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Main objectives of my talk

» Enlarge the number of eqs are already present in some manipulations.

» Enlarge the number of eqs may help for modeling, mathematics, numerics.

1st Lecture:
An example around Compressible Euler-Korteweg

2nd Lecture:
Some recent references in fluid mechanics: Shallow-water, Green-Nagdhi etc.....

The case of the Compressible Navier-Stokes equations

In all the talk, we consider a periodic domain :
— Get rid of the difficulties due to the boundary
— Play with the structure of the equations only.
— Comments will be done on bounded domains.



Compressible Euler system:

Orp + div(pu) =0
9e(pu) + div(pu ® u) + Vp(p) =0
with p(p) = ap” with a> 0 and v > 1.

Energy:
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Energy equation:
de(pe(p)) + div(pe(p)u) + p(p)divu =0 (2)

with e(p) = [ p(7)/7?dT = ap" 1 /(v — 1).
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Modulated energy with target (r, U)
_ 1 2 /
E(p.ulr,U) = [ Solu—UP + (H(p) = H() = H(0)(o = 1)
with H(p) = pe(p) convex with p(p) = ap” ..

Note that we write p|u|® = |m|?/p where m = pu
= modulation with convex properties :

|pul? B |rU|? _2rU - (pu —rU) n [rU?
2
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Note that we have used an augmented system namely:

Mass, Momentum, Internal energy.



An application of the relative entropy:

Definition. The pair (9, 7) is a dissipative solution of the compressible Euler
equations if and only if (g, T) satisfies the relative energy inequality

E(e, u,|r, U)(t) < E(e, u|r, U)(0) eXP[CO(f)/Ot 1div U ()| o0 2y d ]

+/0t exp[co(r) /St ||divU(T)HLoo(Q)] /QgE(r7 U) - (U —1) dxds

for all smooth test functions U defined on [0, T| x Q) with (r, E(r, U)) given
through

Or + div(rU) = 0,
E(r,U)=0U+U-VU+VH'(r)

with0<c<r<c?l<+4oo.

See:

— P.-L. Lions: Book 1998 Oxford for incompressible Euler.
— C. Bardos, T. Nguyen: 2016

— F. Sueur : 2014



This may be helpful for:

— Weak-Strong uniqueness
— Asymptotic analysis
— Definition of weakest solution when difficulties to deal with nonlinearities.



Compressible Euler-Korteweg:

Orp + div(pu) =0
de(pu) + div(pu ® u) + Vp(p) = 2 divK

where
K = (pdiv(K(p)Vp) + 5 (K(p) ~ oK (0)) IVl )Tes — K(p)Vp & Vi

Energy:
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Modulated energy with target (r, U, Vr)

1 1
E(p,u,Vp|,r,UVr) = §/p|u— U|2+§e2/ IT+/ H(plr)
Q Q Q

where
H(plr) = H(p) — H(r) = H'(r)(p — r)

and
Ir = K(p) [V = K(NIVr2 = K (N[Vr(p — ) — 2K(1)Vr - (Vp - V7).

If K(p) = p°, convexity of the functional I+ requires —1 < s < 0.
To get Gronwall Lemma: control of terms coming from K ask for s +2 < ~.
J. Giesselmann, C. Lattanzio, A. Tzavaras: (2017).



E(p,u,Vp)
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/(pu+—p +egw [0 Fcu
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Orp + div(pu) =0
Or(pu) + div(pu © u) + Vp(p) = 2oV (W' (0)AW(p))

where

V(p) = /OP VK(T)dT.

K(p) =1/p = Quantum-Euler system — 2pV(ﬁA\/Z)).
K(p) =1 = Euler with surface tension = pVAp.



In compressible Euler system:

The term e(p) was really important to deals with the pressure term.

P
Importance of the term V/ VK(T)/TdT ?
0

Recall that E(p, u, Vp) may be written as
= _ 1 2 2P 12
Ep.u.v) = [ (300 +pe(o) + 25 vF)

with v = V/ops/K(T)/TdT

An Augmented system helping at continuous and discrete level ?



