Des granulaires aux suspensions Prise en compte des interactions proches dans les simulations numériques.

Aline Lefebvre-Lepot

CNRS - CMAP, Ecole Polytechnique

6ème école EGRIN Le Lioran, Juin 2018.

II. Interactions proches dans les suspensions

Ecoulement fluide/particules

Dans le fluide : Equations de Stokes

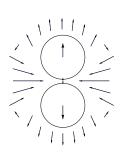
Sur les particules : Equilibre des forces

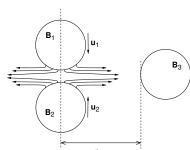
incluant les forces fluides

Aux interfaces: Non glissement du fluide à la surface

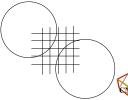
des particules

Le phénomène de lubrification





- Effets macroscopiques
- Non contact en temps fini
- Réversibilité des équations de Stokes
- ► Effets multi-particules (ex. nageurs)



Plan

Suspensions: Lubrification

Suspensions: Dynamique Stokesienne

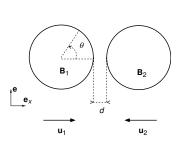
Suspensions: Méthode de décomposition

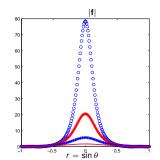
Suspensions: Contact visqueux

A. Lefebvre-Lepot

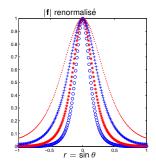
Lubrification : une singularité en espace

Densité de forces non bornée

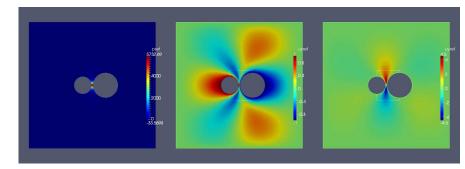


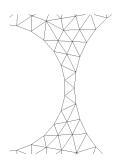


► Densité de forces localisée en espace



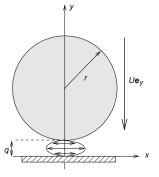
▶ Champs de pression et vitesse pour d = R/10, $V = \pm 1$





 Nécessité de développer des stratégies pour prendre en compte la lubrification dans les simulations numériques

Lubrification : une singularité en temps



PFD au premier ordre

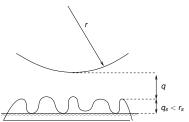
[Cox, Brenner, 1967]

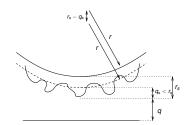
$$F_{lub} \sim -6\pi\mu r^2 \frac{U}{q} \mathbf{e}_y$$
 (3D)

$$m\ddot{q} = -6\pi\mu r^2 \frac{\dot{q}}{q} + mf_y$$

- Pas de contact en temps fini.
- Situation à la limite du contact / Système raide
 - ⇒ Existence de contacts numériques

Cas rugueux





Observation expérimentale [Vinogradova, Yacubov, 2006]

La force de lubrification exercée par un objet rugueux est équivalente à celle qu'exercerait un objet lisse décalé.

- $ightharpoonup q + q_s$ ne tend pas vers zéro en temps fini.
- Il peut y avoir contact en temps fini.

Plan

Suspensions: Lubrification

Suspensions: Dynamique Stokesienne

Suspensions : Méthode de décomposition

Suspensions: Contact visqueux

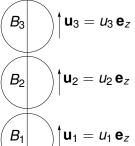
Un exemple : 3 sphères alignées

- ▶ **U** = (u_1, u_2, u_3) donnée.
- Particules plongées dans un fluide de Stokes.

