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Motivations

» sea ice drift: due to
ocean currents and wind

» accelerated: due to
global heating

[Polar region atlas, CIA, 1978]



History

1881 1893

Jeannette Fram
G. W. de Long F. Nansen
Le havre Bergen

Boats drift from Siberia to Spitzberg during 3 years



QOutline

e Mathematical model
e Time & space discretization
e Test 1: constriction
e Test 2: Nares strait



Multi-scale damaged material

Sea ice cover
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Effect: localization

motion shear
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Model: progressive damage & healing




f(c): Mohr-Coulomb damage criterion
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Sea ice experiments
[Weiss & Schulson, 2009]
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where
o : stress tensor
01,02 principal stresses
0c,q . material parameters



Material: viscoelastic Maxwell fluid
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Yet 577 Ye =
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where

E(d) = (1-d)E . elastic modulus
n(d) = (1-d)n/d : viscosity

4 = D(u) = (Yu+VuT)/2 : deformation rate
u : velocity field



d = phase field from solid to fluid
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where
4 = D(u) = (Vu+VuT)/2 : deformation rate



Mathematical statement
(P): find ~,, u, d, ¢ and h such that
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Semi-implicit time discretization
o step 1: find v, ,,1 and b,y such that

Yent1Yen E dn
% + un Vv, — VU, ve p — ’767”VunT + 00 Yens1 = 2D(upi1)

up —u, .
p¢nhn+1Ait - d'V(¢nhn7e,n+1) + ppnhafe; A (un+1 - UW) Onfw

e step 2: find d,11, ¢pe1 and h,o1 such that

dpt1 — dp dn 1
7+1A +upy1.Vdy1 — f(E(dn)’Ye,n+1) 4 =0
t ty th
OnJﬁlAt ¢n + un+1~v@n+l + d)nJrl div Upi1 =0
hpe1 — hp
171_ + Un+1.th+1 = 0

e step 3: mass redistribution

hn+1 max(l, an+1) hn+1

One1 = min(l, ¢piq)



FEM approximation

u: P o,d, ¢, h: Py discontinuous

Implementation:
Rheolef C++ library
http://www-1jk.imag.fr/membres/Pierre.Saramito/rheolef



Test 1: constriction
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Test 1: constriction
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¢ = ice concentration, in white-blue




Test 1: constriction
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h = ice height, in blue-red




Test 1:

constriction (later)
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Test 2: Nares strait
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Moderate resolution imaging spectroradiometer reflectance



Test 2: Nares strait
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Test 2:
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Test 2: Nares strait (20h)
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Test 2: Nares strait (72h)
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Test 2: Nares strait: zoom (6h)

Velocity is piecewise constant :
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More reading

papers: Dansereau, Weiss, Saramito, Lattes,
Coche, Cryosphere, 2017.

Dansereau, Weiss, Saramito, Lattes,
Cryosphere, 2016.

book: Saramito (2017). Complex fluids,
SMAI & Springer

code: Saramito (2017).
Rheolef FEM C++ library
Free software (GPL licence)
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