Let us choose K(p) = 1/p for simplicity then v = V log p. Remark that

K = (pdiv(K(0)Vp) + 5 (K(p) — oK (0) Vol ) Tas — K(p) V0@ T

which may be written

K Ap —pVlogp @ Vlogp

div(pVV log p) = div(pVv). (5)

Moreover we have, differentiating the mass equations,

0:tVp + Vdiv(pu) =0

and therefore

O:(pv) + div(pv ® u) = —Vdiv(pu) + div(pv ® u) = —div(p'Vu)



In the variable (p, u, v) with ¥ = ev, the Euler-Korteweg system reads
Orp + div(pu) =0
Oe(pu) + div(pu ® u) + Vp(p) = ediv(pVv).
O:(pv) + div(pv ® u) = —ediv(p'Vu)
with ¥ = eV log p.
Note that for the energy, it is easy to get it:

Scalar product of Eq u with u and scalar product of Eq v with v. Integration in
space and use of the mass equation.

Modulated energy with target (r, U, V).

E(p,u,v|r,U,V) = 3 / plu—UP + H(p) — H(r) = H'(r)(p — r) + pl7 — V|>.
Q



Using augmented version for K(p) = p°:
OK Gronwall if s +2 < v with —1 < s ok.

D.B., M. Gisclon, I. Lacroix-Violet. (2018).

Important remark: A global weak solution of the Euler-Korteweg is a global
weak solution of the augmented system. Play with augmented system is
appropriate for theoretical and numerical purposes !!

— Weak-Strong uniqueness, Dissipative solutions, singular limits.



CRAS 2015 D.B., F. Couderc, P. Noble, J.—P. Vila

0o + div(ou) = 0,
[ =K Ot (ou) + div(ou ® u) + VP(p) = divK
with
= (paiv(K(p)V ) + 3 (K(p) — oK' (2))| V5l )10 ~ K(p)Vp @ T

where K(p) is the capillary coefficient. Note that
P
divK = pV(y/ K(p)A(/ v K(s) ds)
0

= div(F(p)VW(p)) +V((F (0o = F(p) ()
with /¢’ (p) = V/K(p)), F'( F(p)p.

— extended formulation of the Euler-Korteweg system with w = V(p).

= Stable schemes under hyperbolic CFL condition.



Numerical simulations
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transverse perturbations. On the right: a two-dimensional roll-wave

Figure 1. Numerical simulation of a roll-wave in presence of surface tension. On the left: one dimensional roll-wave without

N



See works for other studies with augmented systems by :

— Dhaouadi, Favrie, Gavrilyuk: NLS ou Euler-Korteweg.

— Favrie, Gavrilyuk : Serre-Green-Naghdi.

— Schochet, Weinstein: NLS (Eq Zakharov)

— Obrecht: Benney-Roskes

— Kazerani : Green-Naghdi.

— Benzoni, Danchin, Descombes: Euler-Korteweg in non conservative form.
— CEA with Jamet et al.: Euler-Korteweg

— Noble, Richard, Ruyer-Quil, Vila: Shallow-water and multifluid systems.

— Besse, Noble : Transparent boundary conditions for dispersive systems.



Relative k entropy (CRAS 2015 D.B, P. Noble, J.-P. Vila)

A useful tool to measure distance between quantities!!

Idea on a simple energy: Assume e(u, p) = e1(u) + ex(p), calculate
E(u,p) i= e(u, p) — e(Us ) — Ver(u) - (u— U) — &(r)(p — )

If global strict-convexity then control of

lu—UP +p—rl?

See for instance:
C. Dafermos, R. Di Perna, H.T. Yau, Y. Brenier, C. Bardos, F. Otto,
A. Tzavaras, L. St Raymond........

See R. Herbin, T. Galloiiet, D. Maltese, A. Novotny, E. Feireisl for the
compressible Navier-Stokes with constant viscosities, relative entropy and
comparision continuous/discrete solutions..

May be complicated depending on the study !!



Let us consider the incompressible Euler equations:

Otu+u-Vu+Vp=0

/\u|2s/|uo\2
Q Q

Let T a divergence free smooth function, let us denote

with energy

PL(ii, q) = d:ii + P(d - Vi)

With P the Leray projector.
Formally

O(u—0)+u-V(u—0d)+ (u—1a)-Vi+ Vg = L(q,q).



Formally

%/Q|u—U|2+/Q((u—17)‘VE)~(u—U):/QL(U)~(U—E).

Gronwall with E(u|d) = [, |u— af>.

A dissipative solution u of the incompressible Euler equations is a solution
satisfying

t
E(ula) < E(uolo) expl [ V(e 7]
0
t t
+/ exp[/ ||VL7||Loo(Q)dT]/L(E)-(u—ﬁ) dxds
0 s Q
for all & smooth divergence free vector field and

L(@) = P(d- Vi)



How to prove that a global weak solutions if a dissipative solution ?