Objectif:

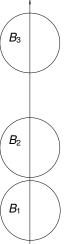
Calcul des forces exercées sur les particules :

$$\mathbf{F} = (f_1, f_2, f_3)$$



L'idée : ajout d'une correction pour les particules proches :

$$\mathbf{F}_{SD}^L = \left(egin{array}{c} f_1^L \ f_2^L \ f_3^L \end{array}
ight) + \left(egin{array}{c} c_1 \ c_2 \ 0 \end{array}
ight)$$

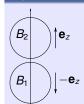


Correction de type Dynamique Stokesienne [1988]

Décomposition du mouvement :

$$\begin{vmatrix}
B_2 \\
B_1
\end{vmatrix} = \frac{\mathbf{u}_2 - \mathbf{u}_1}{2} \quad X \quad \begin{vmatrix}
B_2 \\
B_1
\end{vmatrix} - \mathbf{e}_z \quad \begin{vmatrix}
B_1 \\
B_1
\end{vmatrix} - \begin{vmatrix}
\mathbf{u}_1 + \mathbf{u}_2 \\
B_1
\end{vmatrix} + \begin{vmatrix}
\mathbf{u}_1 + \mathbf{u}_2 \\
B_1
\end{vmatrix} + \begin{vmatrix}
\mathbf{u}_1 + \mathbf{u}_2 \\
B_1
\end{vmatrix} = \mathbf{e}_z$$

2 particules en milieu infini : mouvement singulier type tabulé



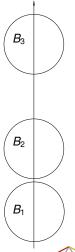
$$\mathbf{F}_{2B} = (f_1, f_2), \ \mathbf{U}_{2B} = (u_1, u_2)$$

Développement asymptotique tabulé :

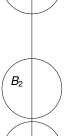
$$\mathbf{F}_{2B}^{sing} = \mathsf{R}_{2B}^{sing}(d) \, \mathbf{U}_{2B}$$

$$\begin{array}{lcl} \mathbf{F}_{SD}^{L} & = & \mathbf{F}^{L} & + & \frac{\mathbf{u}_{2} - \mathbf{u}_{1}}{2} \left(\mathbf{F}_{2B}^{sing}(d) - \mathbf{F}_{2B}^{L} \right) \\ & = & \begin{pmatrix} f_{1}^{L} \\ f_{2}^{L} \\ f_{3}^{L} \end{pmatrix} & + & \begin{pmatrix} c_{1} \\ c_{2} \\ 0 \end{pmatrix} \end{array}$$

- ▶ Converge quand $L \to +\infty$
- Forces corrigées sur B₁ et B₂
- ► Tabulations ⇒ rapidité
- Extension aux autres mouvements relatifs
- Extension aux cas multi-particules



$$\begin{array}{lcl} \boldsymbol{\mathsf{F}}^{L}_{SD} & = & \boldsymbol{\mathsf{F}}^{L} & + & \dfrac{\boldsymbol{\mathsf{u}}_{2} - \boldsymbol{\mathsf{u}}_{1}}{2} \left(\, \boldsymbol{\mathsf{F}}^{sing}_{2B}(d) - \boldsymbol{\mathsf{F}}^{L}_{2B} \right) \\ & = & \left(\begin{array}{c} f_{1}^{L} \\ f_{2}^{L} \\ f_{3}^{L} \end{array} \right) & + & \left(\begin{array}{c} c_{1} \\ c_{2} \\ 0 \end{array} \right) \end{array}$$



 B_1

- Correction de la force totale
 - Pas de correction du champs fluide
- Modèle raide
 - Existence de contacts numériques
 - Nécessité d'un modèle de contact

A. Lefebyre-Lepot

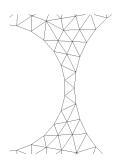
Plan

Suspensions: Lubrification

Suspensions: Dynamique Stokesienne

Suspensions : Méthode de décomposition

Suspensions: Contact visqueux



▶ Besoin de précision même pour maillages grossiers.

