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Floating structures problem Framework

ON THE DYNAMICS OF FLOATING STRUCTURES 7

then naturally defined as

E(t) = Rd\I(t).

We consider in this paper the case where overhanging waves do not occur and where
the wetted surface can be parametrized by a graph of some function ⇣w(t, X), for
all X 2 I(t). The surface of the water is therefore determined by the graph of a
function X 2 Rd 7! ⇣(t, X) satisfying the constraint ⇣(t, X) = ⇣w(t, X) on I(t).
Denoting by h0 the typical depth at rest and by �h0 + b(X) a parametrization of
the bottom, the domain ⌦(t) occupied by the fluid at time t is therefore given by

⌦(t) = {(X, z) 2 Rd+1,�h0 + b(x) < z < ⇣(t, X)}.

Notation 1. For any function f defined on Rd, we denote with a subscript i its
restriction to the interior domain I(t) and with a subscript e its restriction to the
exterior domain E(t),

fi = f|I(t)
and fe = f|E(t)

.

We assume that the flow is incompressible, irrotational, of constant density ⇢,
and inviscid. We can then formulate the equations as a set of equations in ⌦(t),
complemented with boundary conditions and a constraint associated to the presence
of the immersed structure:

• Equations in the fluid domain ⌦(t). Denoting by U and P the velocity and
pressure fields, the equations are given by

@tU + U · rX,zU = �1

⇢
rX,zP � gez(1)

div U = 0,(2)

curl U = 0,(3)

where g is the acceleration of gravity and ⇢ the constant density of the
water.

• Boundary conditions at the surface. The surface being bounding (i.e. no
fluid particle crosses it), one gets the traditional kinematic equation

@t⇣ � U · N = 0 with N =

✓
�r⇣

1

◆
,(4)

Two free boundary problem: surface elevation ζpt,Xq + contact line Γptq

Assumptions on the solid

Vertical side-walls

Only vertical motion
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Floating structures problem Framework

y

ζw(t, X)

h(t, X)

x

z

ζ(t, X)

IΓ E

ζe

ζi

Ω(t)

One free boundary problem: surface elevation ζpt,Xq
The contact line ��

�H
HHΓptq ÝÑ Γ does not depend on time!
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Floating structures problem Constrained free surface Euler equations

Equations in the fluid domain Ωptq for U:

BtU`U ¨∇X,zU “ ´
1

ρ
∇X,zP ´ gez in Ωt (1)

div U “ 0 (2)

curl U “ 0 (3)

Boundary conditions at the surface and the bottom:

z “ ζ, Btζ ´U ¨N “ 0 with N “

˜

´∇ζ
1

¸

(4)

z “ ´h0, U ¨ ez “ 0 (5)

Pressure in E :
P e “ Patm (6)

Constraint in I:
ζipt,Xq “ ζwpt,Xq (7)

Jump at Γ:
ζept, ¨q ‰ ζipt, ¨q (8)

P ipt, ¨q “ Patm ` ρgpζe ´ ζiq ` PNH (9)

Continuity of the normal velocity at the vertical walls:

V ¨ ν “ VC ¨ ν (10)
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Floating structures problem State of art

Analysis of the pb: state of art

Linear model: John ’49 (1d neglecting contact line time variations),
Cummins ’62 (2d and integro-differential equation for the solid
motion), Ursell ’64...

Nonlinear model: Lannes ’17 (modelisation and 1d explicit solid
motion equation), Iguchi and Lannes ’18 (1d sw well-posedness for
moving contact line)
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Floating structures problem (h,Q)-formulation

Proposition (Lannes ’17)

Let us consider ζ and U solutions of the constrained free surface Euler
equations (1)- (10). Then ζ and the horizontal discharge Q, with

Q “
şζ
´h0

V dz, solve

#

Bth`∇ ¨Q “ 0,

BtQ`∇ ¨ p 1hQbQq ` gh∇h`∇ ¨Rph,Qq ` haNHph,Qq “ ´h
ρ∇P ,

(11)
with the surface pressure P given by

P e “ Patm and

#

´∇ ¨ phwρ ∇P iq “ ´B2t ζw ` aFSph,Qq on I
P i|Γ “ Patm ` ρgpζe ´ ζiq|Γ ` PNH ,

(12)
and with the transition condition at the contact line

Qe ¨ ν “ Qi ¨ ν on Γ. (13)
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Floating structures problem Shallow water approximation

Shallow water regime: the wavelength L of the waves is larger than the
depth h0, i.e.