Take car of the regularity !l

=t = [ 1P 20 (u—0).

1) Show the relative entropy inequality starting with

Recall that

=

E(ul@)(t) — E(ul@)(0).

1) Use energy inequality for the first term.
2) Use the energy equality for & with PL({).
3) Test the equation of & by u — .



How to construct a dissipative solution ?

Start from the incompressible Navier-Stokes equations
= global weak solutions
— dissipative solutions as previously but with

PL,(&,q) = 0:ii + P(i - Vi) — vAG.

Now let v — 0 to get a global dissipative solution of the incompressible Euler
equations in the sense given before.



Let us now focus on:
A mixture model/low-mach system with large heat release.

A system which encodes incompressible/compressible features.

What | want to show you:
» The importance of viscosity even if it is small,
» The presence of viscosity effect in dispersive term.
» The existence of two velocities even if the model seems to have only one.



Examples related to the mixture model

Powder-snow avalanche

Spreading of pollutant in water




Mixture system

Consider the following system in periodic box:

0o + div(pu) =0,
[M — NS] 0 (ou) + div(ou ® u) — 2div(p(0)D(u)) — V(A(g) divu) + VI =0,
divu = =22 ¢(p).
where D(u) = (Vu + V*u)/2 or equivalently
Oco+ Vo (u+2:Vep(0)) — 2rdiv(eVe(0)) = 0,
O (ou) + div(pu ® u) — 2div(p(@)D(u)) — V(A(p) divu) + V1 = 0,
divu = —2cAp(p).

Note here & const



Physical literature

Such system:
» 1) Low mach number limit from
Heat-conducting compressible Navier-Stokes eq. with large heat release.
See the book by P.—L. Lions.
» 2) Formally obtained as mixture equations with Fick law to close the
system. See the book by Rajagopal and Tao.
Some special cases and possible extension:
» 1) For ¢(g) = —1/0 we recover combustion model.
See works by Embid, Majda, Lions, Lafitte, Dellacherie, Penel...
> 2) For (o) = log ¢ we recover pollutant model.
See works by Graffi, Straughan, Antonsev, Kazhikhov, Monakov...
> 3) See extension to other nonlinearities and to two-fluid system
by Dellacherie, Faccanoni, Grec, Penel, Lafitte etc... for other cases.

x =0 = Non-homogeneous incompressible Navier—Stokes equations.
Oro + div(pu) =0,
[VH — INS] 0 (ou) + div(pu ® u) — 2div(u(e)D(u)) + VI = 0,
divu = 0.
Global well posedness: A. Kazhikhov '77, J. Simon '87, P.—L. Lions '98.



Mathematical literature on the mixture system

» Local strong solutions
@ Beirdo Da Veiga '82, Secchi '82,
Danchin & Liao "12 (in critical Besov spaces).
» Global in time solutions

@ Kazhikov & Smagulov '77: Modified conv. term, constraint on co
existence of generalized solution which is unique in 2d,
Lions '98: 2d weak solutions (¢ = —1/p), small perturb. const. po,
Secchi '88: 2d unique solution for small co
Danchin & Liao '12: Small perturb. const. p + small initial velocity.

» No smallness assumption
@ B., Essoufi & Sy '07, for special relation
¢'(s)=p'(s)/s, k=1 = Kazhikhov-Smagulov type system

Cai, Liao & Sun '12: Uniqueness in 2d,
Liao '14: Global strong solution in 2d, critical Besov spaces.



Numerical literature

» J. Etienne, E. Hopfinger, P. Saramito.
Numerical simulations of high density ratio lock-exchange flows.
No change of variable.
Finite element + characteristic method with mesh refinements.

» C. Acary-Robert, D. Bresch, D. Dutykh.
Numerical simulation of powder-snow avalanche interaction with obstacle.
Numerical test using Open-Foam,
change of variable + relation between 1 and ¢
Discussion around a new entropy encountered in a theoretical paper.

» C. Calgaro, E. Creusé, T. Goudon.
Simulation of Mixture Flows: Pollution Spreading and Avalanches.
Change of variable + get ride of high-order terms
(Kazhikhov-Smagulov type system).
Numerical schemes: hybrid Finite Volume/Finite Element method.
Test and comparison.