Convergence des méthodes numériques

Résolution du problème de Laplace via des éléments finis de degré k :

$$\left\{ \begin{array}{rcl} -\triangle u_h & = & \mathbf{f}_{\Omega \setminus \bar{B}} & \mathrm{dans} \ \Omega \\ & u_h & = & u^\star & \mathrm{sur} \ \partial \Omega \end{array} \right.$$

- ▶ $||u_h u||_{H^k(\Omega)} \le Ch^k ||u||_{H^{k+1}(\Omega)}$, *C* indépendant de *u* et *h*.
- L'estimation dépend de la norme de la solution...
- Dans le cas fluide/particules, cette estimation explose quand la distance tend vers zero.

L'idée : changement d'inconnue pour le champs fluide

Splitting en champs singuliers et réguliers

On décompose
$$(\mathbf{u},p)$$
 en $\mathbf{u}=\mathbf{u}^{reg}+\mathbf{u}^{sing}$ $p=p^{reg}+p^{sing}$

- ▶ $(\mathbf{u}^{sing}, p^{sing})$ connu \Longrightarrow calculer $(\mathbf{u}^{reg}, p^{reg})$.
- On résout le problème sans aucune hypothèse de modélisation.

La partie régulière est solution de :

$$-\triangle \mathbf{u}^{reg} + \nabla p^{reg} = -\triangle \mathbf{u}^{sing} + \nabla p^{sing} \quad \text{dans } \Omega \setminus \cup B_i$$

$$\nabla \cdot \mathbf{u}^{reg} = -\nabla \cdot \mathbf{u}^{sing} \quad \quad \text{dans } \Omega \setminus \cup B_i$$

$$\mathbf{u}^{reg} = \mathbf{u}_i - \mathbf{u}^{sing} \quad \quad \text{sur } \partial B_i$$

Objectif:

Trouver ($\mathbf{u}^{sing}, p^{sing}$) tel qu'il existe une estimation sur ($\mathbf{u}^{reg}, p^{reg}$) dans $\Omega \setminus \cup B_i$, independante de la distance entre les particules.

Décomposition du mouvement

$$\mathbf{u} = \frac{\mathbf{u}_2 - \mathbf{u}_1}{2} \quad x \quad \mathbf{u}_{2B}^{sing}(d) \quad +$$

[linéarité des équations de Stokes]

u^{reg}

A. Lefebvre-Lepot

Développement asymptotique [Cox, 1974, M. Hillairet, K. Takfarinas, 2015]

Il existe ($\mathbf{u}^{sing}, p^{sing}$) (développements explicites) tels que

$$\left|\mathbf{u}^{reg}\right|_{H^1}+\left|\mathbf{p}^{reg}\right|_{L^2}\leq C$$

avec C > 0 indépendant de la distance.

Et du point de vue numérique?

Trouver
$$(\mathbf{u}_h^{reg}, p_h^{reg}) \in V_h \times M_h$$
:
$$(-\triangle \mathbf{u}_h^{reg} + \nabla p_h^{reg} = -\triangle \mathbf{u}^{sing} + \nabla p^{sing})$$

$$\left\{ \begin{array}{rcl} -\triangle \mathbf{u}_h^{reg} + \nabla p_h^{reg} & = & -\triangle \mathbf{u}^{sing} + \nabla p^{sing} & \mathrm{dans} \ \Omega \setminus \cup B_i \\ \\ \nabla \cdot \mathbf{u}_h^{reg} & = & -\nabla \cdot \mathbf{u}^{sing} & \mathrm{dans} \ \Omega \setminus \cup B_i \\ \\ \mathbf{u}_h^{reg} & = & \mathbf{u}_i - \mathbf{u}^{sing} & \mathrm{sur} \ \partial B_i \end{array} \right.$$

$$\mathbf{u}_h = \mathbf{u}_h^{reg} + \mathbf{u}^{sing} \in \mathbf{u}^{sing} + V_h$$

$$p_h = p_h^{reg} + p^{sing} \in p^{sing} + M_h$$

Et du point de vue numérique?

