepsilon v$, the Euler-Korteweg system reads

$$\begin{split} \partial_t \rho + \operatorname{div}(\rho u) &= 0 \\ \partial_t (\rho u) + \operatorname{div}(\rho u \otimes u) + \nabla \rho(\rho) &= \varepsilon \operatorname{div}(\rho \nabla v). \\ \partial_t (\rho \overline{v}) + \operatorname{div}(\rho \overline{v} \otimes u) &= -\varepsilon \operatorname{div}(\rho^t \nabla u) \end{split}$$

with $\bar{\mathbf{v}} = \varepsilon \nabla \log \rho$.

Note that for the energy, it is easy to get it:

Scalar product of Eq u with u and scalar product of Eq v with v. Integration in space and use of the mass equation.

Modulated energy with target (r, U, \bar{V}) .

$$E(\rho, u, \bar{v}|r, U, \bar{V}) = \frac{1}{2} \int_{\Omega} \rho |u - U|^2 + H(\rho) - H(r) - H'(r)(\rho - r) + \rho |\bar{v} - \bar{V}|^2.$$

Using augmented version for $K(\rho) = \rho^s$: OK Gronwall if $s + 2 < \gamma$ with $-1 \le s$ ok.

D.B., M. Gisclon, I. Lacroix-Violet. (2018).

Important remark: A global weak solution of the Euler-Korteweg is a global weak solution of the augmented system. Play with augmented system is appropriate for theoretical and numerical purposes!!

- Weak-Strong uniqueness, Dissipative solutions, singular limits.

$$\begin{split} \left[\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{u}) &= 0, \\ \partial_t \left(\varrho \textbf{u} \right) + \text{div}(\varrho \textbf{u} \otimes \textbf{u}) + \nabla P(\varrho) &= \operatorname{div} \textbf{K} \end{split} \end{split}$$

with

$$\mathbf{K} = \left(\rho \operatorname{div}(K(\rho)\nabla\rho) + \frac{1}{2}(K(\rho) - \rho K'(\rho))|\nabla\rho|^2\right)\operatorname{Id} - K(\rho)\nabla\rho \otimes \nabla\rho$$

where $K(\rho)$ is the capillary coefficient. Note that

$$\operatorname{div} \mathbf{K} = \rho \nabla (\sqrt{K(\rho)} \Delta (\int_0^\rho \sqrt{K(s)} \, ds)$$

$$= \operatorname{div} \Big(F(\rho) \nabla \nabla \varphi(\rho) \Big) + \nabla \Big((F'(\rho) \rho - F(\rho)) \Delta \varphi(\rho) \Big)$$
with $\sqrt{\rho} \varphi'(\rho) = \sqrt{K(\rho)}$, $F'(\rho) = \sqrt{F(\rho) \rho}$.

 \implies extended formulation of the Euler-Korteweg system with $w = \nabla \varphi(\rho)$.

⇒ Stable schemes under hyperbolic CFL condition.

Numerical simulations

Figure 1. Numerical simulation of a roll-wave in presence of surface tension. On the left: one dimensional roll-wave without transverse perturbations. On the right: a two-dimensional roll-wave

See works for other studies with augmented systems by :

- Dhaouadi, Favrie, Gavrilyuk: NLS ou Euler-Korteweg.
- Favrie, Gavrilyuk : Serre-Green-Naghdi.
- Schochet, Weinstein: NLS (Eq Zakharov)
- Obrecht: Benney-Roskes
- Kazerani : Green-Naghdi.
- Benzoni, Danchin, Descombes: Euler-Korteweg in non conservative form.
- CEA with Jamet et al.: Euler-Korteweg
- Noble, Richard, Ruyer-Quil, Vila: Shallow-water and multifluid systems.
- Besse, Noble : Transparent boundary conditions for dispersive systems.

.

Relative κ entropy (CRAS 2015 D.B, P. Noble, J.–P. Vila)

A useful tool to measure distance between quantities!!

Idea on a simple energy: Assume $e(u,\rho)=e_1(u)+e_2(\rho)$, calculate

$$E(u,\rho) := e(u,\rho) - e(U,r) - \nabla e_1(u) \cdot (u-U) - e_2'(r)(\rho-r)$$

If global strict-convexity then control of

$$|u-U|^2+|\rho-r|^2$$

See for instance:

C. Dafermos, R. Di Perna, H.T. Yau, Y. Brenier, C. Bardos, F. Otto, A. Tzavaras, L. St Raymond.......

See R. Herbin, T. Galloüet, D. Maltese, A. Novotny, E. Feireisl for the compressible Navier-Stokes with constant viscosities, relative entropy and comparision continuous/discrete solutions..

