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The classical incompressible Navier-Stokes equations:

ur +div(u ® u) — pAu+ VP =0 in Ry xQ

divu =0 in Ry xQ
(NS): .
u=0 on Ry x 092
ule=0 = uo in Q.
Here u = u(t,z) € R and P = P(t,z) € R with t >0 and z € Q C R%, d > 2.

1 ¢ 1
e Energy balance: §||u(t)||2L2 +u/ HVu||2L2 dr = 5”“0“%2
0

o Scaling invariance: If = R? then the System (NS) is invariant (up to a
change of P and wug) by the family of dilations:

Tyu(t, z) := Au(\2t, Ax).
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Global weak solutions

The classical incompressible Navier-Stokes equations:

ut +div(u ® u) — pAu+ VP =0 in Ry xQ

divu =0 in Ry xQ
(NS):

u=20 on R+ x 002

ult=0 = uo in Q.

Theorem (J. Leray, 1934)

Any divergence free ug € L?(Q) generates at least one global weak solution of
(NS) satisfying the energy inequality:

1 t 1
SIuOIZ: + 1 [ 10l dr < 2 o).

e The proof relies essentially on the energy balance and on compactness
arguments (or, equivalently, Schauder-Tikhonov theorem).

e Unless d = 2, uniqueness of Leray’s solutions is (still) an open question.
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‘Mild solutions’ of NS equations

Let A = —pAu+ VP be the Stokes operator. Then, formally,

—tA b e A
u(t) = e "“ug 7/0 e (div(u @ u)(7)) dr.

ur

B(u,u)

Lemma (based on the fixed point theorem in a Banach spaces)

Let X be a Banach space and B : X x X — X, a continuous bilinear map with

norm M . Then equation has a unique solution in the closed

ball B(0,2||ur | x) whenever
4]\/[H’u,LHX < 1.

e The largest spaces in which one may expect B to be continuous are scaling
tnvariant by the family of dilations (Th)x>o0-

e Examples : small initial data in Sobolev spaces H(El*l(R’l) (Fujita-Kato),
.4
Lebesgue space L%(RY) (Giga- Kato), Besov spaces B, (R%), etc.
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The inhomogeneous incompressible Navier-Stokes equations read:
(pu)t +div(pu @ u) — pAu+ VP =0 in Ry xQ
(INS):< divu=0 in Ry xQ
pt +div(pu) =0 in Ry x Q.

o Energy balance : %Hmmt)\\iz + u‘/ot [Vul|2, dr = %H\/,OT)UU\PLQ
e Conservation of LP norms of functions of the density.
e Scaling invariance if Q = R%:
p(t,z) — p(A\%t, \x), u(t,z) = Au(\2t, Az), P(t,z) = A2P(\%t, \x).

o Global weak solutions with finite energy for any pair (pg,uo) such that
po € L>=(Q) with po >0, and /pouo € L?(Q) with divug = 0 (Kazhikhov,
1974, J. Simon 1990, P.-L. Lions 1996: ‘renormalized solutions’).

e Even if d = 2, uniqueness in the class of finite energy solutions is a widely
open question.

e Strong solutions for smooth data with no vacuum: global if d =2 or
d =3 and uo small (Ladyzhenskaya and Solonnikov ,1978).
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Can (INS) be a model for mixture of nonreacting incompressible fluids 7

Initial data: wuo sufficiently smooth and pg discontinuous along some interface:
po = p1lpy + p2lep, with p1,p2 >0 and Do C Q.

According to Lions’ result on weak solutions, the velocity has a generalized flow
X, and
p(t) = p1lp, + palep, with Dy := X(t, Dy).

Lions’ question: is the regularity of Dy preserved by the time evolution for any
p1 >0 and po >0 7

According to Cauchy-Lipschitz theorem, the minimal requirement is
Vu € LY0,T; L= (Q)).

As (INS) has a hyperbolic part, it is also needed for uniqueness.
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Aim of the talk

Presenting three different approaches that are based respectively on :
@ Critical functional framework and endpoint maximal regularity;
@ Classical maximal regularity;

© Energy approach.
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Endpoint maximal regularity approach

I. An approach based on the endpoint maximal regularity

Assume that Q = R? (d > 2) and that p — 1 at oo, and set a := p — 1. System
for (a,u, P) reads:

up — pAu+ VP = —aus — (1 + a)div(u ® u) in Ry x R4
(ITV/S) :Q divu =0 in Ry x R4
at +u-Va=0 in IR+><Rd.

