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Introduction

Let us consider the problem

y ′(t) +Ay(t) = 0, a.e. t > 0,

y(0) = y0

A : H → H

Let y∞ be a stationary solution

Ay∞ = 0
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Introduction

A stationary solution y∞ is asymptotically stable if

for any y0 ∈ H, ‖y0 − y∞‖H ≤ ε

lim
t→∞

y(t) = y∞ in H.
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Introduction

If y∞ is not asymptotically stable, one can attempt to stabilize it by a
feedback controller U(t) = F (y(t))

y ′(t) +Ay(t) = BU(t), a.e. t > 0,

y(0) = y0

B : U → H

if A is a differential operator on a domain Ω
U can act on ω ⊂ Ω; internal controller
U can act on a part of the boundary; boundary control
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Problem presentation

The transformation
y → y − y∞

implies to stabilize the stationary solution y∞ = 0 for y0 in a neighborhood
of 0.
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Problem presentation

The Cahn-Hilliard system (CH) in the Caginalp approach
ϕ =order parameter , µ =chemical potential , θ =temperature

ϕt − ∆µ = 0, in (0,∞)×Ω,
µ = τϕt − ν∆ϕ+ F ′(ϕ)− γθ, in (0,∞)×Ω,

(θ + lϕ)t − ∆ϕ = 0, in (0,∞)×Ω,

ϕ(0) = ϕ0, θ(0) = θ0, in Ω,

∂ϕ

∂ν
=

∂µ

∂ν
=

∂θ

∂ν
= 0, on (0,∞)× ∂Ω,

ν, l , γ > 0, τ = viscosity > 0
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Problem presentation

The Cahn-Hilliard system (CH)
ϕ = order parameter , θ = temperature, σ = θ + lϕ

(1− τ∆)ϕt + ν∆2ϕ− ∆F ′(ϕ)− γl∆ϕ+ γ∆σ = 0, in (0,∞)×Ω,

σt − ∆σ+ l∆ϕ = 0, in (0,∞)×Ω,

ϕ(0) = ϕ0, σ(0) = σ0, in Ω,

∂ϕ

∂ν
=

∂∆ϕ

∂ν
=

∂σ

∂ν
= 0, on (0,∞)× ∂Ω,

ν, l , γ > 0, τ = viscosity > 0
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Problem presentation

Double well potential

F (r) =
(r2 − 1)2

4

Logarithmic potential

F (r) = (1+ r) ln(1+ r) + (1− r) ln(1− r)− ar2, r ∈ (−1, 1), a > 0.
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Problem presentation

Problem
The aim is to stabilize exponentially a stationary solution (ϕ∞, σ∞) by
means of an internal feedback control

(v,u) = F (ϕ, σ),

namely
lim
t→∞

(ϕ(t), σ(t)) = (ϕ∞, σ∞),

with exponential decay, as the initial datum (ϕ0, σ0) is in a neighborhood
of (ϕ∞, σ∞).

1

1G. M., Pure Appl. Funct. Analysis 1 (2018)
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Problem presentation

Lemma
The stationary system

ν∆2ϕ∞ − ∆F ′(ϕ∞)− γl∆ϕ∞ + γ∆σ∞ = 0, in Ω,
−∆σ∞ + l∆ϕ∞ = 0, in Ω,

∂ϕ∞
∂ν

=
∂∆ϕ∞

∂ν
=

∂σ∞

∂ν
= 0, on ∂Ω

has at least a solution

ϕ∞ ∈ H4(Ω), θ∞ = constant, for the regular potential

ϕ∞ = constant, σ∞ = constant, for the singular potential
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Problem presentation

The controlled Cahn-Hilliard system

(1− τ∆)ϕt + ν∆2ϕ− ∆F ′(ϕ)− γl∆ϕ+ γ∆σ = (1− τ∆)(fωv)

σt − ∆σ+ l∆ϕ = fωu

fω ∈ C∞
0 (Ω), supp fω ⊂ ω, fω > 0 on ω0 ⊂ ω

ω open bounded subset of Ω ⊂ Rd , d = 1, 2, 3
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Presentation outline

1 Preliminaries (viscous case, τ > 0) with a regular potential

2 Stabilization of the linear system by a finite dimensional control
3 Construction of the feedback control F and proof of its properties
4 Proof of the existence of a unique solution to the nonlinear closed
loop system (with (v,u) = F (ϕ, σ)) and the stabilization result

5 Stabilization in the viscous case with a singular potential
6 Limit case τ = 0 for the regular potential
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Problem presentation

The stabilization technique already used for Navier-Stokes equations
and nonlinear parabolic systems is based on the design of the
feedback controller as linear combination of the unstable modes of
the corresponding linearized system.