May be complicated depending on the study !!

Let us consider the incompressible Euler equations:

$$\partial_t u + u \cdot \nabla u + \nabla p = 0$$

with energy

$$\int_{\Omega} |u|^2 \le \int_{\Omega} |u_0|^2$$

Let \bar{u} a divergence free smooth function, let us denote

$$PL(\bar{u},q) = \partial_t \bar{u} + P(\bar{u} \cdot \nabla \bar{u})$$

With P the Leray projector.

Formally

$$\partial_t(u-\bar{u}) + u \cdot \nabla(u-\bar{u}) + (u-\bar{u}) \cdot \nabla \bar{u} + \nabla q = L(\bar{u},q).$$

Formally

$$\frac{d}{dt}\int_{\Omega}|u-\bar{u}|^2+\int_{\Omega}((u-\bar{u})\cdot\nabla\bar{u})\cdot(u-\bar{u})=\int_{\Omega}L(\bar{u})\cdot(u-\bar{u}).$$

Gronwall with
$$E(u|\bar{u}) = \int_{\Omega} |u - \bar{u}|^2$$
.

A dissipative solution u of the incompressible Euler equations is a solution satisfying

$$\begin{split} E(u|\bar{u}) &\leq E(u_0|\bar{u}_0) \exp[\int_0^t \|\nabla \bar{u}\|_{L^{\infty}(\Omega)} d\tau] \\ &+ \int_0^t \exp[\int_s^t \|\nabla \bar{u}\|_{L^{\infty}(\Omega)} d\tau] \int_{\Omega} L(\bar{u}) \cdot (u - \bar{u}) \, dx ds \end{split}$$

for all \bar{u} smooth divergence free vector field and

$$L(\bar{u}) = P(\bar{u} \cdot \nabla \bar{u})$$

How to prove that a global weak solutions if a dissipative solution ?

Take car of the regularity !!

Recall that

$$\int_{\Omega} |u - \bar{u}|^2 = \int_{\Omega} (|u|^2 - |\bar{u}|^2 - 2\bar{u} \cdot (u - \bar{u}).$$

_

1) Show the relative entropy inequality starting with

$$E(u|\bar{u})(t) - E(u|\bar{u})(0).$$

- 1) Use energy inequality for the first term.
- 2) Use the energy equality for \bar{u} with $PL(\bar{u})$.
- 3) Test the equation of \bar{u} by $u \bar{u}$.

How to construct a dissipative solution ?

Start from the incompressible Navier-Stokes equations

- ⇒ global weak solutions
- \implies dissipative solutions as previously but with

$$PL_{\nu}(\bar{u},q) = \partial_t \bar{u} + P(\bar{u} \cdot \nabla \bar{u}) - \nu \Delta \bar{u}.$$

Now let $\nu \to 0$ to get a global dissipative solution of the incompressible Euler equations in the sense given before.

Let us now focus on:

A mixture model/low-mach system with large heat release.

A system which encodes incompressible/compressible features.

What I want to show you:

- ▶ The importance of viscosity even if it is small,
- ▶ The presence of viscosity effect in dispersive term.
- ▶ The existence of two velocities even if the model seems to have only one.

Examples related to the mixture model

Powder-snow avalanche

Spreading of pollutant in water

Mixture system

Consider the following system in periodic box:

$$\begin{split} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) &= 0, \\ [\mathit{M} - \mathit{NS}] \ \partial_t \left(\varrho \mathbf{u}\right) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) - 2\operatorname{div}(\mu(\varrho)D(\mathbf{u})) - \nabla(\lambda(\varrho)\operatorname{div}\mathbf{u}) + \nabla\Pi &= \mathbf{0}, \\ \operatorname{div}\mathbf{u} &= -2\kappa\triangle\varphi(\varrho). \end{split}$$
 where $D(\mathbf{u}) = (\nabla u + \nabla^t u)/2$ or equivalently
$$\partial_t \varrho + \nabla\varrho \cdot (\mathbf{u} + 2\kappa\nabla\varphi(\varrho)) - 2\kappa\operatorname{div}(\varrho\nabla\varphi(\varrho)) &= 0, \\ \partial_t \left(\varrho \mathbf{u}\right) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) - 2\operatorname{div}(\mu(\varrho)D(\mathbf{u})) - \nabla(\lambda(\varrho)\operatorname{div}\mathbf{u}) + \nabla\Pi &= \mathbf{0}, \\ \operatorname{div}\mathbf{u} &= -2\kappa\triangle\varphi(\varrho). \end{split}$$

