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Floating structures problem Framework
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Two free boundary problem: surface elevation (¢, X)) + contact line I'(¢)
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Floating structures problem Framework

h(X,t)

- ————————

- x F(t)E &)

Two free boundary problem: surface elevation (¢, X)) + contact line I'(¢)
Assumptions on the solid
@ Vertical side-walls

@ Only vertical motion
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Floating structures problem Framework

One free boundary problem: surface elevation ((t, X)
The contact line T«] — I does not depend on time!
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Floating structures problem Constrained free surface Euler equations

Equations in the fluid domain Q(¢) for U:

HwU+U.-Vx, U= 7%VX,2P —ge, in (1)
divU=0 (2)
curl U=0 3)
Boundary conditions at the surface and the bottom:
z2=¢( 0¢—-U-N=0 withN=<_1W> (4)
z = —ho, U-e, =0 (5)
Pressure in &:
Ee = Lratm (6)
Constraint in Z:
Gi(t, X) = Cu(t, X) ()
Jump at I':
Ce(t, ") # Gi(t, ) (8)
Py(t,) = Patm + pg(Ce — Gi) + Pnu 9)
Continuity of the normal velocity at the vertical walls:
Viv=Ve-v (10)
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Floating structures problem State of art

Analysis of the pb: state of art

@ Linear model: John "49 (1d neglecting contact line time variations),
Cummins '62 (2d and integro-differential equation for the solid
motion), Ursell '64...

@ Nonlinear model: Lannes '17 (modelisation and 1d explicit solid
motion equation), lguchi and Lannes '18 (1d sw well-posedness for
moving contact line)

Edoardo BOCCHI (IMB, Bordeaux) 6eme Ecole EGRIN Le Lioran, 19 Juin, 2018 5/18



Floating structures problem (h, Q)-formulation

Proposition (Lannes '17)

Let us consider ¢ and U solutions of the constrained free surface Euler
equations (1)- (10). Then ¢ and the horizontal discharge @, with

Q= Sc_ho Vdz, solve

oth+V-Q =0,
%Q+ V- (:Q®Q) + ghVh + V- R(h,Q) + hanu(h,Q) = =2V P,
(11)

with the surface pressure P given by

~V-(b2VP;) = —0}Cu +ars(h,Q) on T

E = t and
oo {P”F = Patm + pg(Ce — Gi)|r + Pri,
(12)
and with the transition condition at the contact line
Qe-v=Q;-v on T. (13)
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Floating structures problem Shallow water approximation

Shallow water regime: the wavelength L of the waves is larger than the
depth hg, i.e.

ho?

/,L:ﬁ<<1

At first order O(p) we neglect the vertical variation of V' in the quadratic
term

o R(h,Q)~0

e ang ~ 0
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Floating structures problem Shallow water approximation

Shallow water regime: the wavelength L of the waves is larger than the
depth hg, i.e.

ho?

/,L:ﬁ<<1

At first order O(p) we neglect the vertical variation of V' in the quadratic
term

e R(h,Q)~0
o CLNH%()

Hence the evolution equations become:

oh+V-Q =0,

%Q+ V- (1Q®Q) + ghVh = VP,
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Floating structures problem Shallow water approximation

Shallow water regime: the wavelength L of the waves is larger than the

depth hg, i.e.
ho?

/,L:ﬁ<<1

At first order O(p) we neglect the vertical variation of V' in the quadratic
term

e R(h,Q)~0
e ang ~0

Hence the evolution equations become:

oh+V-Q =0,
%Q+ V- (;Q®Q) + ghVh = —2vP,
hghw (h*hw)(B*Patm) =0

- Congested flow (g=0): traffic flows, compressible low-Mach coupling in
gaz dynamics, hydrodynamics in pipes...