R. Triggiani, Boundary feedback stabilizability of parabolic equations,
Appl. Math. Optim. 6, 201—220, 1980

V. Barbu, R. Triggiani, Internal stabilization of Navier-Stokes
equations with finite-dimensional controllers, Indiana Univ. Math. J.
53, 5, 1443-1494, 2004

V. Barbu, I. Lasiecka, R. Triggiani, Tangential Boundary Stabilization
of Navier-Stokes Equations, Memoires AMS, 852, 2006

V. Barbu, G. Wang, Internal stabilization of Semilinear Parabolic
Systems, J. Math. Anal. Appl. 285, 387-407, 2003

V. Barbu, Stabilization of Navier-Stokes Flows, Springer-Verlag,
London, 2011
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Preliminaries: Functional framework

H = L2(Ω), V = H1(Ω), V ′ = (H1(Ω))′

Introduce

A = I − τ∆, A : D(A) ⊂ H ×H → H ×H,

D(A) =
{
w ∈ H2(Ω); ∂w

∂ν
= 0 on ∂Ω

}
A is linear continuous, self-adjoint and m-accretive on H.

Define Aα : D(Aα) ⊂ H → H, α ≥ 0

D(Aα) = {w ∈ H; ‖Aαw‖H < ∞}, ‖w‖D (Aα) = ‖Aαw‖H

D(Aα) ⊂ H2α(Ω) with equality if 2α < 3/2, α 6= 1/4.
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Preliminaries: the transformed nonlinear system (NS)

(1− τ∆)ϕt + ν∆2ϕ− ∆F ′(ϕ)− γl∆ϕ+ γ∆σ = (1− τ∆)(fωv)
σt − ∆σ+ l∆ϕ = fωu

Set y := ϕ− ϕ∞, z := σ− σ∞

develop F ′(y + ϕ∞) in Taylor series

apply A−1 to the first equation
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Preliminaries: the transformed nonlinear system (NS)

yt +
ν

τ2
(A+ A−1 − 2)y − 1

τ
(A−1 − I )(F ′′(ϕ∞)y)

+
γ

τ
(A−1 − I )z − γl

τ
(A−1 − I )y = fωv +

1
τ
(A−1 − I )Fr (y),

zt +
1
τ
(A− I )z + l

τ
(I − A)y = fωu,

y(0) = y0, z(0) = z0.

Fr (y) is the rest of the Taylor series
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Preliminaries: the transformed nonlinear system (NS)

Denote U(t) = (v(t), u(t))

d
dt
(y(t), z(t))+A(y(t), z(t)) = fωU(t)+G(y(t)), a.e. t ∈ (0,∞),

(NS)
(y(0), z(0)) = (y0, z0)

A : D(A) ⊂ H ×H → H ×H

D(A) =
{
w = (y , z) ∈ L2(Ω)× L2(Ω); Aw ∈ H ×H,
∂y
∂ν
=

∂z
∂ν
= 0 on ∂Ω

}
.

Set

H = H ×H, V = D(A1/2)×D(A1/2), V ′ = (D(A1/2)×D(A1/2))′
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Preliminaries: the linear system (LS)

d
dt
(y(t), z(t)) +A(y(t), z(t)) = fωU(t), a.e. t ∈ (0,∞) (NS)
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Preliminaries: The linear system

Proposition
The operator A is quasi m-accretive on H ×H and its resolvent is
compact. Moreover, −A generates a C0-analytic semigroup.
Let (y0, z0) ∈ H ×H and U = (v , u) ∈ L2(0,T ;H ×H).
Then, the linear Cauchy problem (LS) has, for all T > 0, a unique solution

(y , z) ∈ C ([0,T ];H ×H) ∩ L2(0,T ;H2(Ω)×H1(Ω))
∩C ((0,T ];H2(Ω)×H1(Ω)).

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 19 / 48



Preliminaries: The linear system

Fact
The resolvent of A is compact =⇒ there exists a finite number of
eigenvalues with nonpositive real parts Re λi < 0, each having the order of
multiplicity li , i = 1, ..., p.

Re λ1 ≤ Re λ2 ≤ ... ≤ Re λN ≤ 0

N = l1 + l2 + ...+ lp

Denote (ϕi ,ψi )}i≥1 the complex eigenfunctions of A
Denote (ϕ∗i ,ψ

∗
i )}i≥1 the complex eigenfunctions of A∗.

