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What is a vortex ring ?

‘‘Smoke’’ ring over Mount Etna in November 2013

photographed by volcanologist Tom Pfeiffer
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Introduction : vortex rings and filaments

A vortex ring is a three-dimensional flow in which the vorticity is essentially
concentrated in a solid torus, so that the fluid particles spin around an imaginary
line that forms a closed loop.

V ≈ Γ

4πR
log

R

r
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Axisymmetric flows without swirl

We use cylindrical coordinates (r, θ, z) in R
3 .

• Unit vectors :

er =





cos θ
sin θ
0



 , eθ =





− sin θ
cos θ
0



 , ez =





0
0
1



 .

‘‘radial’’ ‘‘toroidal’’ ‘‘vertical’’

• Velocity field : u = ur(r, z, t)er + uz(r, z, t)ez .

• Vorticity distribution : ω = ωθ(r, z, t)eθ , ωθ = ∂zur − ∂ruz .

• Incompressibility condition : div u = ∂rur +
1
rur + ∂zuz = 0 .

Please note : we always assume that the ‘‘swirl’’ u · eθ vanishes identically.
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Vortex rings in ideal fluids

A) Historical example : Hill’s spherical vortex (Hill, 1894)

Vortices bifurcating from that particular solution were studied by Norbury
(1974), Amick & Fraenkel (1986, 1988), Amick & Turner (1988).

B) Existence of stationary solutions by variational or fixed point methods :

• Fraenkel (1970, 1972), Fraenkel & Berger (1974)

• Benjamin (1976)

• Ni (1980)

• Friedman & Turkington (1981)

• Ambrosetti & Mancini (1981), Ambrosetti & Struwe (1989)

C) General solutions with concentrated vorticity :

• Benedetto, Caglioti & Marchioro (2000)

• Slightly viscous case : Marchioro (2007), Brunelli & Marchioro (2011)
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Overview

We consider the axisymmetric Navier-Stokes equations without swirl, assuming
that the initial vorticity is either an integrable function or a finite measure. In
the latter case, we concentrate on circular vortex filaments.

Part I • The axisymmetric (viscous) vorticity equation
• Global well-posedness for integrable data
• Comparison with previous results
• A priori estimates

Part II • Vorticities represented by finite measures
• Global well-posedness for small data
• Existence of solutions originating from large vortex filaments
• Uniqueness of arbitrarily large viscous vortex rings
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Part I : The axisymmetric vorticity equation

The axisymmetric vorticity ωθ(r, z, t) satisfies the evolution equation :

∂tωθ + u · ∇ωθ −
ur

r
ωθ = ν

(

∂2
r + ∂2

z +
1

r
∂r −

1

r2

)

ωθ , (1)

where ν > 0 is the kinematic viscosity.

The velocity field u = (ur, uz) is determined by solving the elliptic system

∂rur +
1
rur + ∂zuz = 0 , ∂zur − ∂ruz = ωθ .

The boundary conditions on the symmetry axis r = 0 are

ωθ(0, z) = ur(0, z) = ∂ruz(0, z) = 0 , z ∈ R .

Important remark : the related quantity η(r, z, t) =
1

r
ωθ(r, z, t) satisfies

∂tη + u · ∇η = ν
(

∆η +
2

r
∂rη

)

, ∆ = ∂2
r + ∂2

z +
1

r
∂r . (2)
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Scale invariant function spaces

Equations (1) and (2) are invariant under the rescaling

u(r, z, t) 7→ λu(λr, λz, λ2t) ,

ωθ(r, z, t) 7→ λ2 ωθ(λr, λz, λ
2t) ,

η(r, z, t) 7→ λ3 η(λr, λz, λ2t) .

Natural scale invariant function spaces :

• η ∈ L1(R3) , ‖η‖L1(R3) =

∫

Ω

|η(r, z)| r dr dz (3D measure)

• ωθ ∈ L1(Ω) , ‖ωθ‖L1(Ω) =

∫

Ω

|ωθ(r, z)| dr dz (2D measure)

Here Ω denotes the half-space Ω = {(r, z) | r > 0 , z ∈ R} ⊂ R
2 .
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Global well-posedness for integrable data

Our first result (ThG & V. Sverak, Confluentes Mathematici, 2015) shows that
the axisymmetric vorticity equation (1) is globally well-posed in L1(Ω) .