Edoardo BOCCHI (IMB, Bordeaux) 6eme Ecole EGRIN Le Lioran, 19 Juin, 2018 7 /18



Floating structures problem Axisymmetric case

Cylindrical coordinates:
U= U(t,r,&,z), U= (’LLT,UQ,’LLZ) = Q= Q(t,’l‘, 0): Q= (qr,%)

We assume that the flow is axisymmetric without swirl, which means that
the flow has no dependence on the angular variable 6§ and ugy = 0.
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Floating structures problem Axisymmetric case

Cylindrical coordinates:
U= U(t,r,&,z), U= (’LLT,UQ,’LLZ) = Q= Q(t,’l‘, 0): Q= (qr,%)

We assume that the flow is axisymmetric without swirl, which means that
the flow has no dependence on the angular variable 6§ and ugy = 0.

= Q(t,7) = (4, 0)
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Floating structures problem Axisymmetric case

{6th+V-Q:O,

%Q+ V- (LQ®Q) + ghVh = ~hvp,

with the surface pressure P given by

~V-(beVP)) = —07¢y +ars on T

P =P, and
¢ o {Plh“ :Patm"‘pg(ge_@)ha +Pcor7

and with the transition condition at the contact line

Qe-v=Q;-v on T.
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Floating structures problem Axisymmetric case

oth + aTq+Q:o,

,

2 2 (14)

aa+o (L) + L+ gnoh=—"0p,
h rh p

with the surface pressure P given by

1 h
—(or+ =) =o.P; ) = 02w + <R
Be = Patm and < T> ( P > tC ars onr

£i|r:R = Latm + pg(Ce - Ci)‘r:R + Peor-
and with the transition condition at the contact line

e =¢q; on 7 =R.
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Floating structures problem Fluid equations in £

Exterior domain &
Defining u = (he,qe)" and adding the Cauchy datum we can write (14) in
£ as the following quasilinear hyperbolic initial boundary value problem

)T

oru + A(u)dru + Bu,r)u =0

€2 U, _p = Gi|,_p (15)
u(t =0) =up
with
0 1 0 1
A(U) = h qz % ) B(ua T) = ng
gie hZ  he The
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Floating structures problem The linearized problem

We study the linearized problem

ou + A(w)oru + B(u,r)u = f
62 ’ u|r:R = g
u(t=0) =ug

Subsonic regime det A < 0 and uniform Lopatinskii condition P_ey # 0
give the properties:

@ The system is Friedrichs symmetrizable, i.e. there exists a symmetric
matrix S = S(@) such that S(u) is uniformly positive definite on
L3((R,+0)) and S(u)A(u) is symmetric.

@ The boundary condition is maximally dissipative: S(w)A(u) is
negative definite on ey, where e is the orthogonal complement of e.
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Floating structures problem The linearized problem

k
o Functional space X*(T) := ﬂ CI([0,T), HFI((R, +0)))
j=0
@ A priori estimate

lu(t)|5x + |y, _p quk([o,t])

t (16)
< @) (1) + Iy + [ 17 R

Remark
The axisymmetry keeps the boundary condition maximally dissipative }
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Floating structures problem The linearized problem

k
o Functional space X*(T) := ﬂ CI([0,T), HFI((R, +0)))
j=0
@ A priori estimate

lu(t)|5x + |y, _p quk([o,t])

: (16)
< @) (1) + Iy + [ 17 R

Remark
The axisymmetry keeps the boundary condition maximally dissipative

Theorem

Let k be an integer with k > 1. Suppose ug € H¥((R, +0)),

ge H*([0,T]) and f € HF([0,T] x (R, +x)) satisfy the compatibility
conditions up to the order k — 1. Moreover assume uw e X*(T') with

s = max(k,2). Then there exists a unique solution u e X*(T).
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Floating structures problem Solid motion

Solid: G(t) = (0,0,2¢(t)), Ug(t) = (0,0, wg(t)), w =0
Define the displacement d¢ (%) := 2¢(t) — 2G.eq-
We can write hy,(t,7) = hy eq(1) + 0 (t).

