Séminaire de Probabilités commun ICJ/UMPA

Sur le trou spectral des graphes aléatoires hyperboliques

by Dieter Mitsche (Universite de Nice)

jeudi 15 mars 2018 de au (Europe/Paris)
at ICJ ( Fokko )
Description
 Le modèle des graphes aléatoires hyperboliques était introduit comme un modèle prometteur pour les réseaux complexes. Nous considérons le modèle de Krioukov et al. et nous calculons le trou spectral de la Laplacienne de ce modèle. Plus précisément, nous montrons que $\lambda_2$ d'un tel graphe est $\Omega(n^{-(2\alpha-1)}/polylog(n))$, où $n$ est le nombre de noeuds et $ 1/2 < \alpha < 1$ est un paramètre du modèle. Nous concluons aussi que la borne supérieure de $\lambda_2$ obtenue par l'inégalité de Cheeger est presque atteinte. Nous caractérisons aussi les ensembles des noeuds pour lesquelles cette borne est atteinte. (travail en collaboration avec Marcos Kiwi)