µ “
h0

2

L2
! 1

At first order Opµq we neglect the vertical variation of V in the quadratic
term

Rph,Qq « 0

aNH « 0

Hence the evolution equations become:

$

’

&

’

%

Bth`∇ ¨Q “ 0,

BtQ`∇ ¨ p 1hQbQq ` gh∇h “ ´h
ρ∇P ,

h ď hw ph´ hwqpP ´ Patmq “ 0

- Congested flow (g=0): traffic flows, compressible low-Mach coupling in
gaz dynamics, hydrodynamics in pipes...
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Edoardo BOCCHI (IMB, Bordeaux) 6ème École EGRIN Le Lioran, 19 Juin, 2018 7 / 18



Floating structures problem Axisymmetric case

Cylindrical coordinates:
U “ Upt, r, θ, zq, U “ pur, uθ, uzq ùñ Q “ Qpt, r, θq, Q “ pqr, qθq

ζw(t, r)
h(t, r)

z

ζ(t, r)

R r > R

ζe

ζi

Ω(t)

Rr > Rz = −h0 r < R

We assume that the flow is axisymmetric without swirl, which means that
the flow has no dependence on the angular variable θ and uθ “ 0.

ùñ Qpt, rq “ pqr, 0q
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Floating structures problem Axisymmetric case

#

Bth`∇ ¨Q “ 0,

BtQ`∇ ¨ p 1hQbQq ` gh∇h “ ´h
ρ∇P ,

with the surface pressure P given by

P e “ Patm and

#

´∇ ¨ phwρ ∇P iq “ ´B2t ζw ` aFS on I
P i|Γ “ Patm ` ρgpζe ´ ζiq|Γ ` Pcor,

and with the transition condition at the contact line

Qe ¨ ν “ Qi ¨ ν on Γ.
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Floating structures problem Axisymmetric case

$

’

&

’

%

Bth` Brq `
q

r
“ 0,

Btq ` Br

ˆ

q2

h

˙

`
q2

rh
` ghBrh “ ´

h

ρ
BrP ,

(14)

with the surface pressure P given by

P e “ Patm and

$

&

%

´

ˆ

Br `
1

r

˙ˆ

hw
ρ
BrP i

˙

“ ´B2t ζw ` aFS on r ă R

P i|r“R
“ Patm ` ρgpζe ´ ζiq|r“R

` Pcor.

and with the transition condition at the contact line

qe “ qi on r “ R.
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Floating structures problem Fluid equations in E

Exterior domain E
Defining u “ phe, qeq

T and adding the Cauchy datum we can write (14) in
E as the following quasilinear hyperbolic initial boundary value problem

$

’

&

’

%

Btu`ApuqBru`Bpu, rqu “ 0

e2 ¨ u|r“R
“ qi|r“R

upt “ 0q “ u0

(15)

with

Apuq “

¨

˝

0 1

ghe ´
q2e
h2e

2qe
he

˛

‚, Bpu, rq “

¨

˝

0
1

r
0

qe
rhe

˛

‚
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Floating structures problem The linearized problem

We study the linearized problem

$

’

&

’

%

Btu`ApuqBru`Bpu, rqu “ f

e2 ¨ u|r“R
“ g

upt “ 0q “ u0

Subsonic regime detA ă 0 and uniform Lopatinskii condition P´e
K
2 ‰ 0

give the properties:

The system is Friedrichs symmetrizable, i.e. there exists a symmetric
matrix S “ Spuq such that Spuq is uniformly positive definite on
L2
rppR,`8qq and SpuqApuq is symmetric.

The boundary condition is maximally dissipative: SpuqApuq is
negative definite on eK2 , where eK2 is the orthogonal complement of e2.
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Floating structures problem The linearized problem

Functional space XkpT q :“
k
č

j“0

Cjpr0, T s, Hk´j
r ppR,`8qqq

A priori estimate

}uptq}2Xk ` }u|r“R
}2Hkpr0,tsq

ď Cs,T puq

ˆ

}up0q}2Xk ` }g}
2
Hkpr0,tsq `

ż t

0
}fpτq}2Xkdτ

˙ (16)

Remark

The axisymmetry keeps the boundary condition maximally dissipative

Theorem

Let k be an integer with k ě 1. Suppose u0 P H
k
r ppR,`8qq,

g P Hkpr0, T sq and f P Hk
r pr0, T s ˆ pR,`8qq satisfy the compatibility

conditions up to the order k ´ 1. Moreover assume u P XspT q with
s “ maxpk, 2q. Then there exists a unique solution u P XkpT q.
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Floating structures problem Solid motion

Solid: Gptq “ p0, 0, zGptqq, UGptq “ p0, 0, wGptqq, ω “ 0

Define the displacement δGptq :“ zGptq ´ zG,eq.