Recall that A
5th,;+6rqi+@:0 in r<R
r

From the contact constraint ¢; = (y(h; = hy)
5G+6rqi+%=0 in <R
r
and since we want ¢; € L2((0, R))

q(t,r) = —250@)
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Floating structures problem Solid equation

Free solid motion

Newton's law for the conservation of the linear momentum

mog = —mg + J (P; — Paum)

r<R
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Floating structures problem Solid equation

Free solid motion
Newton's law for the conservation of the linear momentum
mog = —mg + J (P; — Paum)
r<R

Using the elliptic equation on P, (elementary potentials):

b

(o + 110(0))Bat) = ~e8 ) + et ) + (s + 9006 ) (G0
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Floating structures problem Solid equation

Free solid motion
Newton's law for the conservation of the linear momentum
mog = —mg + J (P; — Paum)
r<R

Using the elliptic equation on P, (elementary potentials):

b

(o + 110(0))Bat) = ~e8 ) + et ) + (s + 9006 ) (G0

@ mgy(dg) > 0 is the added mass (also for totally submerged solid
[Glass, Sueur and Takahashi '12] )

O1Cw = (Ug +w x rg) - Ny = 8160 = we = d(t)
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Fluid part (PDE)

o+ Au )au+B(u,T) r>R
€ U _, = _*5G(t (1)
u(t = 0) = ug := (h(0), g(O)7T,
Solid part (ODE)
(m + ma(5c))dc (t) :
= —cdg(t) +cler - u),_, — ho) + (b(u) + B(0c)) (9 (1))?,

5'6'(0) =99 := 2¢(0) — 2G.eq,
6c(0) = 61 := 2¢(0),
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Fluid part (PDE)

o+ Au )au+B(u,T) r>R
€ U _, = _*5G(t (1)
u(t = 0) = ug := (h(0), g(O)7T,
Solid part (ODE)
(m + ma(5c))dc (t) :
= —cdg(t) +cler - u),_, — ho) + (b(u) + B(0c)) (9 (1))?,

5'6'(0) =99 := 2¢(0) — 2G.eq,
6c(0) = 61 := 2¢(0),

Theorem (E.B.'18)

For k > 2, let ug € H*((R, +0)), 89 and 0, satisfy the compatibility
conditions up to order k — 1. Then the coupled problem (17) - (18)
admits a unique solution (u,dg) € X*(T) x H*1([0,T1]).
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Floating structures problem Local well-posedness of the coupled system
Proof:

Fixed point argument via a iterative scheme on the coupled system

o™ + A(u 1) ou™ + B(un !

eroup — 55" i)

=R

u"(t=0) =
(m + ma(6 )05 (1)

= —cO%(t) + ¢ (e1 ul - ho) + (b(u") + 5(58_1)) 5?;(15)27 (20)

52(0) = 8o, G(0) = 61

@ Existence and uniqueness of u™ from the previous linear theory
e Control in X*([0,T]) x H**1([0,T])

e Convergence in X°([0,T]) x H*([0,T]) + interpolation
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Floating structures problem Summary and perspectives

Summary
@ We do take into account nonlinear terms
@ Axisymmetry keeps the boundary condition maximally dissipative even
in 2d
@ Validation of the shallow water approach to the floating body
problem: several experimental data with an axisymmetric geometry
Perspectives

@ One has to add horizontal motion and rotation:
evolution of the contact line + no axisymmetric flow
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Floating structures problem Summary and perspectives

Summary
@ We do take into account nonlinear terms
@ Axisymmetry keeps the boundary condition maximally dissipative even
in 2d
@ Validation of the shallow water approach to the floating body
problem: several experimental data with an axisymmetric geometry
Perspectives

@ One has to add horizontal motion and rotation:
evolution of the contact line + no axisymmetric flow

What's next?
The return to equilibrium problem: ug = (ho,0)”, dp #0, 6 =0

The compatibility conditions up to order 1 are not satisfied,

Different approach: linearized equations in the exterior domain - nonlinear
equations in the interior domain — nonlinear integro-differential eq. on dg
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Floating structures problem Thanks

THANK YOU FOR THE ATTENTION!
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