Scaling invariance is the same as for (INS):

a(t, ) = a(A\%t, \z), u(t, z) — Au(A\2t, Ax), P(t,z) = A2P(\%t, \x).
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Endpoint maximal regularity approach

Abstract Maximal Regularity

Let Y and Z be two Banach spaces. Consider the evolution equation

ut +Au=f € Z, u(0) =0

where A is an unbounded operator with domain D(A) C Y.
Maximal regularity means that both u; and Au are in Z and

(MR)

lut, Aullz < C|Ifll 2.

In our case, A is the stokes operator, that is

ut — pAu+ VP = f in Ry x R¢
divu =0 in Ry x RY,

e (MR) is true if Z = LY(R4; L™ (Q2)) with 1 < p,r < co and Q is the whole
space, half-space, smooth bounded or exterior domain,. . .

e Endpoint maximal regularity: We have for any s € R and p € [1,00]:

2
Hu||Loo<R+;B;_1) + [|ue, pViu, VIPHLl(R+;B;1) N ||U()“BZ=1 + HfHLl(RJr;B;J).
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Endpoint maximal regularity approach

Scaling invariance pushes us to take s = ¢ — 1, and thus (u, VP) € E, with

d

1 . 1
Ep = {(u, VP) €Cp(Ry; BP )XL'(Ry; BY ) ) with g, VZu € L' (Ry; B" )}

d
e Stability of the Besov space B;l by product if p < co:

[divu®@u)l 4y Slu@ul a S lull? 4
By, By, BY,
o Multiplier spaces: ||al| d_, = sup laz]] a4 , < oo.
MBE ) =l q¢_,=1 301
BP
p,1

e Estimates for the transport equation (deduced from the ones in Besov spaces):

t
la@l 4y <laoll  a_, exp{c/ IVul dr}
M(BY ) M(BY, ) J0 B

p.1
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Endpoint maximal regularity approach

Taking f = —au; — (1 + a)div(u ® u) in (S), we deduce that

[(w, VP&, < Nuoll a_y + o]l cay el 4
r LRy M(BPL ) LY (Ry;BY )
P, I P
+(1 4+ al ay )l
L (Ry;M(BP, )
Combining with
llall a_; <laoll  a_, expCll(w, VP)|E, ¢
. 1 .1 2
LRy M(BY ) M(BY )

one may close the estimates if both |lag]| a , and |luo|l a
4 i

_, are small.
P
J\/l(Bp_l ) BP’1
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Endpoint maximal regularity approach

Theorem (D & P.B. Mucha, 2012)

Assume that 1 < p < 2d. There exists a constant ¢ > 0 such that if

llaol| d_, + [luoll a_; <cp (1)
M(BY, )NL=® Bl
.4
then (INS) has a unique solution with (u, VP)€Ep and a€C(Ry; M(BJ; ).

d_
Example: 1p isin M(B]; ) if d/p —1<1/p.

Corollary (The density patch problem)

Let D be a C' bounded domain. If ug fulfills (1) with d —1 < p < 2d and
po =cilp + calep with |c1 —ca| € 1 then (INS) has a unique global solution
as above, and p(t) = c1lp, + c2lep,. Furthermore Dy remains ct.
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Endpoint maximal regularity approach

About the uniqueness issue

Let (p',ul, VPY) and (p?,u?, VP?) be two solutions of (INS).
Then (&, u, dP) := (p? — p',u? —ul, P2 — P1) fulfills

Spt +ul - Vép = —u - Vp? <— Loss of one derivative here
Sur — pAdu+ VP = (1 — p1)dus + dp (u? + u?-Vu?) + pl(ul - Véu + du-Vu?).
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Endpoint maximal regularity approach

Lagrangian coordinates: Assume Vu € L! (Ry; L) and set

loc

p(t,y) :== p(t,x), a(t,y):=u(t,z) and P(t,y):= P(t,x) with

where X is the flow of u defined by

t
X(t,y):y—&—A u(T, X(7,y)) dr.