Goal of this part on this powder snow avalanches system:
A two-velociy hydrodynamics in this model

The case u/(s) = s¢'(s):

= A non-linear hypocoercivity property!
= A two-velocity hydrodynamic in the spirit of H. Brenner but.......
. with two different velocities:

not volume and mass velocities as in H. Brenner's work

That means not u and u + 25V (p) but two others specified later on.
= Global existence of weak solutions for a wide range of coefficient.
= An answer to an open question in P.—L. Lions's book.
= An interesting numerical scheme

(work in progress with P. Noble, J.—P. Vila).

The case p/(s) # s¢'(s):

A conclusion under some inequalities constraints.
= An answer to an other open question in P.—L. Lions’s book.



Special case where ¢ and 1 are related: Two velocity hydrodynamics

/Vl_ll-u=2f<;/|_|1A<p(g)

[ ¥ @ 29u(@) = -2 - 0) [ Mmae(e)

Let us remark
and

Thus
/vm (1= K)u) +/vn1 (k(u + 2V(0))) = 0

Momentum equation on u:
Ot(ou) + div(ou ® u) — 2div(p(e)D(u)) = —VIy
Momentum equation on v = u + 2Vp(p):
0(ov) + div(ev © ) — 2div((2)A(v)) — 2V ({1 (e)e — () divu) =~y

where A(v) = (Vv — V'v)/2.



Additional entropy equality

Testing Eq on u by (1 — k)u and Eq on v by kv and adding we get
d > v
dt/ﬂg((l—/ﬁ)2 —|—/€2 dx
+2(1- H)/ #(@)ID(u)[* dx + 2/@/ p()|A(u)* dx
Q Q

2= [ (i (ede = u(e))2bf dx =0,

which generalizes the "B-D" entropy to the M-NS system.



Two-velocity hydrodynamic: joint velocity and drift velocity

Remark that:
(1— /<a)|u\2 + Klu+ 2Vg0|2 = \w|2 +(1- H)H|2Vg0|2.

— See two-velocity hydrodynamics papers by S.C. Shugrin and S. Gavrilyuk
Defining a new velocity vector field (joint velocity)

w=u+xVp(o), weseethat divw=0

Note that vi = 2V (p) is called the drift velocity.

Appropriate unknowns: w and /(1 — Kk)Kv1.



If K =1, then we get the following system on (g, v):

Oo +div(ov) —2Au(0) =0,
[KS] O: (ov) + div(ov ® u) — 2div(p(e)A(u)) + VI =0,
divv =10

with u = v — 2V p(p) (Note that v is divergence free).
— Kazhikhov-Smagulov type system
Global well posedness without asking any size constraint on the initial density !!

Proved by D.B., E. Hassan Essoufi, M. Sy '07

With the r-entropy type estimate: More general results!!



If k € (0,1), then v = u+ 2kVp(p) satisfies If x = 1, then we get the
following system on (g, v):

Oro + div(ov) — 2Apu(e) = 0,
Ot (ov) + div(ov ® u) — 2(1 — k) div(p(0)D(u))

-2k div(p(0)A(u)) + VI =0,
dive =0

[KSkappa]

Is there an energy in such system 7

Take scalar product by v of the v equation, gives

35t | 20=n) [ w@ID@F =40 -w)x | w(e)D(w) s VViplp) = 0.

How to treat the last term ?



Write an equation on v = 2,/(1 — k)kV(p) !l
Augmented system again !l

Take the scalar product of the equation by v and add to the previous equality
for provide nice energy.



Special case where ¢ and p are related

For 0 < T < oo, 2 = T? and the low Mach number system
O¢0 + div(ou) = 0,
[M — NS] 0 (ou) + div(ou @ u) — 2div(p(e)D(u)) — V(A(e) divu) + V1 =0,
divu = =2 p(p),
with ' (s) = 1/ (s)/s, 0 < k < 1 we have:

T1: For the initial conditions satisfying
V(1 —r)re® € HY(Q), 0<r<® <R<oo, u®+2kVe(p°)e€H,
u(0) such that u(e) € C*([r, R]), #'(¢) >0, > ¢ > 0on [r, R], and
(S5m0 + i (@)e) 2 e > 0.
There exists a global in time weak solution™ to [M-NS].

T2: For k — 0 this solution converges to the weak solution of the non-homogenous

incompressible N-S equations; for & — 1 (and k% € H*(f)) it converges to the weak
solutions of the Kazhikhov-Smagulov system.

