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Introduction

A typical example of shape optimization problems has the form:

Min
Ω∈O

∫
Λ

j(x , yΩ(x),∇yΩ(x))dx ,

−∆yΩ = f in Ω,

yΩ = 0 on ∂Ω

with other supplementary constraints (on y ,Ω, etc.), if
necessary. Here, Ω ⊂ D is an (unknown) domain, D is some
given bounded Lipschitzian domain, f ∈ L2(D), j(., ., .) is a
Caratheodory mapping and Λ is either Ω or some fixed
subdomain E ⊂ D .
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Introduction

Let me also mention that many geometric optimization
problems arising in mechanics (for plates, beams, arches,
curved rods or shells), are expressed, as well, as optimal
control problems by the coefficients, due to the special form of
their models. This point is not discussed here.

The presentation will discuss in detail two cases: optimization
of a plate with holes and a penalization approach to a general
shape optimization problem. Boundary observation problems
will also be presented if time allows.
An essential ingredient in these developments is the new
implicit parametrization method that allows an advantageous
description of implicitly defined manifolds via iterated
Hamiltonian systems. We start with a short description in this
respect.
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Arbitrary Dimension

We impose the classical independence assumption on some
family of C1 mappings F1,F2, . . . ,Fl , in some point
x0 ∈ Ω ⊂ Rd , l ≤ d − 1. To fix ideas, we assume Fj(x0) = 0 and

D(F1,F2, . . . ,Fl)

D(x1, x2, . . . , xl)
6= 0 in x0 = (x0

1 , x
0
2 , . . . , x

0
d ).

This remain valid in a neighborhood V and we introduce the
undetermined linear algebraic system with unknowns
v(x) ∈ Rd , x ∈ V :

v(x) ·∇Fj(x) = 0, j = 1, l .
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Arbitrary Dimension

We denote by A(x) the corresponding l × l nonsingular matrix
and the vectors ∇F1(x), . . ., ∇Fl(x) are independent, for x ∈ V .
We shall use d − l solutions obtained by fixing the last d − l
components of the vector v(x) ∈ Rd to be the rows of the
identity matrix in Rd−l , multiplied by detA(x). Then, the first l
components are uniquely determined, by inverting A(x).

In this way, the obtained d − l solutions, denoted by v1(x), . . .,
vd−l(x) ∈ Rd are linear independent, for any x ∈ V . Moreover,
these vector fields are continuous in V .
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Arbitrary Dimension

We introduce now d − l nonlinear systems of first order partial
differential equations associated to the vector fields
(vj(x))j=1,d−l , x ∈ V ⊂ Ω.

We use here the order v1, v2, . . . , vd−l to fix ideas. Moreover, we
denote the sequence of independent variables by t1, t2, . . . , td−l .

These systems have an iterated character in the sense that the
solution of one of them is used as initial condition in the next
one. Consequently, the independent variables in the "previous"
systems enter as parameters in the next system just via the
initial conditions.
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Arbitrary Dimension

∂y1(t1)

∂t1
= v1(y1(t1)), t1 ∈ I1 ⊂ R,

y1(0) = x0;

∂y2(t1, t2)

∂t2
= v2(y2(t1, t2)), t2 ∈ I2(t1) ⊂ R,

y2(t1,0) = y1(t1);

. . . . . . . . . . . . . . . . . . . . . . . . . . .

∂yd−l(t1, t2, . . . , td−l)

∂td−l
= vd−l(yd−l(t1, t2, . . . , td−l)),

td−l ∈ Id−l(t1, . . . , td−l−1),

yd−l(t1, . . . , td−l−1,0) = yd−l−1(t1, t2, . . . , td−l−1).



Introduction Parametrization in Arbitrary Dimension Examples in dimension three Generalized solutions Examples critical case: dimension three Penalization Plate with holes Applications

Arbitrary Dimension

Here, the notations I1, I2(t1), . . . . , Id−l(t1, . . . , td−l−1) are d − l
real intervals, containing 0 in interior and depending, in
principle, on the "previous" parameters.