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 20 / 48



2. Stabilization of the linear system by a finite dimensional
controller

fωU(t, x) =
N

∑
j=1
fω Re(w̃j (t)(ϕ∗j (x),ψ

∗
j (x))), t ≥ 0, x ∈ Ω, (C )

The open loop linear system (LS)

d
dt
(y(t), z(t)) +A(y(t), z(t)) =

N

∑
j=1
fω Re(w̃j (t)(ϕ∗j (x),ψ

∗
j (x))),

(y(0), z(0)) = (y0, z0).
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2. Stabilization of the linear system by a finite dimensional
controller

Proposition
Let λi be semi-simple and ϕ∞ be an analytic function in Ω.
Then, there exist wj ∈ L2(R+), j = 1, ..., 2N, such that the controller (C)
stabilizes exponentially system (LS), that is,

‖y(t)‖H + ‖z(t)‖H ≤ C∞e−k∞t
(∥∥y0∥∥H + ∥∥z0∥∥H ) , for all t ≥ 0.

Moreover, we have(
2N

∑
j=1

∫ ∞

0
|wj (t)|2 dt

)1/2

≤ C
(∥∥y0∥∥H + ∥∥z0∥∥H ) ,

where C∞ and k∞ depend on the problem parameters ν, γ, l and Ω and
‖F ′′(ϕ∞)‖∞ .
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2. Stabilization of the linear system by a finite dimensional
controller

Proof idea

Work in the complexified space H̃ = H+ iH, i =
√
−1

Set (ỹ , z̃) = (y , z) + i(Y ,Z )

Introduce the system

d
dt
(ỹ(t), z̃(t)) +A(ỹ(t), z̃(t)) =

N

∑
j=1
fω(w̃j (t)(ϕ∗j (x),ψ

∗
j (x)),

(ỹ(0), z̃(0)) = (y0, z0).
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2. Stabilization of the linear system by a finite dimensional
controller

Represent the solution (ξ j ∈ C ([0,∞);C))

(ỹ(t, x), z̃(t, x)) =
∞

∑
j=1

ξ j (t)(ϕj (x),ψj (x)), (t, x) ∈ (0,∞)×Ω,

ξ ′i + λi ξ i =
N

∑
j=1
w̃jdij , i ≥ 1,

ξ i (0) = ξ i0 =
∫

Ω
(y0ϕ∗j (x) + z

0ψ∗j (x))dx , i ≥ 1,

dij =
∫

Ω
fω(ϕ∗i ϕ∗j + ψ∗i ψ∗j )dx , j = 1, ...,N, i ≥ 1
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2. Stabilization of the linear system by a finite dimensional
controller

(i) System from i = 1, ...,N is null controllable in T0 > 0

ξ i (T0) = 0 and ξ i (t) = 0 for t > T0, i = 1, ...,N.

Ingredients: Kalman Lemma, system {
√
fω ϕj ,

√
fωψj}Nj=1 is linearly

independent on ω,

(ii) System from i = N + 1, ...is stabilized exponentially in origin.

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 25 / 48



2. Stabilization of the linear system by a finite dimensional
controller

(i) System from i = 1, ...,N is null controllable in T0 > 0

ξ i (T0) = 0 and ξ i (t) = 0 for t > T0, i = 1, ...,N.

Ingredients: Kalman Lemma, system {
√
fω ϕj ,

√
fωψj}Nj=1 is linearly

independent on ω,

(ii) System from i = N + 1, ...is stabilized exponentially in origin.

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 25 / 48



2. Stabilization of the linear system by a finite dimensional
controller

wj := Re w̃j , for j = 1, ...,N, wj := Im w̃j , for j = N + 1, ..., 2N.

v(t, x) =
N

∑
j=1
wj (t)Re ϕ∗j (x)−

2N

∑
j=N+1

wj (t) Im ϕ∗j (x),

u(t, x) =
N

∑
j=1
wj (t)Re ψ∗j (x)−

2N

∑
j=N+1

wj (t) Im ψ∗j (x)),
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3. Construction of the feedback control and properties

Φ(y0, z0) (P)

= Min
{
1
2

∫ ∞

0

(
‖Ay(t)‖2H + ‖Az(t)‖

2
H + ‖W (t)‖

2
R2N

)
dt
}

subject to (OLS),
for all W = (w1, ...,wN ,wN+1, ...,w2N ) ∈ L2(0,∞;R2N )
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3. Construction of the feedback control and properties