Note here κ const

Physical literature

Such system:

- ► 1) Low mach number limit from Heat-conducting compressible Navier-Stokes eq. with large heat release. See the book by P.-L. Lions.
- 2) Formally obtained as mixture equations with Fick law to close the system. See the book by Rajagopal and Tao.

Some special cases and possible extension:

- ▶ 1) For $\varphi(\varrho) = -1/\varrho$ we recover combustion model. See works by Embid, Majda, Lions, Lafitte, Dellacherie, Penel...
- ▶ 2) For $\varphi(\varrho) = \log \varrho$ we recover pollutant model. See works by Graffi, Straughan, Antonsev, Kazhikhov, Monakov...
- ➤ 3) See extension to other nonlinearities and to two-fluid system by Dellacherie, Faccanoni, Grec, Penel, Lafitte etc... for other cases.

 $\kappa=0$ \Longrightarrow Non-homogeneous incompressible Navier–Stokes equations.

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{u}) &= 0, \\ [\textit{NH} - \textit{INS}] \ \partial_t \left(\varrho \textbf{u}\right) + \text{div}(\varrho \textbf{u} \otimes \textbf{u}) - 2 \, \text{div}(\mu(\varrho) D(\textbf{u})) + \nabla \Pi &= \textbf{0}, \\ \text{div } \textbf{u} &= \textbf{0}. \end{split}$$

Mathematical literature on the mixture system

► Local strong solutions

- Beirão Da Veiga '82, Secchi '82, Danchin & Liao '12 (in critical Besov spaces).
- ► Global in time solutions
 - Kazhikov & Smagulov '77: Modified conv. term, constraint on c_0 existence of generalized solution which is unique in 2d, Lions '98: 2d weak solutions ($\varphi=-1/\varrho$), small perturb. const. ρ_0 , Secchi '88: 2d unique solution for small c_0 Danchin & Liao '12: Small perturb. const. ρ + small initial velocity.
- ▶ No smallness assumption
 - B., Essoufi & Sy '07, for special relation

$$arphi'(s) = \mu'(s)/s, \quad \kappa = 1 \implies \mathsf{Kazhikhov\text{-}Smagulov}$$
 type system

Cai, Liao & Sun '12: Uniqueness in 2d, Liao '14: Global strong solution in 2d, critical Besov spaces.

Numerical literature

- J. Etienne, E. Hopfinger, P. Saramito.
 Numerical simulations of high density ratio lock-exchange flows.
 No change of variable.
 Finite element + characteristic method with mesh refinements.
- \blacktriangleright C. Acary-Robert, D. Bresch, D. Dutykh. Numerical simulation of powder-snow avalanche interaction with obstacle. Numerical test using Open-Foam, change of variable + relation between μ and φ Discussion around a new entropy encountered in a theoretical paper.
- ► C. Calgaro, E. Creusé, T. Goudon. Simulation of Mixture Flows: Pollution Spreading and Avalanches. Change of variable + get ride of high-order terms (Kazhikhov-Smagulov type system). Numerical schemes: hybrid Finite Volume/Finite Element method. Test and comparison.

Goal of this part on this powder snow avalanches system:

A two-velociy hydrodynamics in this model

The case
$$\mu'(s) = s\varphi'(s)$$
:

- ⇒ A non-linear hypocoercivity property!
- ⇒ A two-velocity hydrodynamic in the spirit of H. Brenner but......
- with two different velocities:
 - not volume and mass velocities as in H. Brenner's work

That means not \mathbf{u} and $\mathbf{u} + 2\kappa \nabla \varphi(\rho)$ but two others specified later on.

- → Global existence of weak solutions for a wide range of coefficient.
- ⇒ An answer to an open question in P.–L. Lions's book.
- ⇒ An interesting numerical scheme (work in progress with P. Noble, J.–P. Vila).