Due to their simple structure, we stress that each equation may
be interpreted as an ordinary differential system with
parameters, although partial differential notations are used.

The existence of the solutions y1, y2, . . . , yd−l follows by the
Peano theorem due to the continuity of the vector fields
(vj)j=1,d−l on V .
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Arbitrary Dimension

Proposition

For every k = 1, l , j = 1,d − l , we have

Fk (yj(t1, t2, . . . , tj)) = 0, ∀ (t1, t2, . . . , tj) ∈ I1 × I2 × . . .× Ij .

Theorem
Under the above assumptions, then the differential system
consists of d − l subsystems of dimension d with the
uniqueness property in V .

Importance of Hamiltonian type structure and references.
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Arbitrary Dimension

Theorem
a) There are closed intervals Ij ⊂ R, 0 ∈ intIj , independent of
the parameters, such that Ij ⊂ Ij(t1, t2, . . . , tj−1), j = 1,d − l .
b) The unique solutions of the differential systems are of class
C1 in any existence point and we have:
∂yd−l

∂tk
(t1, . . . , td−l) = vk (yd−l(t1, . . . , td−l)), k = 1,d − l .

Theorem

If Fk ∈ C1(Ω), k = 1, l , with the independence property, and the
Ij are sufficiently small, j = 1,d − l , then the mapping

yd−l : I1 × I2 × . . .× Id−l → Rd

is regular and one-to-one on its image.
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Arbitrary Dimension

The local solution of the initial system is a d − l dimensional
manifold around x0 and yd−l(t1, t2, . . . , td−l) is a local
parametrization of this manifold on I1 × I2 × . . .× Id−l .
Geometric interpretation: basis in tangent space and
integration.

Choose the last d − l components of the solutions vj(x) ∈ Rd

as the rows of the identity matrix in Rd−l . We obtain :

Proposition
The last d − l components of yd−l have the form
(t1 + x0

l+1, t2 + x0
l+2, . . . , tj + x0

l+j , x
0
l+j+1, . . . , td−l + x0

d ), that is the
first l components of yd−l give the unique solution of the implicit
system on x0 + (I1 × I2 × . . .× Id−l) .
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Arbitrary Dimension

Notice that the propositions are valid just for C1 and
independence assumptions. We also get an evaluation of the
existence neighborhood in the implicit function theorem, from
Peano’s theorem.

By the relation

yd−l(t1, t2, . . . , tj ,0, . . . ,0) = yj(t1, t2, . . . , tj)

we see that y1, y2, . . . , yd−l have continuous partial derivatives
with respect to their arguments.

IMPORTANT: the above parametrizations may be more
advantageous in applications since we may use maximal
solutions, as it will be shown in dimension three. They are not
constrained by the function condition...
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EXAMPLES IN DIMENSION THREE : SURFACES

• The hypothesis ∇f (x0, y0, z0) 6= 0 is specified in the form
fx (x0, y0, z0) 6= 0.

• We associate to the equation f (x , y , z) = 0, f (x0, y0, z0) = 0,
two iterated Hamiltonian systems:

x ′ = −fy (x , y , z), t ∈ I1,
y ′ = fx (x , y , z), t ∈ I1,
z ′ = 0, t ∈ I1,

x(0) = x0, y(0) = y0, z(0) = z0;
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EXAMPLES IN DIMENSION THREE : SURFACES

• The second system is:

ϕ̇ = −fz(ϕ,ψ, ξ), s ∈ I2(t),
ψ̇ = 0, s ∈ I2(t),
ξ̇ = fx (ϕ,ψ, ξ), s ∈ I2(t),

ϕ(0) = x(t), ψ(0) = y(t), ξ(0) = z(t).

Comments: dimension two - geometrical interpretation,
numerical solution with MatLab.
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EXAMPLES IN DIMENSION THREE : SURFACES

• The next two examples are solved with MatLab.