Trouver
$$(\mathbf{u}_h^{reg}, p_h^{reg}) \in V_h \times M_h$$
:

$$\left\{ \begin{array}{rcl} -\triangle \mathbf{u}_h^{reg} + \nabla p_h^{reg} &=& -\triangle \mathbf{u}^{sing} + \nabla p^{sing} & \mathrm{dans} \ \Omega \setminus \cup B_i \\ \\ \nabla \cdot \mathbf{u}_h^{reg} &=& -\nabla \cdot \mathbf{u}^{sing} & \mathrm{dans} \ \Omega \setminus \cup B_i \\ \\ \mathbf{u}_h^{reg} &=& \mathbf{u}_i - \mathbf{u}^{sing} & \mathrm{sur} \ \partial B_i \end{array} \right.$$

- Estimations de convergence indépendantes de la distance pour (u^{reg}, p^{reg}) [HK2015].
- Problème de Stokes classique avec un membre de droite modifié.

Un problème classique??

Trouver
$$(\mathbf{u}_h^{reg}, p_h^{reg}) \in V_h \times M_h$$
:
$$\begin{cases} -\triangle \mathbf{u}_h^{reg} + \nabla p_h^{reg} &= -\triangle \mathbf{u}^{sing} + \nabla p^{sing} & \text{dans } \Omega \setminus \cup B_i \\ \nabla \cdot \mathbf{u}_h^{reg} &= -\nabla \cdot \mathbf{u}^{sing} & \text{dans } \Omega \setminus \cup B_i \\ \mathbf{u}_h^{reg} &= \mathbf{u}_i - \Pi \left(\mathbf{u}^{sing} \right) & \text{sur } \partial B_i \end{cases}$$

où Π est la projection sur l'espace des traces sur $\partial\Omega$ des fonctions de V_h .

Un problème classique??

Trouver
$$(\mathbf{u}_h^{reg}, p_h^{reg}) \in V_h \times M_h$$
:

$$\left\{ \begin{array}{rcl} -\triangle \mathbf{u}_h^{reg} + \nabla p_h^{reg} & = & -\triangle \mathbf{u}^{sing} + \nabla p^{sing} & \mathrm{dans} \ \Omega \setminus \cup B_i \\ \nabla \cdot \mathbf{u}_h^{reg} & = & -\nabla \cdot \mathbf{u}^{sing} & \mathrm{dans} \ \Omega \setminus \cup B_i \\ \mathbf{u}_h^{reg} & = & \mathbf{u}_i - \Pi \left(\mathbf{u}^{sing} \right) & \mathrm{sur} \ \partial B_i \end{array} \right.$$

$$\begin{split} \blacktriangleright & \int_{\Omega \setminus \bar{B}} \nabla \cdot \mathbf{u}_h^{\textit{reg}} = \int_{\Omega \setminus \bar{B}} \nabla \cdot \mathbf{u}^{\textit{sing}} \\ & \neq \int_{\partial (\Omega \setminus \bar{B})} \Pi \left(\mathbf{u}^{\textit{sing}} \right) \cdot \mathbf{n} = \int_{\partial (\Omega \setminus \bar{B})} \mathbf{u}_h^{\textit{reg}} \cdot \mathbf{n}. \end{split}$$

Une solution

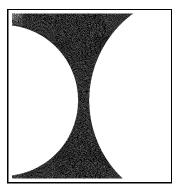
Trouver
$$(\mathbf{u}_h^{reg}, p_h^{reg}) \in V_h \times M_h$$
:

$$\left\{ \begin{array}{ll} -\triangle \mathbf{u}_{h,\varepsilon}^{reg} + \nabla \mathbf{p}_{h,\varepsilon}^{reg} & = & \triangle \mathbf{u}^{sing} - \nabla \mathbf{p}^{sing} & \mathrm{dans} \ \Omega \setminus \bar{B} \\ \nabla \cdot \mathbf{u}_{h,\varepsilon}^{reg} + \varepsilon \mathbf{p}_{h,\varepsilon}^{reg} & = & -\nabla \cdot \mathbf{u}^{sing} & \mathrm{dans} \ \Omega \setminus \bar{B} \\ \mathbf{u}_{h,\varepsilon}^{reg} & = & \mathbf{u}_i - \Pi \left(\mathbf{u}^{sing} \right) & \mathrm{sur} \ \partial B_i. \end{array} \right.$$