The case
$$\mu'(s) \neq s\varphi'(s)$$
:

A conclusion under some inequalities constraints.

⇒ An answer to an other open question in P.–L. Lions's book.

Special case where φ and μ are related: Two velocity hydrodynamics

Let us remark

$$\int \nabla \Pi_1 \cdot \mathbf{u} = 2 \,\kappa \int \Pi_1 \Delta \varphi(\varrho)$$

and

$$\int \nabla \mathsf{\Pi}_1 \cdot (\mathsf{u} + 2 \nabla \varphi(\varrho)) = -2 (1 - \kappa) \int \mathsf{\Pi}_1 \Delta \varphi(\varrho)$$

Thus

$$\int \nabla \Pi_{\mathbf{1}} \cdot ((\mathbf{1} - \kappa)\mathbf{u}) + \int \nabla \Pi_{\mathbf{1}} \cdot (\kappa(\mathbf{u} + 2\nabla \varphi(\varrho))) = 0$$

Momentum equation on u:

$$\partial_t(\rho \mathbf{u}) + \operatorname{div}(\rho \mathbf{u} \otimes \mathbf{u}) - 2\operatorname{div}(\mu(\rho)D(\mathbf{u})) = -\nabla \Pi_1$$

Momentum equation on $\mathbf{v} = \mathbf{u} + 2\nabla \varphi(\varrho)$:

$$\partial_t(\varrho \mathbf{v}) + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{u}) - 2\operatorname{div}(\mu(\varrho)A(\mathbf{v})) - 2\nabla\Big((\mu'(\varrho)\varrho - \mu(\varrho))\operatorname{div}\mathbf{u}\Big) = -\nabla\Pi_1$$
 where $A(\mathbf{v}) = (\nabla \mathbf{v} - \nabla^t \mathbf{v})/2$.

Additional entropy equality

Testing Eq on ${\bf u}$ by $(1-\kappa){\bf u}$ and Eq on ${\bf v}$ by $\kappa{\bf v}$ and adding we get

$$\frac{\mathrm{d}}{\mathrm{dt}} \int_{\Omega} \varrho \left((1 - \kappa) \frac{|\mathbf{u}|^2}{2} + \kappa \frac{|\mathbf{v}|^2}{2} \right) \, \mathrm{d}x$$

$$+ 2(1 - \kappa) \int_{\Omega} \mu(\varrho) |D(\mathbf{u})|^2 \, \mathrm{d}x + 2\kappa \int_{\Omega} \mu(\varrho) |A(\mathbf{u})|^2 \, \mathrm{d}x$$

$$+ 2(1 - \kappa) \kappa^2 \int_{\Omega} (\mu'(\varrho)\varrho - \mu(\varrho)) |2\triangle\varphi|^2 \, \mathrm{d}x = 0,$$

which generalizes the "B-D" entropy to the M-NS system.

Two-velocity hydrodynamic: joint velocity and drift velocity

Remark that:

$$(1-\kappa)|\mathbf{u}|^2 + \kappa|\mathbf{u} + 2\nabla\varphi|^2 = |\mathbf{w}|^2 + (1-\kappa)\kappa|2\nabla\varphi|^2.$$

⇒ See two-velocity hydrodynamics papers by S.C. Shugrin and S. Gavrilyuk Defining a new velocity vector field (joint velocity)

$$\mathbf{w} = \mathbf{u} + \kappa \nabla \varphi(\varrho)$$
, we see that $\operatorname{div} \mathbf{w} = 0$

Note that $\mathbf{v_1} = 2\nabla \varphi(\varrho)$ is called the drift velocity.

Appropriate unknowns: **w** and
$$\sqrt{(1-\kappa)\kappa}\mathbf{v}_1$$
.

If $\kappa = 1$, then we get the following system on (ϱ, \mathbf{v}) :

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{v}) - 2\Delta \mu(\varrho) &= 0, \\ [\textit{KS}] \ \partial_t \left(\varrho \textbf{v}\right) + \text{div}(\varrho \textbf{v} \otimes \textbf{u}) - 2 \, \text{div}(\mu(\varrho) A(\textbf{u})) + \nabla \Pi_1 &= \textbf{0}, \\ \frac{\text{div } \textbf{v} = \textbf{0}}{} \end{split}$$

with $\mathbf{u} = \mathbf{v} - 2\nabla \varphi(\varrho)$ (Note that \mathbf{v} is divergence free).