Theorem 1 For any initial data ω0 ∈ L1(Ω) , the vorticity equation

∂tωθ + ∂r(urωθ) + ∂z(uzωθ) = ν
(

∆− 1

r2

)

ωθ (1)

has a unique global solution ωθ ∈ C0([0,∞), L1(Ω)) ∩ C0((0,∞), L∞(Ω)) .

Moreover ‖ωθ(t)‖L1(Ω) ≤ ‖ω0‖L1(Ω) for all t > 0 , and

• lim
t→0

t1−1/p ‖ωθ(t)‖Lp(Ω) = 0 , 1 < p ≤ ∞ ,

• lim
t→∞

t1−1/p ‖ωθ(t)‖Lp(Ω) = 0 , 1 ≤ p ≤ ∞ .
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Comparison with (some) previous results I

A) Local well-posedness results for general initial data :

• If ωθ ∈ L1(Ω) , then ω = ωθ eθ belongs to the Morrey space M3/2(R3) :

sup
x∈R3

sup
R>0

1

R

∫

B(x,R)

|ω(x)| dx < ∞ .

⇒ Local well-posedness was established by Giga & Miyakawa (1989).

• If ωθ ∈ L1(Ω) , the velocity field u belongs to BMO−1(R3) :

sup
x∈R3

sup
R>0

1

R3

∫

B(x,R)

∫ R2

0

|et∆u|2 dt dx < ∞ .

⇒ Local well-posedness was established by Koch & Tataru (2001).

• If ωθ ∈ L1(Ω) , the velocity field u belongs to Ḃ
−1+3/p
p,q (R3) iff p = q = ∞ .
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Comparison with (some) previous results II

B) Global well-posedness results for axisymmetric initial data :

• Ladyzhenskaya (1968), Ukhovskii & Yudovich (1968) :

u ∈ H2(R3) , ωθ ∈ L∞(R3) , η ∈ L1(R3) ∩ L∞(R3) .

• Leonardi, Malek, Necas, & Pokorny (1999) : u ∈ H2(R3) .

• Abidi (2008), Abidi, Hmidi, & Keraani (2010) : u ∈ H1/2(R3) .

All these global well-posedness results consider finite energy solutions.

C) Local well-posedness for axisymmetric data with swirl satisfying
∫

R3

|u(x)|2
r

dx = 2π

∫

Ω

|u(r, z)|2 dr dz < ∞ .

Gallagher, Ibrahim, & Majdoub (2001, 2002).
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A priori estimates I

A) Estimates for the auxiliary quantity η = ωθ/r :

Applying Nash’s method to the advection-diffusion equation

∂tη + u · ∇η = ∆η +
2

r
∂rη , (2)

with initial data η0 = ω0/r , we obtain for t > 0 :

‖η(t)‖Lp(R3) ≤ C

t
3
2 (1−

1
p )
‖η0‖L1(R3) , 1 ≤ p ≤ ∞ .

Moreover t 7→ ‖η(t)‖Lp(R3) is non-increasing for 1 ≤ p ≤ ∞ .

This provides estimates in weighted norms for the axisymmetric vorticity :

‖r 1
p−1ωθ(t)‖Lp(Ω) ≤ C

t
3
2 (1−

1
p )

‖ω0‖L1(Ω) , t > 0 .

The particular case p = ∞ is especially useful.
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A priori estimates II

B) Estimates for the axisymmetric vorticity ωθ :

Proposition 1 Any solution of the axisymmetric vorticity equation (1) with
initial data ω0 ∈ L1(Ω) satisfies, for 1 ≤ p ≤ ∞ :

‖ωθ(t)‖Lp(Ω) ≤ C(‖ω0‖L1(Ω))

t1−
1
p

, t > 0 ,

where C(s) = O(s) as s → 0 . Moreover the map t 7→ ‖ωθ(t)‖L1(Ω) is strictly
decreasing if ωθ 6≡ 0 .