3) f (x , y , z) = (x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2)

R = 2, r = 1, (x0, y0, z0) = (1,0,0)

Figure: "interior" circle of the torus
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EXAMPLES IN DIMENSION THREE : SURFACES

4) f (x , y , z) = (x2 + y2 + z2 + R2 − r2)2 − 4R2(x2 + y2)

R = 2, r = 1, (x0, y0, z0) = (3,0,0)

Figure: "exterior" circle of the torus
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Generalized Solutions in Arbitrary Dimension

We discuss now the nonlinear implicit system in the absence of
the nondegeneracy hypothesis, i. e. for detA(x0) = 0 (in fact all
the maximal order determinants are null). We consider instead
that there is {xn} ⊂ Ω, such that:

xn → x0, rankJ(xn) = l , n ∈ N,

where J(xn) denotes the Jacobian matrix of
F1,F2, . . . ,Fl ∈ C1(Ω), in xn.

Notice that in case this is not fulfilled, it means that rank
J(x) < l in x ∈W , where W is a neighbourhood of x0. Then
F1,F2, . . . ,Fl are not functionally independent in W and the
problem (1.1) can be reformulated by using less functionals.
That is the above property is in fact always valid, except for not
well formulated implicit systems.
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Generalized Solutions in Arbitrary Dimension

In each xn, one can solve the system
Fj(x) = Fj(xn), j = 1, l , x ∈ Ω1, where Ω1 is open and bounded
such that x0 ∈ Ω1 ⊂⊂ Ω and one can find the solution via the
differential system.
We denote by Tn ⊂ Rd the above solution and it may be
assumed a compact in Rd (it is clearly closed due to the
continuity of Fj , j = 1, l). We may also assume that {Tn} are
uniformly bounded since Ω1 is bounded and, on a subsequence
α, we have Tn → Tα, n→∞, in the Hausdorff-Pompeiu metric,
where Tα is some compact subset in Rd .

Definition
T =

⋃
α

Tα is the local generalized solution of the nonlinear

system in x0, in the critical case rank J(x0) < l . The union is
taken for all the sequences and subsequences satisfying the
above conditions.
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Generalized Solutions in Arbitrary Dimension

The above definitions cover all the possible critical or non
critical cases. For instance, if we have just one equation and x0

is an extremum for the respective function, then the generalized
solution is just x0. If the respective function is identically zero in
O ⊂ Ω and x0 is on the boundary of O, then the generalized
solution is the boundary of O - see the Example below. A
complete description of the level sets (even of positive
measure) around x0 may be obtained via the generalized
solution. Generally speaking, the generalized solution is not a
manifold and may be not a compact subset. The computed
approximation may be not connected.
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Generalized Solutions in Arbitrary Dimension

Proposition

We have x0 ∈ Tα ⊂ T ⊂ ∂Mx0 , ∀α, where ∂Mx0 is the connected
component of ∂M containing x0 and M is the solution. In
particular

Fj(x) = 0, j = 1, l , ∀ x ∈ T .

If x0 is a regular point, then we denote by S the (local) solution
obtained via the implicit function theorem around x0. In the
Definition, we choose xn → x0, xn ∈ S and the uniqueness
property from the implicit functions theorem gives that Tn = S,
locally for n big enough. This choice of xn satisfies the
conditions since J(xn)→ J(x0).

We see that in the classical case, one obtains T = S (locally),
that is the Definition gives indeed a generalization of the
classical local solution of the implicit functions theorem.
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Generalized Solutions in Arbitrary Dimension

In R2, take d = 2, l = 1 and

f (x1, x2) =

{
x2

1 (x2
2 − x2

1 )2 if x1 < 0, |x2| ≤ |x1|

0 otherwise.