$$\qquad \qquad \varepsilon \left(\int_{\Omega \setminus \bar{B}} \mathsf{p} \right) = - \int_{\Omega \setminus \bar{B}} \nabla \cdot \mathbf{u}^{sing} + \int_{\partial (\Omega \setminus \bar{B})} \Pi \left(\mathbf{u}^{sing} \right) \cdot \mathbf{n} \neq \mathbf{0}.$$

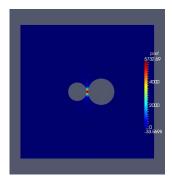
Test numérique

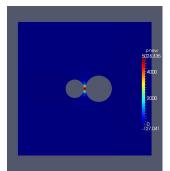
- ▶ 2 particules, $r_1 = 0.07$, $r_2 = 0.1$, $\mathbf{u}_1 = \mathbf{e}_x$, $\mathbf{u}_2 = -\mathbf{e}_x$
- ► Eléments finis $V_h = P_h^1$, $M_h = P^1$
- $\epsilon = 10^{-4}$



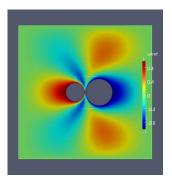


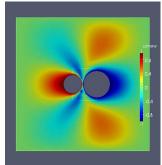
▶ Pression *p*



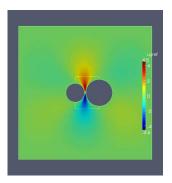


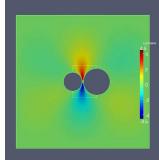
Vitesse horizontale u_x



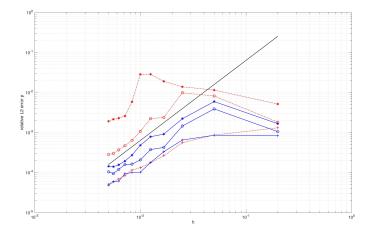


Vitesse verticale u_y

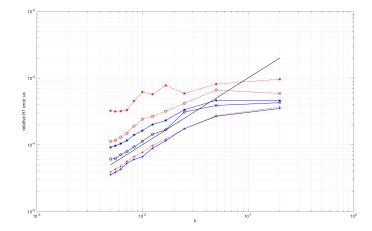




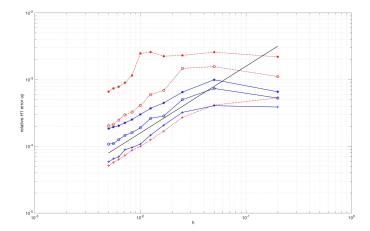
- ► Convergence en maillage $d = r_2/2$, $d = r_2/5$ et $d = r_2/10$
- ▶ Pression *p*



- ► Convergence en maillage $d = r_2/2$, $d = r_2/5$ et $d = r_2/10$
- ▶ Vitesse horizontale u_x



- ► Convergence en maillage $d = r_2/2$, $d = r_2/5$ et $d = r_2/10$
- ► Vitesse verticale **u**_y



Bilan

1. Dynamique Stokesienne

- distances intermédiaires et petites
- capte la force de lubrification à courte portée
- facile à implémenter
- pas de rétroaction sur le fluide

2. Décomposition singulier/régulier

- distances intermédiaires et petites
- prend en compte l'effet de lubrification sur le fluide
- aucune modélisation supplémentaire
- plus coûteux en temps de calcul
- dans les deux cas, systèmes raides...
- besoin de gérer les contacts numériques...