Proposition

For each pair (y0, z0) ∈ D(A1/2)×D(A1/2), problem (P) has a unique
optimal solution ({w ∗j }2Nj=1, y ∗, z∗).

c1

(∥∥∥A1/2y0
∥∥∥2
H
+
∥∥∥A1/2z0

∥∥∥2
H

)
≤ Φ(y0, z0)

≤ c2

(∥∥∥A1/2y0
∥∥∥2
H
+
∥∥∥A1/2z0

∥∥∥2
H

)
∀(y0, z0) ∈ D(A1/2)×D(A1/2)
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3. Construction of the feedback control and properties

Corollary
There exists a linear positive operator

R ∈ L(D(A1/2)×D(A1/2); (D(A1/2)× (D(A1/2))′)

such that

Φ(y0, z0) =
1
2

〈
R(y0, z0), (y0, z0)

〉
V ′,V for (y

0, z0) ∈ D(A1/2)×D(A1/2).

Moreover, R(y0, z0) is the Gâteaux derivative of the function Φ at (y0, z0)

Φ′(y0, z0) = R(y0, z0), for all (y0, z0) ∈ D(A1/2)×D(A1/2)

and R restricted to H ×H is self-adjoint.
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3. Construction of the feedback control and properties

The open loop system

d
dt
(y(t), z(t)) +A(y(t), z(t)) = BW (t), a.e. t > 0,

(y(0), z(0)) = (y0, z0).

B : R2N → H ×H,

BW =


fω

(
N
∑
j=1
(wj Re ϕ∗j −

2N
∑

j=N+1
wj Im ϕ∗j

)

fω

(
N
∑
j=1
(wj Re ψ∗j −

2N
∑

j=N+1
wj Im ψ∗j

)
 , W =

 w1
...
w2N



Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 30 / 48



3. Construction of the feedback control and properties

The open loop system

d
dt
(y(t), z(t)) +A(y(t), z(t)) = BW (t), a.e. t > 0,

(y(0), z(0)) = (y0, z0).

B : R2N → H ×H,

BW =


fω

(
N
∑
j=1
(wj Re ϕ∗j −

2N
∑

j=N+1
wj Im ϕ∗j

)

fω

(
N
∑
j=1
(wj Re ψ∗j −

2N
∑

j=N+1
wj Im ψ∗j

)
 , W =

 w1
...
w2N



Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 30 / 48



3. Construction of the feedback control and properties

The open loop system

d
dt
(y(t), z(t)) +A(y(t), z(t)) = BW (t), a.e. t > 0,

(y(0), z(0)) = (y0, z0).

B : R2N → H ×H,

BW =


fω

(
N
∑
j=1
(wj Re ϕ∗j −

2N
∑

j=N+1
wj Im ϕ∗j

)

fω

(
N
∑
j=1
(wj Re ψ∗j −

2N
∑

j=N+1
wj Im ψ∗j

)
 , W =

 w1
...
w2N



Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 30 / 48



3. Construction of the feedback control and properties

Proposition

Let W ∗ = {w ∗i }2Ni=1 and (y ∗, z∗) be optimal for problem (P)
corresponding to (y0, z0) ∈ D(A1/2)×D(A1/2). Then,

W ∗(t) = −B∗R(y ∗(t), z∗(t)), for all t > 0,

and it satisfies the Riccati algebraic equation

2
(
R(y0, z0),A(y0, z0)

)
H×H +

∥∥B∗R(y0, z0)∥∥2
R2N =

∥∥Ay0∥∥2H +∥∥Az0∥∥2H ,
∀ (y0, z0) ∈ D(A)×D(A).
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4. Feedback stabilization of the closed loop nonlinear
system

d
dt
(y(t), z(t)) +A(y(t), z(t)) = G(y(t))− BB∗R(y(t, z(t)),

(y(0), z(0)) = (y0, z0), (NS)

G(y(t)) =
( 1

τ (A
−1 − I )Fr (y)

0

)

Fr (y) = y2
∫ 1

0
(1− s)F ′′′(ϕ∞ + sy)dy = y

3 + 3ϕ∞y
2.
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4. Feedback stabilization of the closed loop nonlinear
system