We can write hwpt, rq “ hw,eqprq ` δGptq.

Recall that
Bthi ` Brqi `

qi
r
“ 0 in r ă R

From the contact constraint ζi “ ζwphi “ hwq

9δG ` Brqi `
qi
r
“ 0 in r ă R

and since we want qi P L
2
rpp0, Rqq

qipt, rq “ ´
r

2
9δGptq
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Floating structures problem Solid equation

Free solid motion

Newton’s law for the conservation of the linear momentum

m:δG “ ´mg `

ż

răR
pP i ´ Patmq

Using the elliptic equation on P i (elementary potentials):

pm`mapδGqq:δGptq “ ´cδGptq ` cζept, Rq `

ˆ

b

h2ept, Rq
` βpδGq

˙

p 9δGptqq
2

mapδGq ą 0 is the added mass (also for totally submerged solid
[Glass, Sueur and Takahashi ’12] )

Btζw “ pUG ` ω ˆ rGq ¨Nw ùñ Btζw “ wG “ 9δGptq
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Floating structures problem Coupled system

Fluid part (PDE)
$

’

’

&

’

’

%

Btu`ApuqBru`Bpu, rqu “ 0, r ą R

e2 ¨ u|r“R
“ ´

R

2
9δGptq

upt “ 0q “ u0 :“ php0q, qp0qqT ,

(17)

Solid part (ODE)
$

’

’

’

’

&

’

’

’

’

%

pm`mapδGqq:δGptq

“ ´cδGptq ` cpe1 ¨ u|r“R
´ h0q ` pbpuq ` βpδGqq p 9δGptqq

2,

δGp0q “ δ0 :“ zGp0q ´ zG,eq,
9δGp0q “ δ1 :“ 9zGp0q,

(18)

Theorem (E.B.’18)

For k ě 2, let u0 P H
k
r ppR,`8qq, δ0 and δ1 satisfy the compatibility

conditions up to order k ´ 1. Then the coupled problem (17) - (18)
admits a unique solution pu, δGq P X

kpT q ˆHk`1pr0, T sq.
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Floating structures problem Local well-posedness of the coupled system

Proof:

Fixed point argument via a iterative scheme on the coupled system

$

’

’

&

’

’

%

Btu
n `Apun´1qBru

n `Bpun´1, rqun “ 0,

e2 ¨ u
n
|r“R

“ ´
R

2
9δn´1G ptq

unpt “ 0q “ u0.

(19)

$

’

’

&

’

’

%

pm`mapδ
n´1
G qq:δnGptq

“ ´cδnGptq ` c
´

e1 ¨ u
n
|r“R

´ h0

¯

`
`

bpunq ` βpδn´1G q
˘

9δnGptq
2,

δnGp0q “ δ0, 9δnGp0q “ δ1

(20)

Existence and uniqueness of un from the previous linear theory

Control in Xkpr0, T sq ˆHk`1pr0, T sq

Convergence in X0pr0, T sq ˆH1pr0, T sq + interpolation
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Floating structures problem Summary and perspectives

Summary

We do take into account nonlinear terms

Axisymmetry keeps the boundary condition maximally dissipative even
in 2d

Validation of the shallow water approach to the floating body
problem: several experimental data with an axisymmetric geometry

Perspectives

One has to add horizontal motion and rotation:
evolution of the contact line + no axisymmetric flow

What’s next?
The return to equilibrium problem: u0 “ ph0, 0q

T , δ0 ‰ 0, δ1 “ 0

The compatibility conditions up to order 1 are not satisfied,

Different approach: linearized equations in the exterior domain - nonlinear
equations in the interior domain Ñ nonlinear integro-differential eq. on δG
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Floating structures problem Thanks

THANK YOU FOR THE ATTENTION!
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