Plan

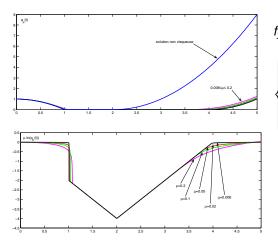
Suspensions: Lubrification

Suspensions: Dynamique Stokesienne

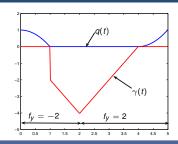
Suspensions : Méthode de décomposition

Suspensions: Contact visqueux

Comportement pour $\mu \rightarrow 0$



Modèle de contact visqueux



Problème (P)

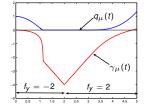
$$\dot{q}^+ = P_{C_{q,\gamma}} \dot{q}^ m\ddot{q} = mf_y + \lambda$$
 $\sup(\lambda) \subset \{t, \ q(t) = 0\}$
 $\dot{\gamma} = -\lambda$
 $q \ge 0, \ \gamma \le 0$

$$C_{q,\gamma}=egin{array}{cccc} \{0\} & ext{ si } \gamma^-<0 \ \mathbb{R}^+ & ext{ si } egin{array}{cccc} \gamma^-=0 \ q=0 \ \mathbb{R} & ext{ sinon} \end{array}$$

Susp.: contact visq.

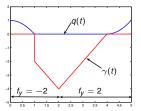
Modèle visqueux :

$$(P_{\mu}) \left\{egin{array}{l} m \dot{q}_{\mu}(t) + \gamma_{\mu}(t) = \ m u_0 + \gamma_{\mu}^0 + m \int_0^t f_y(s) ds \ \gamma_{\mu}(t) = \mu \ln(q_{\mu}(t)) \end{array}
ight.$$



Contact visqueux :

$$(P') \left\{ egin{array}{l} m\dot{q}(t)+\gamma(t)=m ilde{u}=\ mu_0+m\int_0^t f_y(s)ds\ q\geq 0,\ \gamma\leq 0,\ q\gamma=0 \end{array}
ight.$$



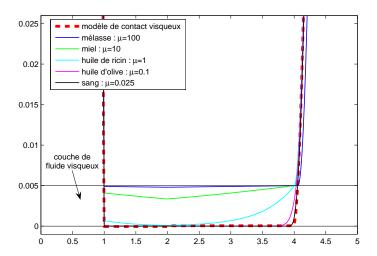
Résultat de convergence

 \Rightarrow Convergence de (P_{μ}) vers (P') quand μ tend vers zéro.

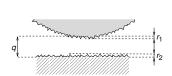
 \Rightarrow Equivalence des problèmes (P) et (P').

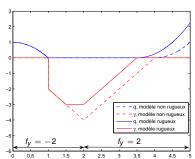
cnrs

Visqueux ou non visqueux?



Prise en compte de la rugosité



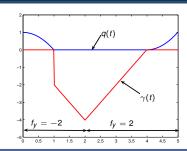


- rugosité ⇒ contact
- Modèle proposé : contact pour $q = r_1 + r_2$

$$\implies$$
 seuillage de γ : $\gamma \geq \gamma_{min} = \mu \ln(r_1 + r_2)$

Schéma numérique

Rappel du modèle :



Problème (P)

$$\left\{ egin{array}{l} \dot{q}^+ = P_{C_{q,\gamma}} \dot{q}^- \ m \ddot{q} = m f_y + \lambda \ & ext{supp}(\lambda) \subset \{t, \ q(t) = 0\} \ & \dot{\gamma} = -\lambda \ & q > 0, \ \gamma < 0 \end{array}
ight.$$

$$egin{aligned} C_{q,\gamma} = & igg| ~\{0\} & ext{si} ~\gamma^- < 0 \ & \mathbb{R}^+ & ext{si} & \gamma^- = 0 \ & q = 0 \ & \mathbb{R} & ext{sinon} \end{aligned}$$