Clearly f is in C1(R2) and ∇f (x1, x2) = 0, on the second line.
Take x0 = (0,0) and xn → x0, xn = (xn

1 , x
n
2 ), xn

1 < 0, |xn
2 | < |xn

1 |.
In such points xn, one can use previous theorems and the
differential system may be chosen of Hamiltonian type:

x ′1(t) = −4x2
1 x2(x2

2 − x2
1 ),

x ′2(t) = 2x1(x2
2 − x2

1 )(x2
2 − 3x2

1 ),

(x1(0), x2(0)) = xn.
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Generalized Solutions in Arbitrary Dimension

We represent the solution Tn obtained with Matlab, for

xn = (−1
n
,0),n = 2,5

Figure: generalized solution
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Generalized Solutions in Arbitrary Dimension

This generalized solution contains the essential information
about the solution set of (1.1), since it gives its boundary (and
in the proposition, the inclusion becomes equality). If we define

f1(x1, x2) = x2
1 (x2

1 + x2
2 − 1)2

−

and x0 = (0,1), then ∂M is connected and the corresponding
generalized solution is ∂M without the lower half of the unit
circle. The inclusion is strict in this case. This is also related to
the local character of our construction.

Proposition

Let x0 be the unique critical point of (1.1) in the closed ball
B(x0). Then, T = M in B(x0).
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Generalized Solutions in Arbitrary Dimension

Proposition

Let Fj ∈ C1(Ω), j = 1, l and xn → x0, xn, x0 ∈ Ω. Denote by
T̃n, T̃0 the generalized solutions of (1.1) contained in the
bounded domain Ω, corresponding to the initial conditions xn,
respectively x0. Then

lim sup
n→∞

T̃n ⊂ T̃0.

There are examples with the above inclusion strict.
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DIMENSION THREE : EXAMPLES CRITICAL CASE

f (x , y , z) = x2 + y2 − z2, (x0, y0, z0) = (0,0,0),
∇f (x0, y0, z0) = (0,0,0)

The generalized solution around (x0, y0, z0) and its section
through a vertical plane. Here, we have T = M.
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Penalization

We introduce now the basic assumptions on the family F of all
admissible shape functions g ∈ C1(D) that will be used in the
next pages, in the study of shape optimization problems, in R2.

g(x, y) > 0 on ∂D,

|∇g(x , y)| > 0 on G = {(x , y) ∈ D; g(x , y) = 0}.

Notice that the admissible family O of open sets is defined by

Ωg = {(x , y) ∈ D; g(x , y) < 0}.
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Penalization

The family O of admissible open sets is rich and, for cost
functionals defined on some given subset E ⊂ D, the natural
constraint

E ⊂ Ω, ∀ Ω ∈ F ,

can be expressed as

g ≤ 0 in E , ∀ g ∈ F .
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Penalization

Proposition
Under above hypotheses, G is a finite union of disjoint closed
curves of class C1, without self intersections and not
intersecting ∂D, parametrized by the solution of

x ′(t) = −∂g
∂y (x(t), y(t)), t ∈ I,

y ′(t) = ∂g
∂x (x(t), y(t)), t ∈ I,

g(x(t), y(t)) = 0, ∀ t ∈ I.

when some initial point (x0, y0) is chosen on each component.
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Penalization

The mappings g ∈ F will be interpreted as a control parameter
and we introduce a supplementary control unknown u ∈ L2(D)
and consider the perturbed state system defined in D:

-∆y = f + H(g)u in D,

y = 0 on ∂D,

where H : R → R is the Heaviside function. Then, H(g) is the
characteristic function of D \ Ωg .
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Penalization

We introduce the following state constrained optimal control
problem, defined in the fixed domain D:

Min
g,u

∫
D

(1− H(g))j(x , y(x),∇y(x))dx∫
∂Ωg

|y(σ)|2dσ = 0,

for any g ∈ F and u ∈ L2(D).

Proposition

For any g ∈ F , there is ug ∈ L2(D) (not unique) such that the
solution of above state system coincides with the solution of
original state system in Ωg and satisfies the state constraint.
The two costs coincide.
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Penalization

Corollary
The shape optimization problem is equivalent with the
constrained optimal control problem, defined in D.