(INS) in Lagrangian coordinates:

e p is time independent.
o (u, P) satisfies
TN potr — div(ATAVa) +TA- VP =0,
INS):
(INS) { div(Aa) =TA: Va =0,

with A = (DyX)~! = +Zoo(fl)k (/Of D, ~)dr> "

k=0
° (I/NTS') may be solved by means of the fized point theorem.

e Uniqueness may be proved at the level of Lagrangian coordinates.
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cal maximal regular: approach

II. An approach based on the classical maximal regularity

Consider a solution (u, VP) to

(9) ur — pAu+ VP = f in Ry x R4
’ divu =0 in Ry x RY,

Then, for all 1 < p,r < oo,

|(u, VP)HEZ’, = H(Ut,[LVZU,, VP)“L"(R+;LP) + ||’lt|| L2—2
L>*[R4;Bp,r")

Sllwoll o2 +IfllLr @y ser)-
By "

e Critical regularity for (INS) corresponds to

2 d
2——=—-—-1
r p
which gives us the constraint % <p<d.

e We want to apply this to f = —au; — (1 + a)u- Vu.
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Classical maximal regularity approach

So we have

I(w, VP) g5 o= [l(ut, u¥%u, VP) || Lr gy r) + H“HLOO -2 Sluoll o 2
+3:Bp,r D,

Hlall oo gy xrayllutllLr ey oey + @+ llall poo my xray)llu - Vullr @, ;oe)-
Note that ||aHL°°(R+><Rd) = ||lao||Lo=. Hence, if ||ag||pe~ is small, then we get

(w, VP) gy S lluoll o2 +[lu-Vullpr@, ey
By "

If critical regularity: 2 — f =2 _ 1 then we have

P
llu-VullLr@, ey < HUHLZP(R%LW(EH ) I u||L27-(R+;L Firy )
and
lull ar SAIVull _ax (Sobolev embedding)
Lr—1 L2r—1
1 1
IVul| ar S HVQUHEPHUW 5 (Interpolation).
L2r—1 BQ*;
P
Hence

I(w, VP)Igy < lluoll 52 + [I(u, V)|
p B T P
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cal maximal regularity approach

Results

eorem (Huang, Paic Zhang, 2013)

+4 i
P(RY) with d > 2, p:= 3% and r € (1,00).

=il
Let ap € L™ (R%) and ug € Bp.r 3r—3

There ezists a positive constant co = co(r,d) so that if

wllaollzoe + [luoll 144 < cop (2)

p,T

then (NSI) has a global solution (a,w,VP) satisfying ||a(t)| Lo = ||lao| L for
all t >0, and (u, VP) € Ey.

Since 7 > 1 and p < d, we do not have Vu € L} (Ry;L°) which precludes our
using Lagrangian coordinates for proving uniqueness.

Theorem (Huang, Paicu & Zhang, 2013)

g =il d .
If, in addition, ug € Bﬁ . U for some d<p < Adr_ " then (u,VP) also belongs to

1
EY, and the solution (a,u, VP) is unique in L= (R4 x RY) x (Epn E%)

Besides, the O (with o = 1 — d/p) regularity of interfaces is preserved.
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Energy approach

An approach based on energy estimates

Our assumptions:

o O =T2;
e 0< po < p*;
e up € H' and divug = 0;

e and (with no loss of generality),

/podm:yzl and /pouod:p:O.
T2 T2

Remember:
1 t 1
* Bnergy balance : 3 [v/p@ u(®)l2z + 1 [ [Vulltadr = 3 VA w3
0

e Conservation of LP norms of functions of the density.
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Energy approach

H?' estimates for the velocity

e Take the L2 scalar product of plug +u-Vu) — Au+ VP =0 with uy:

1d 1 1
—— |Vu|?dz -I—/ plug)? de < = / plut)? dz + 7/ plu - Vu|? da.
2 dt JT2 T2 2 T2 2( T2

From —Au+ VP = —(put + pu-Vu) and divAu = 0, we have
IVl IV PR = @t w2 <2 ([ ol dos [ ol Vul? o)

Hence

1
4p*

d - 1 -
SVl + SIVpuls + <

(19222 + IVPIZ2) < 5 [ plu- Vul da.
e Apply Holder and Gagliardo-Nirenberg inequality:
/TQ plu-Vul? de < p*|[ull34IVulFs < Cp*llullp2]|Vull} |V ul| 2