A. Lefebvre-Lepot

Schéma numérique implicite

$$\begin{cases} q^n, \gamma^n \text{ donn\'es} \\ \bar{u}^{n+1} = u^n + h f(t^n, q^n) \\ u^{n+1} = P_{m, C_{q^n, \gamma^n}} \left(\bar{u}^{n+1}\right) \\ q^{n+1} = q^n + h u^{n+1} \end{cases}$$

$$\text{avec} \quad C_{q^n,\gamma^n} = \left\{ \begin{array}{ll} v, & q^n + hv \geq 0 \text{ si } \gamma^n = 0 \\ & q^n + hv = 0 \text{ si } \gamma^n < 0 \end{array} \right\}$$

Alors
$$\exists \lambda^{n+1} \in \mathbb{R} \text{ tel que } m \frac{u^{n+1} - u^n}{h} = mf(t^n, q^n) + \lambda^{n+1}$$

Cas multi-particules

Espace des contraintes discret :

$$\mathcal{K}^n = \left\{ egin{array}{ll} \mathbf{v}, & D^n_{ij} + h \mathbf{G}^n_{ij} \cdot \mathbf{v} \geq 0 \ \mathrm{si} \ \gamma^n_{ij} = 0 \ D^n_{ij} + h \mathbf{G}^n_{ij} \cdot \mathbf{v} = 0 \ \mathrm{si} \ \gamma^n_{ij} < 0 \end{array}
ight\}$$

où
$$\mathbf{G}_{ij}(\mathbf{q}) = \nabla D_{ij}(\mathbf{q}).$$

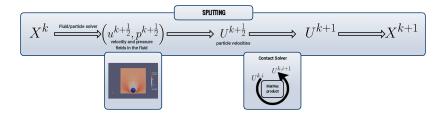
 $\triangleright \triangleright$ A priori, N(N-1)/2 contraintes à gérer.

Tests numériques

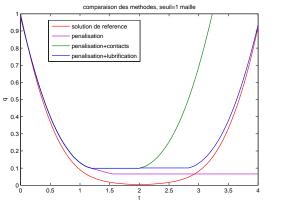
- Comparaison des modèles de contact
- Implantation dans SCoPI
 - Béton 2D
 - Béton 3D

Couplage avec un code fluide

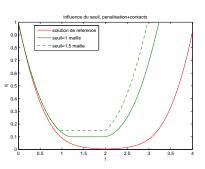
On suppose que l'on dispose d'un solveur fluide.

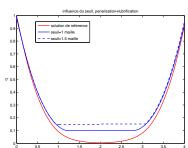


Comparaison des modèles de contact

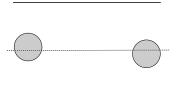


Influence du seuil

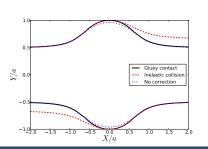


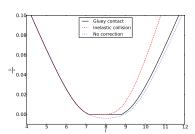


Réversibilité. Deux particules en cisaillement (3D)



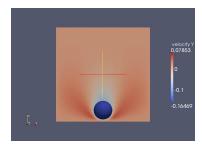
avec N. Verdon, P. Laure, L. Lobry

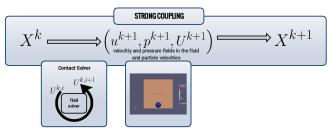




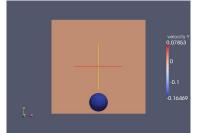
Intégration dans SCoPI

- ► Couplage avec le code fluide CAFES [Fabreges, Gouarin]
- Splitting : pas de rétroaction du contact sur le fluide





Couplage complet : rétroaction du contact sur le fluide



Bibliographie

- Développements asymptotiques
 - Cox, 1974 Hillairet
- Dynamique Stokesienne
 - Brady, Bossis (1984 et 1988)
- Modèle de contact visqueux
 - Maury, Lefebvre
- Méthode de décomposition
 - Merlet, Lefebvre