Proof: We know that t 7→ ‖ωθ(t)‖L1(Ω) = ‖η(t)‖L1(R3) is non-increasing.

For nontrivial positive solutions, we compute

d

dt

∫

Ω

ωθ(r, z, t) dr dz = −2

∫

R

∂rωθ(0, z, t) dz < 0 ,

hence t 7→ ‖ωθ(t)‖L1(Ω) is strictly decreasing.
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A priori estimates III

When p = 2 , we have

d

dt

∫

Ω

ω2
θ dr dz = −2

∫

Ω

|∇ωθ|2 dr dz +
∫

Ω

(ur

r
− 1

r2

)

ω2
θ dr dz .

Denoting M = ‖ω0‖L1(Ω) , we use Nash’s inequality :

‖ωθ(t)‖2L2(Ω) ≤ C‖ωθ(t)‖L1(Ω)‖∇ωθ(t)‖L2(Ω) ≤ CM‖∇ωθ(t)‖L2(Ω) ,

and the following estimate on the velocity field

‖ur(t)/r‖L∞(Ω) ≤ C ‖ωθ(t)‖1/3L1(Ω) ‖ωθ(t)/r‖2/3L∞(Ω) ≤ CM/t .

If f(t) = ‖ωθ(t)‖2L2(Ω) , we thus obtain the differential inequality

f ′(t) ≤ −K1

M2
f(t)2 +

K2M

t
f(t) , K1, K2 > 0 ,

which gives the bound f(t) = ‖ωθ(t)‖2L2(Ω) ≤ K−1
1 (1 +K2M)M2/t for t > 0 .
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A priori estimates IV

Since, for p > 1 , an upper bound on ‖ω0‖Lp(Ω) gives a lower bound on the
local existence time T , we deduce :

Corollary All solutions of the vorticity equation (1) in L1(Ω) are global for
positive times.

C) Estimate for the velocity field u :

‖u(t)‖L∞(Ω) ≤ C‖ωθ(t)‖1/2L1(Ω) ‖ωθ(t)‖1/2L∞(Ω) ≤ C(‖ω0‖L1(Ω))√
t

. (3)

D) Estimates for the vorticity gradient ∇ωθ :

‖∇ωθ(t)‖Lp(Ω) ≤ Cp(‖ω0‖L1(Ω))

t
3
2−

1
p

, 1 ≤ p ≤ ∞ . (4)

This follows from Proposition 1, estimate (3), and standard smoothing proper-
ties of the Navier-Stokes equations.
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Part II : The space of finite measures

As in the 2D case, we can take the initial vorticity in the space M(Ω) of all
finite, real-valued measures on Ω . Given µ = ω0 ∈ M(Ω) , we decompose

µ = µac + µsc + µpp , where

• µac is absolutely continuous with respect to Lebesgue’s measure;

• µpp is a countable collection of point masses;

• µsc has no atoms, yet is supported on a set of zero Lebesgue measure.

The Banach space M(Ω) is equipped with the total variation norm :

‖µ‖tv = sup

{
∫

Ω

ϕ dµ

∣

∣

∣

∣

ϕ ∈ C0(Ω) , ‖ϕ‖L∞(Ω) ≤ 1

}

.

For any µ ∈ M(Ω) one has µac ⊥ µsc ⊥ µpp , hence

‖µ‖tv = ‖µac‖tv + ‖µsc‖tv + ‖µpp‖tv .
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Well-posedness for measure-valued initial data

Theorem 2 There exists positive constants ε and C such that, for any initial
data µ ∈ M(Ω) satisfying ‖µpp‖tv ≤ εν , the axisymmetric vorticity equation

∂tωθ + ∂r(urωθ) + ∂z(uzωθ) = ν
(

∆− 1

r2

)