Theorem

Let (y0, z0) ∈ D(A1/2)×D(A1/2). There exists ρ such that if

‖y0‖D (A1/2) + ‖z0‖D (A1/2) ≤ ρ

the closed loop system (NS) has a unique solution

(y , z) ∈ C ([0,∞);H ×H) ∩ L2(0,∞;D(A)×D(A))
∩W 1,2(0,∞; (D(A1/2)×D(A1/2))′),

which is exponentially stable, namely

‖y(t)‖D (A1/2) + ‖z(t)‖D (A1/2) ≤ C∞e−k∞t (‖y0‖D (A1/2) + ‖z0‖D (A1/2)),

for some positive constants k∞ and C∞ depending on the data and
‖ϕ∞‖∞ .
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4. Feedback stabilization of the closed loop nonlinear
system

Proof.
Proof is organized in 3 steps: existence, uniqueness and stabilization.

Step 1. Existence is proved on every interval [0,T ] by the Schauder
fixed point theorem.

Step 2. Uniqueness is proved on [0,T ] following by an usual method
and using that BB∗ is linear continuous from V ′ × V ′ → V ′ × V ′.
Existence and uniqueness on [0,∞) follow by those above.
Step 3. Estimates using Riccati eq. and the properties of R lead to

‖y(t)‖D (A1/2)+ ‖z(t)‖D (A1/2) ≤ C∞e−k∞t (‖y0‖D (A1/2)+ ‖z0‖D (A1/2)).
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4. Feedback stabilization of the closed loop nonlinear
system

Let (y0, z0) ∈ D(A1/2)×D(A1/2)

ST =

{
(y , z) ∈ L2(0,T ;H ×H); sup

t∈(0,T )

(
‖y(t)‖2D (A1/2) + ‖z(t)‖

2
D (A1/2)

)
+
∫ T

0

(
‖Ay(t)‖2H + ‖Az(t)‖

2
H

)
dt ≤ r2 ≤ r21

}
ST is a convex closed subset of L

2(0,T ;D(A1/2)×D(A1/2))
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4. Feedback stabilization of the closed loop nonlinear
system

Fix (y , z) ∈ ST and consider the Cauchy problem

d
dt
(y(t), z(t)) +A(y(t), z(t)) + BB∗R(y(t), z(t)) = G(y(t)), a.e. t,

(y(0), z(0)) = (y0, z0).

Define

ΨT : ST → L2(0,T ;D(A1/2)×D(A1/2)), ΨT (y , z) = (y , z)

i) ΨT (ST ) ⊂ ST provided that r is well chosen
ii) ΨT (ST ) is relatively compact in L2(0,T ;D(A1/2)×D(A1/2))
iii) ΨT is continuous in L2(0,T ;D(A1/2)×D(A1/2)) norm.

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 36 / 48



4. Feedback stabilization of the closed loop nonlinear
system

C1ρ2 + C2(r6 + ‖ϕ∞‖
2
2,∞ r

4) ≤ r2

ρ < r

√
1
C1

C2r4 + C2 ‖ϕ∞‖
2
2,∞ r

2 − 1 ≤ 0 =⇒ r ∈ (0, r1]
where Ci are constant dependent on the problem parameters and ‖ϕ∞‖∞ .
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5. Stabilization in the case with a singular potential

F (r) = (1+ r) ln(1+ r) + (1− r) ln(1− r)− ar2, r ∈ (−1, 1), a > 0.

Let ε be positive fixed, ε ∈ (0, 1) and assume that
ϕ∞ is analytic, |ϕ∞(x)| ≤ 1− ε for x ∈ Ω.

Define χε ∈ C∞
0 (R) such that

χε(r) =
{
1, for |r | ≤ 1− ε
0, for |r | ≥ 1− ε

2 ,

and 0 < χε(r) ≤ 1 for r ∈ (−1+ ε
2 ,−1+ ε] ∪ [1− ε, 1− ε

2 ).
Define the regularized potential Fε ∈ C∞

0 (R),

Fε(r) =


F (r), for r ∈ [1− ε, 1+ ε]
F (r)κε(r), for r ∈ (−1+ ε

2 ,−1+ ε] ∪ [1− ε, 1− ε
2 )

0, for |r | ≥ 1− ε
2 .