1

< T IV7ul2 + Ol Vullya [Vl

o If p > pu >0, then [lu|2; < pitllypull2, < pitlly/Pouol2s-
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Energy approach

H! estimates (continued)

Lemma (B. Desjardins, 1997)

If [r2pde=1 and [, pzde =0 then

% p*H Y ZHZL
1 2
(/ p24 dm) < C”\/ﬁZ”LZ” CZ||L2 log?2 (e ”‘ IHQLZ N/ozlI2. p2> (3)
T2 H\[ZHN

1
2
. Write/ plu - Vul?dz < \/p </ plul* da ) HVUH%;;
T2

and use (3) with 2z = u, energy balance and ab < a?/2 +b%/2 :

1
2 2
/'J1‘2 plu - Vul|“de < o ul|72

+C(P*)2||\/ﬂouoIIZLQIIVUHZLzHVU\IQLﬂog(eHIPo 132 +p" HVUH% )
lv/Po woll7 2
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Energy approach

H! estimates (end)

We eventually get
d
aX < fXlog(e + X),

with f(t) := Co[|[Vu(t)||2, for some suitable Co = C(po,uo) and

X(t) := A2 [Vu(t)|? de + % A2 (p‘ut|2 +

Hence

1 5
o (IV2ul? + \VP\2)>dz
(€+X(t)) S (e_,’_X(U))exp(/Uf f(r)dr) S (€+X( ))QXP (pt)“mllﬂ“z

e So far, we only proved Vu € L} (Ry;H(T?)), hence we do not know if
Vu € L, (Ry; L>°(T?)).

BUT wug € H'(T?) implies almost t — Ve'®ug in L} (Ry; H2(T?)).
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Energy approach

Regularity of the first time derivative of u

Case of the heat equation: we know that ug € H? implies that v := e!®uq
satisfies vtvy € L®(Ry; L2) N L2 (R4; H') since

Joll g = Vel ac o] .

) [Nz

L2(4t)
Hint: Estimating v/fu¢ in L% (Ry; L2) N L2(Ry; HY).

e Take the L? scalar product of p(u; +u - Vu) — Au+ VP =0 with tug:
1d 2 2 1 2

- — t d: t|v de = — d.

3o faetu et [ evulde =3 [ ol ds

+/ (ptut — ptu - Vu — puy - Vu) - (tut) d.
T2

e Using the previous estimates and the energy balance, we get

t
/ot ut| 2 +/ ||Vﬁut||%2 dr < h(t),
0

where h is a nondecreasing nonnegative function with h(0) = 0.
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Energy approach

Shift of regularity from time to space variable

e Step 1 gives Vu € L®°(Ry; L?), Vu € L?(R4; HY), VP, /pus € L?(Ry x T?).

e Step 2 gives v/pluy € LS (Ry;L?) and Vvtu, € L2 (Ry; L?).

loc

o Use Stokes equation:

—AViu+VVEP = —\/iput —\/Zpu~Vu,
divv/tu = 0.

Steps 1,2 4+ embedding imply that the r.h.s. is almost L}ZDC(R+; L>).
Hence V2y/tu and V+/t P are almost in LQ(O,T; L®°).

o Use embedding and Holder inequality to conclude that Vu € LZ‘OC(O, T; L)

(and in fact much better).
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Energy approach

The main statement

rem (Global existence and uniquer R.D & P.B. Muc

Consider any data (po,uo) in L (T?) x Hl(']TQ) with pg > 0 and divug = 0.
Then System (INS) supplemented with data (po,uo) admits a unique global
solution (p,u, VP) that satisfies the energy equality, the conservation of total

mass and momentum,
pE€L®Ry;L®), ueL®Ry;HY), /puy, V?u, VP € L*(Ry;L?)
and also, for all 1 <r <2, 1<m< oo and T >0,

V(VtP), V2(Vtu) € L=(0,T; L") N L2(0, T; L™).

Furthermore, we have \/pu € C(Ry; L?) and p € C(Ry; LP) for all p < oo.
v

Corollary (Answer to Lions’ question)

Take po = p1lp, + p2lep, with p1,p2 > 0 arbitrary, and ug € H'(T?).
Then the regularity C1* of Dy (with 0 < o < 1) is preserved for all time.
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