ωθ (1)

has a unique global (mild) solution

ωθ ∈ C0((0,∞), L1(Ω) ∩ L∞(Ω))

such that

lim
t→0

‖ωθ(t)‖L1(Ω) < ∞ , lim sup
t→0

(νt)1/4‖ωθ(t)‖L4/3(Ω) ≤ Cεν ,

and ωθ(t) dr dz ⇀ µ as t → 0 . Moreover,

lim
t→∞

t1−1/p ‖ωθ(t)‖Lp(Ω) = 0 , 1 ≤ p ≤ ∞ .
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Large vortex rings I : existence

The following existence result was obtained by Feng & Sverak (ARMA, 2015) :

Theorem 3 Fix Γ > 0 , r̄ > 0 , z̄ ∈ R , and ν > 0 . Then the axisymmetric
vorticity equation

∂tωθ + ∂r(urωθ) + ∂z(uzωθ) = ν
(

∆− 1

r2

)

ωθ , (1)

has a non-negative global solution such that ωθ(t) dr dz ⇀ Γ δ(r̄,z̄) as t → 0 .
Moreover, this solution satisfies, for all t > 0 ,

∫

Ω

ωθ(r, z, t) dr dz ≤ Γ ,

∫

Ω

r2ωθ(r, z, t) dr dz = Γ r̄2 .

The proof is based on an approximation procedure, which is reminiscent
of the works of Cottet (1986) and Giga, Miyakawa, & Osada (1988) in the
two-dimensional case.
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Large vortex rings II : uniqueness

Our final result is (ThG & V. Sverak, to appear in Annales de l’ENS) :

Theorem 4 Fix Γ > 0 , r̄ > 0 , z̄ ∈ R , ν > 0 . Then the axisymmetric vorticity
eq.

∂tωθ + ∂r(urωθ) + ∂z(uzωθ) = ν
(

∆− 1

r2

)

ωθ (1)

has a unique global solution ωθ such that :

i) sup
t>0

‖ωθ(t)‖L1(Ω) < ∞ , and

ii) ωθ(t) dr dz ⇀ Γ δ(r̄,z̄) as t → 0+ .

Moreover the solution ωθ is non-negative and satisfies
∫

Ω

∣

∣

∣
ωθ(r, z, t)−

Γ

4πνt
e−

(r−r̄)2+(z−z̄)2

4νt

∣

∣

∣
dr dz ≤ C Γ

√
νt

r̄
log

r̄√
νt

, (5)

as long as
√
νt ≤ r̄/2 , where C > 0 depends only on Γ/ν .
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Comments on the uniqueness result

• Assumptions i), ii) on the axisymmetric vorticity equation are arguably the
weakest ones under which estimate (5) is expected to hold.

• Existence of a viscous vortex ring with initial data Γ δ(r̄,z̄) is already estab-
lished in Theorem 3. Uniqueness is the main new assertion in Theorem 4,
together with the short time asymptotic expansion (5).

• The short time estimate (5) is sharp in the sense that the logarithmic
correction in the right-hand side cannot be dispensed with, except if the
position of the viscous vortex evolves in time according to

z̄(t) = z̄ +
Γt

4πr̄
log

r̄√
νt

.

• An important open problem is to control the viscous vortex ring over a finite
time interval t ∈ [0, T ] in the vanishing viscosity limit ν → 0 .

• Uniqueness is only asserted within the class of axisymmetric solutions
without swirl !
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Sketch of the uniqueness proof

Assume that ωθ ∈ C0((0,∞), L1(Ω)∩L∞(Ω)) is a mild solution of the axisym-
metric vorticity equation (1) satisfying

i) sup
t>0

‖ωθ(t)‖L1(Ω) < ∞ , and

ii) ωθ(t) dr dz ⇀ Γ δ(r̄,z̄) as t → 0+ .

Step 1 : Localization. For any η > 0 there exists C > 0 such that

|ωθ(r, z, t)| ≤
CΓ

νt
exp

(

− (r − r̄)2 + (z − z̄)2

(4 + η)νt

)

, (r, z) ∈ Ω , t > 0 . (6)

Moreover
∫

Ω

ωθ(r, z, t) dr dz −→ Γ as t → 0 .