 \implies Kazhikhov-Smagulov type system

Global well posedness without asking any size constraint on the initial density !!

Proved by D.B., E. Hassan Essoufi, M. Sy '07

With the κ -entropy type estimate: More general results!!

If $\kappa \in (0,1)$, then $\mathbf{v} = u + 2\kappa \nabla \varphi(\rho)$ satisfies If $\kappa = 1$, then we get the following system on (ϱ, \mathbf{v}) :

$$\begin{split} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{v}) - 2\Delta \mu(\varrho) &= 0, \\ \partial_t \left(\varrho \mathbf{v}\right) + \operatorname{div}(\varrho \mathbf{v} \otimes \mathbf{u}) - 2(1-\kappa)\operatorname{div}(\mu(\varrho)D(\mathbf{u})) \\ &- 2\kappa\operatorname{div}(\mu(\varrho)A(\mathbf{u})) + \nabla \Pi_1 = \mathbf{0}, \\ \operatorname{div} \mathbf{v} &= 0 \end{split}$$

Is there an energy in such system?

Take scalar product by \mathbf{v} of the \mathbf{v} equation, gives

$$\frac{1}{2}\frac{d}{dt}\int_{\Omega}\rho|\mathbf{v}|^{2}+2(1-\kappa)\int_{\Omega}\mu(\rho)|D(u)|^{2}-4(1-\kappa)\kappa\int_{\Omega}\mu(\rho)D(u):\nabla\nabla\varphi(\rho)=0.$$

How to treat the last term ?

Write an equation on $\bar{v} = 2\sqrt{(1-\kappa)\kappa}\nabla\varphi(\rho)$!!!

Augmented system again !!!

Take the scalar product of the equation by \bar{v} and add to the previous equality for provide nice energy.

Special case where φ and μ are related

For 0 < T < ∞ , $\Omega=\mathbb{T}^{3}$ and the low Mach number system

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{u}) &= 0, \\ [\textbf{\textit{M}} - \textbf{\textit{NS}}] \ \partial_t \left(\varrho \textbf{u}\right) + \text{div}(\varrho \textbf{u} \otimes \textbf{u}) - 2 \, \text{div}(\mu(\varrho)D(\textbf{u})) - \nabla(\lambda(\varrho) \, \text{div} \, \textbf{u}) + \nabla \Pi &= \textbf{0}, \end{split}$$

 $\operatorname{div} \mathbf{u} = -2\kappa \triangle \varphi(\rho).$

with $\varphi'(s) = \mu'(s)/s$, $0 < \kappa < 1$ we have:

T1: For the initial conditions satisfying

$$\begin{split} \sqrt{(1-\kappa)\kappa}\varrho^{\mathbf{0}} \in H^{\mathbf{1}}(\Omega), \quad 0 < r \leq \varrho^{\mathbf{0}} \leq R < \infty, \quad \mathbf{u}^{\mathbf{0}} + 2\kappa\nabla\varphi(\rho^{\mathbf{0}}) \in H, \\ \mu(\varrho) \text{ such that } \mu(\varrho) \in C^{\mathbf{1}}([r,R]), \ \mu'(\varrho) > 0, \ \mu \geq c > 0 \text{ on } [r,R], \text{ and} \\ \left(\frac{1-d}{d}\mu(\varrho) + \mu'(\varrho)\varrho\right) \geq c > 0. \end{split}$$

There exists a global in time weak solution* to [M-NS].

- T2: For $\kappa \to 0$ this solution converges to the weak solution of the non-homogenous incompressible N-S equations; for $\kappa \to 1$ (and $\kappa \varrho_{\kappa}^{\mathbf{0}} \in H^{\mathbf{1}}(\Omega)$) it converges to the weak solutions of the Kazhikhov-Smagulov system.

