Sur un problème de Chowla

Bruno Martin (Université du Littoral Côte d'Opale)

27 février 2018

Soit p un nombre premier. En 1970, Chowla montre que si $f: \mathbb{Z} \to \mathbb{Q}$ est une fonction p-périodique, impaire, non nulle, alors $\sum_{n\geq 1} \frac{f(n)}{n} \neq 0$. Avec S. Bettin, nous prolongeons ce résultat et étudions plus généralement pour $k\in\mathbb{N}^*$, l'espace vectoriel des fonctions p-périodiques et impaires f telles que

$$\sum_{n>1} \frac{d_k(n)f(n)}{n} = 0,$$

où $d_k(n)$ est le nombre de uplets $(m_1, \ldots, m_k) \in (\mathbb{N}^*)^k$ tels que $m_1 \ldots m_k = n$. Une conséquence de nos résultats est l'indépendance linéaire des nombres $L(1,\chi)^2$ lorsque χ décrit l'ensemble des caractères impairs de Dirichlet modulo p.