Remark
The state constraint has an implicit character and the unknown
geometry ∂Ωg is still fully present in it, that shows the difficulty
of the problem.

We denote by zg(t) = (z1
g (t), z2

g (t)), t ∈ Ig , the unique solution
of the Hamiltonian system, where Ig = [0,Tg] is the
corresponding period and some initial condition has to be fixed
on ∂Ωg . The penalized optimal control problem is:
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Penalization

Min
g,u

[
∫
D

(1− H(g))j(x , y(x),∇y(x))dx +

1
ε

∫
Ig
|y(zg(t))|2|zg(t)|dt ],

subject to the same state system and to g ∈ F ,
u ∈ L2(D) and for ε > 0 given.
In case ∂Ωg has several connected
components, then the last integral has to be
replaced by a finite sum of integrals.
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Penalization

Lemma
Let j(x , y) be a Caratheodory function on D × R, bounded from
below by a constant. Denote by [yεn ,gεn,uεn] a minimizing
sequence in the penalized problem. Then, on a subsequence
denoted by m(n), the pairs [gεm(n), y

ε
m(n)] give a minimizing cost

in the shape optimization problem, yεm(n) satisfies state equation
in Ωgεm(n)

and the boundary condition is fulfilled with a

perturbation of order ε
1
2 .
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Penalization

Let εk → 0 be some sequence of positive
quantities. Taking into account the Lemma , with
ε = εk , we denote shortly yk = y εk

m(n)k
,

gk = gεk
m(n)k

, Ωk = Ωgεk
m(n)k

. Then, Ωk is a bounded

sequence of open sets and we have Ωk → Ω∗ in
the Hausdorff - Pompeiu complementary sense,
on a subsequence denoted again by εk . We
assume that Ω̄k → Ω̄∗ in the Hausdorff -
Pompeiu metric too.
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Penalization

Proposition
Assume that j(x , ·) is coercive in D × R:

j(x , y) ≥ α|y |2 − β, α > 0; β ∈ R. (1)

Then, there is an extension ŷk of yk |Ωk , bounded in L2(D). If y∗

is its weak limit on a subsequence, in L2(D), then y∗|Ω∗ satisfies
the state equation in the distributions sense. If Ω∗ is of class C
and y∗ ∈ H1(D), the boundary condition is also satisfied.

Keldys-Hedberg stability
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Penalization

In the next result, we bring more clarifications, when j depends
on ∇y as well.

Corollary
Under the above conditions, assume that j satisfies the
stronger coercivity assumption on D × R × R2:

j(x , y , v) ≥ α1|v |2 + β1|y |2 − γ, α1 > 0, β1 > 0, γ ∈ R, (2)

and j(x , y , ·) is convex. Then, [y∗,Ω∗] is an optimal pair for the
shape optimization problem (P).
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Plate

Let Ω ⊂ R2 be a bounded, smooth (multiply) connected open
subset representing the shape of a plate of constant thickness
(normalized to one). We consider the fourth order partial
differential equation

∆∆y = f in Ω,
y = 0, ∆y = 0 on ∂Ω,

where f ∈ L2(Ω) is the load and y ∈ H4(Ω) ∩ H1
0 (Ω) is the

vertical deflection of the plate. The existence, the regularity and
the uniqueness of the strong solution of is well known, under
C1,1 conditions for ∂Ω, Grisvard 1985.
The difficulty in the numerical solution of is that the shape of Ω
may be very complicated, if multiply connected. Moreover, in
the corresponding shape optimization problems, the geometry
may change in each iteration in a complex way.
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Plate

We consider now another simply connected smooth bounded
domain D ⊂ R2 such that Ω ⊂ D and define the following
approximation for weak solutions, in a sense to be made
precise below.

-∆yε + 1
ε (1− HΩ)yε = zε in D,

yε = 0 on ∂D,
-∆zε + 1

ε (1− HΩ)zε = f in D,
zε = 0 on ∂D,

where HΩ is the characteristic function of Ω in D, yε, zε ∈ H1
0 (D).