ﬁ D.B., V. Giovangigli, E. Zatorska '15: JMPA



General case

For T < oo, Q = T® and the General low Mach number system
¢ 0 + div(gu) = 0,
[M — NS — G] 0 (ou) + div(ou ® u) — 2div(u(e)D(u)) — V(A(e)divu) + VI =0,
divu = —2A¢(0),
with @'(s) = fi’(s)/s, we have:

T3: Under previous assumptions on the data and, for u(-) € C*([r,R]), #/(:) >0, u > c >0
on [r, R] and @(-) € C*([r, R]) and u(e), fi(e) related by

c< gg}i'}q (n(e) — A(e)),

(1(e) — (o) — &ile))? o 1—d._
celr 2 (u(e) — file) <& ming (u (0o + Tu(g)) .

for some positive constants c, £. There exists global weak solution to [M-NS-G].

@ D.B., V. Giovangigli, E. Zatorska '15: JMPA



Remarks

» For u(p) = 0° the exponent a from T1 is

1
1-——.
o > d

In particular, it does not depend on «.

> Assume that all assumptions of T3 are satisfied and u(p), fi(g) are
replaced by

(o) =o, fi(o)=loge (i.e. $(o)=-1/0).
Then there exist a non-empty interval [F, ﬁ] such that if
0<F<®<R<O,

then the weak solution to [M-NS-G] exists globally in time, which
corresponds to the dense gas approximation:
ﬁ S. Chapman and T.G. Cowling:

The mathematical theory of non-uniform gases, 1970.

— Generalization of P.—L. Lions's result to the 3d case!



Construction of solution

We consider the augmented regularized system with three unknowns (o, w,v1):

Oro + div(ow) — 26Ap(0) = 0,

Or (ow) + div((ew — 26V p(0)) ® w) — 2(1 — k) div(p(e) D(w))
— 2k div(u(0)A(w)) + Vy+eAw = —2k(1 — k) div(p(e)Vva),

d¢(ov1) + div((ew — 26V u(0)) ® v1) — 2k div(u(0) Vi)
—2:V((1'(0)e — u(e)) divva) = —2div(u(e)V'w),

divw = 0.

Of course, we have to prove that vi = 2V () to solve the initial system.
To do that Important property: divw = 0.

Augmented system in other topics: See references given in the first part of the
talks

For compressible NS equations (see later-on): an extra integrability needed
This is the term —e div (|Vw[*Vw):
An hyper diffusive term introduced by O.A. Ladhyzenskaya.



Extensions to density dependent viscosities compressible NS equations

Oro + div(pu) =0,

LT 9 (ou) + div(ou © ) — 2div(u(e)D(w)) ~ V(A(e)divu) + VP(c) = 0

with A(e) = 2(1'(0)o — 1(0)) (algebraic relation found by D.B., B. Desjardins).

P(p) = p*/2, (o) = po = Viscous shallow-water type system

Let us introduce an arbitrary coefficient & such that 0 < xk < 1.



Extensions to density dependent viscosities compressible NS equations

For this compressible barotropic system we have generalized k- entropy:

WZ 2
[1@(%+(1_H) IQVAP( )‘ )(T)dX+/Qe dx

+aa-n [ T/ W(@IDW)? dx de+20~ ) [ / (' ()0 — (@) (divu)? dx dt

T o)p (Q
+2,~c//p, 0)|A(w)|? dx dt-‘rZK,// |Vol? dx dt
oJa
W, 2V
F < / 20 (Q +(1- n)nﬂ) dx + / ooe(0o) dx,
Q 2 2 Q

where we have introduced e(p) defined as

R iz(g) = p(0).

k-entropy may be used to construction of k-entropy solutions with a simple
construction scheme for the compressible system with extra terms (singular
pressure or drag terms).

ﬁ D.B., B. Desjardins, E. Zatorska '15: JMPA



Extensions to density dependent viscosities compressible NS equations

» Global x-entropy weak solution of the CNS through the x-entropy:
Work D.B., B. Desjardins, E. Zatorska (JMPA 2015)
Non-linear extension of hypocoercivity property known for linearized CNS.

> Interesting framework for asymptotics and numerics (& relative entropy):
CRAS 2015 with P. Noble and J.—P. Vila
(various asymptotics through relative entropy)
a) Inviscid shallow-water equation
from the degenerate viscous shallow-water
b) Low mach number and high Reynolds limit
Appropriate schemes based on the continuous study: In progress.

Better rate in the asymptotic limits than with constant viscosities.



Thank you very much !

Please come back in Auvergne !l