D.B., V. Giovangigli, E. Zatorska '15: JMPA

General case

For $T<\infty$, $\Omega=\mathbb{T}^3$ and the General low Mach number system

$$\begin{split} \partial_t \varrho + \text{div}(\varrho \textbf{u}) &= 0, \\ [\textbf{\textit{M}} - \textbf{\textit{NS}} - \textbf{\textit{G}}] \ \partial_t \left(\varrho \textbf{u}\right) + \text{div}(\varrho \textbf{u} \otimes \textbf{u}) - 2 \, \text{div}(\mu(\varrho) D(\textbf{u})) - \nabla(\lambda(\varrho) \, \text{div} \, \textbf{u}) + \nabla \Pi &= \textbf{0}, \\ \text{div} \, \textbf{u} &= -2 \triangle \tilde{\varphi}(\varrho), \end{split}$$

with $\tilde{\varphi}'(s) = \tilde{\mu}'(s)/s$, we have:

T3: Under previous assumptions on the data and, for $\mu(\cdot) \in C^1([r,R])$, $\mu'(\cdot) > 0$, $\mu \ge c > 0$ on [r,R] and $\tilde{\varphi}(\cdot) \in C^1([r,R])$ and $\mu(\varrho)$, $\tilde{\mu}(\varrho)$ related by

$$c \leq \min_{\varrho \in [r,R]} (\mu(\varrho) - \tilde{\mu}(\varrho)),$$

$$\max_{\varrho \in [r,R]} \frac{(\mu(\varrho) - \tilde{\mu}(\varrho) - \xi \tilde{\mu}(\varrho))^2}{2 \left(\mu(\varrho) - \tilde{\mu}(\varrho)\right)} \leq \xi \min_{\varrho \in [r,R]} \left(\tilde{\mu}'(\varrho)\varrho + \frac{1-d}{d} \tilde{\mu}(\varrho) \right).$$

for some positive constants c, ξ . There exists global weak solution to [M-NS-G].

D.B., V. Giovangigli, E. Zatorska '15: JMPA

Remarks

▶ For $\mu(\varrho) = \varrho^{\alpha}$ the exponent α from T1 is

$$\alpha > 1 - \frac{1}{d}$$
.

In particular, it does not depend on κ .

Assume that all assumptions of T3 are satisfied and $\mu(\varrho)$, $\tilde{\mu}(\varrho)$ are replaced by

$$\mu(\varrho) = \varrho, \quad \tilde{\mu}(\varrho) = \log \varrho \quad \text{(i.e. } \tilde{\varphi}(\varrho) = -1/\varrho\text{)}.$$

Then there exist a non-empty interval $[\tilde{r}, \tilde{R}]$ such that if

$$0<\tilde{r}\leq\varrho^{0}\leq\tilde{R}<0,$$

then the weak solution to [M-NS-G] exists globally in time, which corresponds to the dense gas approximation:

S. Chapman and T.G. Cowling:

The mathematical theory of non-uniform gases, 1970.

⇒ Generalization of P.–L. Lions's result to the 3d case!

Construction of solution

We consider the augmented regularized system with three unknowns $(\varrho, \mathbf{w}, \mathbf{v_1})$:

$$\begin{split} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{w}) - 2\kappa \triangle \mu(\varrho) &= 0, \\ \partial_t \left(\varrho \mathbf{w}\right) + \operatorname{div}(\left(\varrho \mathbf{w} - 2\kappa \nabla \mu(\varrho)\right) \otimes \mathbf{w}) - 2(1-\kappa)\operatorname{div}(\mu(\varrho)D(\mathbf{w})) \\ &- 2\kappa\operatorname{div}(\mu(\varrho)A(\mathbf{w})) + \nabla \Pi_\mathbf{1} + \varepsilon \triangle^2 \mathbf{w} = -2\kappa(1-\kappa)\operatorname{div}(\mu(\varrho)\nabla \mathbf{v_1}), \\ \partial_t(\varrho \mathbf{v_1}) + \operatorname{div}(\left(\varrho \mathbf{w} - 2\kappa \nabla \mu(\varrho)\right) \otimes \mathbf{v_1}) - 2\kappa\operatorname{div}(\mu(\varrho)\nabla \mathbf{v_1}) \\ &- 2\kappa \nabla ((\mu'(\varrho)\varrho - \mu(\varrho))\operatorname{div} \mathbf{v_1}) = -2\operatorname{div}(\mu(\varrho)\nabla^t \mathbf{w}), \\ \operatorname{div} \mathbf{w} &= 0. \end{split}$$

Of course, we have to prove that $\mathbf{v_1} = 2\nabla \varphi(\varrho)$ to solve the initial system. To do that Important property: div $\mathbf{w} = 0$.