Proposition

If Ω is of class C, then yε|Ω → y weakly in H1
0 (Ω) and strongly in

L2(Ω), where y ∈ H2(Ω) ∩ H1
0 (Ω) satisfies the plate equation as

a weak solution.
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Plate

We associate the following minimization problem

minΩ∈O
∫

Λ J (x, y(x)) dx,

where O is the class of admissible domains to be defined
below, y ∈ H1

0 (Ω) is the weak solution of the original equation,
Λ may be Ω or ∂Ω or some part of Ω or ∂Ω and J is the
performance index of Carathéodory type (measurable in x and
continuous in y ).
Any Ω ∈ O is an open set of class C, contained in some given
bounded domain D ⊂ R2. We may add the constraint

E ⊂ Ω, ∀Ω ∈ O
where E ⊂⊂ D is some given not empty subset of R2.
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Plate

Let X (D) denote a subset of C(D). We associate with any
g ∈ X (D), the open set

Ωg = int {x ∈ D; g(x) ≥ 0} .

In the absence of regularity assumptions and due to the
possible presence of critical points of g, it is possible that g has
level set {x ∈ D; g(x) = k} of positive measure. For the
constraint E , then X (D) should include the condition:

g(x)≥ 0 in E .
Notice that Ωg is a Carathéodory open set, i.e. cracks or cuts
are not allowed. However, high oscillations of the boundary are
possible (and the segment property may not be always valid
and has to be imposed separately).
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Plate

If H : R→ R denotes the maximal monotone extension of the
Heaviside function then H(g) is the characteristic function of
Ωg . An example of a regularization of the characteristic function
is obtained with Hε

Hε(r) =

{
1− 1

2e−
r
ε , r ≥ 0,

1
2e

r
ε , r < 0

but other choices are possible. The cost is approximated by∫
E J (x, yε(x)) dx, if Λ = E ,∫
D Hε(g)J (x, yε(x)) dx, if Λ = Ω.

Together with the approximating state system we get the
approximation of the shape optimization problem as a control
problem.
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Proposition

The mappings g → yε = yε(g), g → zε = zε(g) defined by the
approximating state system with HΩ replaced by Hε(g) are
Gâteaux differentiable between C(D) and H1

0 (Ω) and
w = ∇yε(g)v, u = ∇zε(g)v for any v in C(D) satisfy the
following system in variations:

−∆u +
1
ε

(1− Hε(g))u =
1
ε

(Hε)′(g)zεv ,

−∆w +
1
ε

(1− Hε(g))w = u +
1
ε

(Hε)′(g)yεv ,

with u,w ∈ H1
0 (Ω).
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We introduce now the adjoint system. To do this, we shall
consider the two cases of cost functionals. First a special form
of the cost on E :

1/2
∫

E (yε − yd )2dx,

-∆p + 1
ε (1− Hε(g))p = χE (yε − yd ) in D,

-∆q + 1
ε (1− Hε(g))q = p in D,

p=0, q=0 on ∂D,

where χE is the characteristic function of E in D.
For the second cost, the adjoint equation for p becomes

-∆p + 1
ε (1− Hε(g))p = Hε(g)J ′y (x, yε)v in D,

under differentiability assumptions.
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Proposition
The directional derivative of the cost functional is given by

1
ε

∫
D

(Hε)′(g)v(yεp + zεq)dx,

for p,q satisfying the adjoint system and for any v ∈ C(D).