This is proved using a Gaussian upper bound on the fundamental solution of
the vorticity equation (1), where the velocity field u is considered as given.
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The proof of the Gaussian bound (6) relies on the study of the adjoint equation

∂tϕ+ u · ∇ϕ+ ν
(

∆ϕ− 2

r
ϕ
)

= 0 , (7)

which defined so that

d

dt

∫

Ω

ϕ(r, z, t)ωθ(r, z, t) dr dz = 0 ,

whenever ωθ solves (1). Eq. (7) can be solved backwards in time with ‘‘terminal
condition’’ at time T > 0 . Boundary conditions are ϕ = ∂rϕ = 0 on ∂Ω .

Proposition Assume that u is the velocity field associated with a mild solution
ωθ of (1) satisfying i), ii). Given T > 0 and ϕ1 ∈ C0(Ω) , the unique solution
ϕ of the adjoint equation (7) with terminal condition ϕ(·, ·, T ) = ϕ1 can be
extended to a continuous function on Ω̄× [0, T ] satisfying ϕ(0, z, 0) = 0 for all
z ∈ R . Moreover one has ϕ(·, ·, t) ∈ C0(Ω) for all t ∈ [0, T ] , and

sup
(r,z)∈Ω

|ϕ(r, z, t)− ϕ(r, z, 0)| −→ 0 , as t → 0 .
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The proposition itself relies on the regularity theory for drift-diffusion equations
of the form

∂th+ b(x, t) · ∇h = ν∆h , x ∈ R
n , t > 0 ,

where

• b ∈ L∞

t (L∞)−1
x (Osada, 1987), or

• b ∈ L∞

t (BMO)−1
x (Koch, Nadirashvili, Seregin, Sverak, 2009).

In the present case, we have the estimate

‖u‖(L∞)−1(R3) ≤ C‖ωθ‖L1(Ω) ,

which can be checked directly using the axisymmetric Biot-Savart law.

Consequences : Under the assumptions of Theorem 4,

• ωθ(r, z, t) > 0 for all t > 0 ;

• ‖ωθ(t)‖L1(Ω) → Γ as t → 0 ;

• the sequence (ωθ(t) dr dz)t∈(0,T ) is tight.
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Evolution equation for the vector-valued vorticity ω(x, t) = ωθ(r, z, t)eθ :

∂tω + (U · ∇)ω − V ω = ν∆ω , x ∈ R
3 , t > 0 , (∗)

where

• U = urer + uzez satisfies K1 := sup
t>0

( t

ν

)1/2

‖U(·, t)‖L∞(R3) < ∞ ,

• V = ur/r satisfies K2 :=

∫

∞

0

‖V (·, t)‖L∞(R3) dt < ∞ (not obvious !)

Proposition (Aronson’s estimate)
The fundamental solution of (∗) satisfies

0 < Φ(x, t; y, s) ≤ C

(ν(t−s))3/2
exp

(

− |x− y|2
4ν(t−s)

+K1
|x− y|

√

ν(t−s)
+K2

)

,

for x, y ∈ R
3 and t > s > 0 , where C > 0 is a universal constant.

Conclusion of step 1 : ‘‘integrating over θ ’’ yields the Gaussian upper bound.
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Step 2 : Self-similar variables. We make the change of variables














ωθ(r, z, t) =
Γ

νt
f
(r − r̄√

νt
,
z − r̄√

νt
, t
)

,

uθ(r, z, t) =
Γ√
νt

U ε
(r − r̄√

νt
,
z − z̄√

νt
, t
)

.

We also introduce the dimensionless quantities

R =
r − r̄√

νt
, Z =

z − z̄√
νt

, ε =

√
νt

r̄
, γ =

Γ

ν
.

The evolution equation for the new function f(R,Z, t) reads

t∂tf + γ
(

∂R(U
ε
Rf) + ∂Z(U

ε
Zf)

)

= Lf + ε∂R

( f

1 + εR

)

, (8)

where

L = ∂2
R + ∂2

R +
R

2
∂R +

Z

2
∂Z + 1 .
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Remarks :

• Eq. (8) is now defined in the time-dependent domain

Ωε =
{

(R,Z) ∈ R
2 | 1 + εR > 0

}

.