All results given in Section 4 remain true for the problem with Fε.
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5. Stabilization in the case with a singular potential

Theorem
Let ε ∈ (0, 1) be arbitrary, but fixed. For all pairs

(y0, z0) ∈ D(A1/2)×D(A1/2) with ‖y0‖D (A1/2) + ‖z0‖D (A1/2) ≤ ρ,

the closed loop system corresponding to the logarithmic potential F has,
in the one-dimensional case, a unique solution.
The solution is exponentially stable and satisfies

‖y(t)‖D (A1/2) + ‖z(t)‖D (A1/2) ≤ C∞e−k∞t (‖y0‖D (A1/2) + ‖z0‖D (A1/2)).
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5. Stabilization in the case with a singular potential

Proof

yt +
ν

τ2
(A+ A−1 − 2)y − 1

τ
(A−1 − I )(F ′ε (y + ϕ∞)− Fε

′(ϕ∞))

+
γ

τ
(A−1 − I )z − γl

τ
(A−1 − I )y

= fωv , in (0,∞)×Ω
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5. Stabilization in the case with a singular potential

By the previous result

‖(y(t), z(t))‖V ≤ C∞e−k∞t ‖(y0, z0)‖V ≤ C∞e−k∞tρ

H1(Ω) is compact in C (Ω) for d = 1

|y(t)| ≤ ‖y(t)‖C (Ω) ≤ CΩ ‖y(t)‖D (A1/2) ≤ CΩC∞e−k∞tρ

|y(t)| → 0, as t → ∞

|y(t)| ≤ ‖y(t)‖C (Ω) ≤ CΩ ‖y(t)‖D (A1/2) ≤ CΩC∞e−k∞tρ < 1− ε

t >
1
k∞
ln

ρC∞CΩ

1− ε
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5. Stabilization in the case with a singular potential

Set a new ρ such that

|y(t) + ϕ∞| < 1− ε for all t ≥ 0,

and consequently F ′ε (y + ϕ∞) = F
′(y + ϕ∞), proving thus the result

for the system with F .
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6. Stabilization in the nonviscous case with a regular
potential

V. Barbu, P. Colli, G. Gilardi, G. M., J. Differential Equations,
262(2017).

Some function transformations lead to a system with a self-adjoint

operator A =
[

ν∆2 − Fl∆ γ∆
γ∆ −∆

]
D(A) =

{
w = (y , z) ∈ H2(Ω)×H1(Ω); Aw ∈ H ×H,

∂y
∂ν
=

∂∆y
∂ν

=
∂z
∂ν
= 0 on Γ

}
A is self-adjoint =⇒ its eigenvalues are real and semi-simple.

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 44 / 48



6. Stabilization in the nonviscous case with a regular
potential

V. Barbu, P. Colli, G. Gilardi, G. M., J. Differential Equations,
262(2017).

Some function transformations lead to a system with a self-adjoint

operator A =
[

ν∆2 − Fl∆ γ∆
γ∆ −∆

]
D(A) =

{
w = (y , z) ∈ H2(Ω)×H1(Ω); Aw ∈ H ×H,

∂y
∂ν
=

∂∆y
∂ν

=
∂z
∂ν
= 0 on Γ

}

A is self-adjoint =⇒ its eigenvalues are real and semi-simple.

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 44 / 48



6. Stabilization in the nonviscous case with a regular
potential

V. Barbu, P. Colli, G. Gilardi, G. M., J. Differential Equations,
262(2017).

Some function transformations lead to a system with a self-adjoint

operator A =
[

ν∆2 − Fl∆ γ∆
γ∆ −∆

]
D(A) =

{
w = (y , z) ∈ H2(Ω)×H1(Ω); Aw ∈ H ×H,

∂y
∂ν
=

∂∆y
∂ν

=
∂z
∂ν
= 0 on Γ

}
A is self-adjoint =⇒ its eigenvalues are real and semi-simple.

Gabriela Marinoschi, ISMMA () Bucarest, 21-23 mai 2018 44 / 48



5. Stabilization in the nonviscous case with a regular
potential

Theorem
Let χ∞ := ‖∇ϕ∞‖∞ + ‖∆ϕ∞‖∞ . There exists χ0 > 0 such that the
following hold true. If χ∞ ≤ χ0 there exists ρ such that for all pairs

‖y0‖D (A1/2) + ‖z0‖D (A1/4) ≤ ρ,

the closed loop system has a unique solution

(y , z) ∈ C (0,∞;H ×H) ∩ L2(0,∞;D(A3/2)×D(A3/4))

∩W 1,2(0,∞; (D(A1/2)×D(A1/4))′),

which is exponentially stable, that is

‖y(t)‖D (A1/2) + ‖z(t)‖D (A1/4) ≤ CP e−kt (‖y0‖D (A1/2) + ‖z0‖D (A1/4)).
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