Augmented system in other topics: See references given in the first part of the talks

For compressible NS equations (see later-on): an extra integrability needed This is the term $-\varepsilon \operatorname{div} (|\nabla \mathbf{w}|^2 \nabla \mathbf{w})$: An hyper diffusive term introduced by O.A. Ladhyzenskaya.

Extensions to density dependent viscosities compressible NS equations

$$\begin{array}{l} \partial_t \varrho + \operatorname{div}(\varrho \mathbf{u}) = 0, \\ [\mathit{CNS}] \quad \partial_t \left(\varrho \mathbf{u} \right) + \operatorname{div}(\varrho \mathbf{u} \otimes \mathbf{u}) - 2 \operatorname{div}(\mu(\varrho) D(\mathbf{u})) - \nabla(\lambda(\varrho) \operatorname{div} \mathbf{u}) + \nabla P(\varrho) = \mathbf{0} \end{array}$$

with $\lambda(\varrho) = 2(\mu'(\varrho)\varrho - \mu(\varrho))$ (algebraic relation found by D.B., B. Desjardins).

$$P(\rho)=
ho^2/2, \qquad \mu(\varrho)=\mu\varrho \implies {\sf Viscous\ shallow-water\ type\ system}$$

Let us introduce an arbitrary coefficient κ such that $0 < \kappa < 1$.

Extensions to density dependent viscosities compressible NS equations

For this compressible barotropic system we have generalized κ - entropy:

$$\begin{split} &\int_{\Omega}\varrho\left(\frac{|\mathbf{w}|^2}{2} + (1-\kappa)\kappa\frac{|2\nabla\varphi(\varrho)|^2}{2}\right)(T)\;\mathrm{d}x + \int_{\Omega}\varrho e(\varrho)\;\mathrm{d}x \\ &+ 2(1-\kappa)\int_{\mathbf{0}}^T\!\!\int_{\Omega}\mu(\varrho)|D(\mathbf{u})|^2\;\mathrm{d}x\;\mathrm{d}t + 2(1-\kappa)\int_{\mathbf{0}}^T\!\!\int_{\Omega}(\mu'(\varrho)\varrho - \mu(\varrho))(\mathrm{div}\,\mathbf{u})^2\;\mathrm{d}x\;\mathrm{d}t \\ &+ 2\kappa\int_{\mathbf{0}}^T\!\!\int_{\Omega}\mu(\varrho)|A(\mathbf{w})|^2\;\mathrm{d}x\;\mathrm{d}t + 2\kappa\int_{\mathbf{0}}^T\!\!\int_{\Omega}\frac{\mu'(\varrho)\rho'(\varrho)}{\varrho}|\nabla\varrho|^2\;\mathrm{d}x\;\mathrm{d}t \\ &F \leq \int_{\Omega}\varrho_{\mathbf{0}}\left(\frac{|\mathbf{w}_{\mathbf{0}}|^2}{2} + (1-\kappa)\kappa\frac{|2\nabla\varphi(\varrho_{\mathbf{0}})|^2}{2}\right)\;\mathrm{d}x + \int_{\Omega}\varrho_{\mathbf{0}}e(\varrho_{\mathbf{0}})\;\mathrm{d}x, \end{split}$$

where we have introduced $e(\varrho)$ defined as

$$\frac{\varrho^2 \mathrm{d} e(\varrho)}{\mathrm{d} \varrho} = p(\varrho).$$

 κ -entropy may be used to construction of κ -entropy solutions with a simple construction scheme for the compressible system with extra terms (singular pressure or drag terms).

D.B., B. Desjardins, E. Zatorska '15: JMPA

Extensions to density dependent viscosities compressible NS equations

- Global κ-entropy weak solution of the CNS through the κ-entropy: Work D.B., B. Desjardins, E. Zatorska (JMPA 2015)
 Non-linear extension of hypocoercivity property known for linearized CNS.
- Interesting framework for asymptotics and numerics (κ relative entropy):
 CRAS 2015 with P. Noble and J.-P. Vila
 (various asymptotics through relative entropy)
 a) Inviscid shallow-water equation
 from the degenerate viscous shallow-water
 b) Low mach number and high Reynolds limit
 Appropriate schemes based on the continuous study: In progress.

Better rate in the asymptotic limits than with constant viscosities.

Thank you very much !!!

Please come back in Auvergne !!!