Note that Ωε → R
2 as ε → 0 and Ωε → Ω as ε → ∞ .

• The velocity U ε is reconstructed from the vorticity f by solving the linear
elliptic system

∂ZU
ε
r − ∂RU

ε
z = f , ∂RU

ε
r +

εU ε
r

1 + εR
+ ∂ZU

ε
z = 0 ,

which interpolates between the Biot-Savart law in R
2 and in Ω .

• As t → 0 , i.e. ε → 0 , equation (8) reduces to the two-dimensional vorticity
equation in R

2 , expressed in self-similar variables.

• The Gaussian bound in step 1 implies, for any η > 0 , the a priori estimate

0 < f(R,Z, t) ≤ Cη exp
(

−R2 + Z2

(4 + η)

)

, (R,Z) ∈ Ωε , t > 0 .
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Step 3 : Compactness. The solution f(t) of (8) is uniformly bounded for
t ∈ (0, 1] and relatively compact in the space Xt defined by the norm

‖f(t)‖2Xt
=

∫

Ωε

f(R,Z, t)2 e(R
2+Z2)/4 dR dZ .

This follows from the Gaussian bound above, thanks to parabolic regularity.

Step 4 : Alpha-limit set. As t → 0 we have

lim
t→0

‖f(t)−G‖Xt = 0 , where G(R,Z) =
1

4π
e−

1
4 (R

2+Z2) .

Intuitively, any f0 in the α -limit set of the trajectory (f(t))t∈(0,1] in Xt is the
value at τ = 0 of an ancient solution to the rescaled vorticity equation in R

2 :

∂τf + γU · ∇f = Lf , U = KBS ∗ f . (9)

Moreover |f0(R,Z)| ≤ C e−(R2+Z2)/5 and
∫

R2 f0(R,Z) dRdZ = 1 .

Liouville theorem (ThG & C.E. Wayne, 2005) : f0 = G .
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Step 5 : Proof of estimate (5). We decompose

f(R,Z, t) = G(R,Z) + f̃(R,Z, t) ,

U ε(R,Z, t) = U ε
G(R,Z, t) + Ũ ε(R,Z, t) ,

and we define

E(t) =
1

2

∫

Ωε

f̃(R,Z, t)2G−1(R,Z) dRdZ ,

E(t) =
1

2

∫

Ωε

(

|∇f̃ |2 + (1 +R2 + Z2)f̃2
)

G−1 dR dZ ≥ E(t) .

Proposition There exist δ > 0 and κ > 0 such that, if ε > 0 is small enough,

tE′(t) ≤ −2δE(t) + κε| log ε|E(t)1/2 + κE(t)1/2E(t) +O(e−1/(36ε2)) .

The proof relies on the stability of the Oseen vortex γG as an equilibrium of
the rescaled vorticity equation (9), for arbitrary values of the circulation γ .
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Step 6 : Uniqueness. If f1(t), f2(t) are two solutions of (8) which converge to
G as t → 0 , we define f̃ = f1 − f2 and denote as above

E(t) =
1

2

∫

Ωε

f̃(R,Z, t)2G−1(R,Z) dRdZ ,

E(t) =
1

2

∫

Ωε

(

|∇f̃ |2 + (1 +R2 + Z2)f̃2
)

G−1 dR dZ ≥ E(t) .

Proposition There exist δ, κ,K > 0 such that, if ε > 0 is small enough,

tE′(t) ≤ −2δE(t) + κ(E1(t)
1/2 + E2(t)

1/2) E(t) +O(e−1/(36ε2)) ,

tE′(t) ≤ −δE(t) +KE(t) + κ(E1(t)
1/2 + E2(t)

1/2) E(t) .

The first inequality shows that E(t) = O(e−1/(36ε2)) as t → 0 .

The second inequality implies E(t) ≤ (t/t0)
KE(t0) for 0 < t0 < t , hence

E(t) ≡ 0 for sufficiently small t > 0 .
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Merci de votre attention !
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