Corollary
The directional derivative of the second cost functional has the
form:∫

D
(Hε)′(g)

[
J(x, yε(x)) +

1
ε

(yε(x)p(x) + zε(x)q(x))

]
v(x) dx.
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Corollary
Let g∗ε ∈ X (D) denote an approximating optimal solution. The
optimality conditions for g∗ε are given by the state system, the
corresponding adjoint system and the maximum principle:∫

D(Hε)′(g∗ε )(y∗ε p∗ε + z∗ε q∗ε )v dx ≤ 0, ∀v ,
respectively∫

D(Hε)′(g∗ε )
[
J(x, y∗ε (x)) + 1

ε (y∗ε (x)p∗ε (x) + z∗ε (x)q∗ε (x))
]

v(x) dx
≤ 0, ∀v ,
where y∗ε , z∗ε ∈ H1

0 (D) denote the approximating optimal states,
p∗ε ,q∗ε denote the corresponding adjoint states and v ∈ C(D) is
any admissible variation such that g∗ε + λv ∈ X (D) for λ > 0,
small.
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Algorithm
Step 1 Start with n = 0, ε > 0 given “small” and select some
initial gn.
Step 2 Compute yn

ε , zn
ε the solution of the state system with

HΩg replaced by Hε(g).
Step 3 Compute pn, qn the solution of the adjoint sytem.
Step 4 Compute the gradient of the considered cost functional.
Step 5 Denote by wn the chosen descent direction and define
g̃n = gn + λnwn, where λn > 0 is obtained via some line search.
Step 6 Compute gn+1 = ProjX(D)(g̃n), if the constraint on g is
imposed.
Step 7 If |gn − gn+1| and/or |∇j(gn)| are below some prescribed
tolerance parameter, then Stop. If not, update n := n + 1 and
go to Step 2.
We underline the combination of both topological and boundary
variations.
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Ex.1
We have D =]− 1,1[×]− 1,1[, 53360 triangles and 26981
vertices on it, the load f = 3, the cost function
j(g) = 1

2

∫
Ω(yε − yd )2dx, where

yd (x1, x2) = −(x1 − 0.5)2 − (x2 − 0.5)2 + 1
16 . The initial

geometric parametrization function is

g0(x1, x2) = min
(

x2
1 + x2

2 −
1
16

; (x1 − 0.5)2 + x2
2 −

1
64

; 1− x2
1 − x2

2

)
,

which corresponds to a domain with two holes.
The penalization parameter is ε = 10−5.



Introduction Parametrization in Arbitrary Dimension Examples in dimension three Generalized solutions Examples critical case: dimension three Penalization Plate with holes Applications

Plate

We use in the iterations the descent direction

wn = −
[

1
2

(yn
ε − yd )2 +

1
ε

(yn
ε pn + zn

ε qn)

]
. (3)

The cost function decreases rapidly at the first iterations
j(g0) = 2.29164, j(g1) = 0.00083009, j(g2) = 0.000510025,
j(g3) = 0.000379625, but for n ≥ 4, Ωn is similar to Ω3 and cost
function decreases slowly j(g8) = 0.000171446,
j(g11) = 0.00012326, j(g14) = 0.000100719. The initial domain
and some computed domains are presented in the Figures.
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Figure: First iteration Ex 1
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Figure: Second iteration Ex 1
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Figure: Third iteration Ex 1
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Figure: Fourth iteration Ex 1
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Ex. 2
We have again D =]− 1,1[×]− 1,1[. We use for D a mesh of
53360 triangles and 26981 vertices and for the approximation
of g, y , z we use piecewise linear finite element, globally
continuous. The load is f = 1, the cost function is
j(g) =

∫
Ω(yε − yd )dx where yd is given by

yd (x1, x2) =

{
1, if 1

9 ≤ x2
1 + x2

2 ≤
1
4

−1, otherwise.

The penalization parameter is ε = 10−3 and
J (x, yε(x)) = yε − yd (not positive).
We get the following descent direction

wn = −
[

(yn
ε − yd ) +

1
ε

(yn
ε pn + zn

ε qn)

]
. (4)
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The sequence (j(gn))n∈N is decreasing. For the stopping test,
we use: if j(gn+1) > j(gn)− tol then STOP, where tol = 10−6.
For the initial parametrization function
g0(x1, x2) = −x2

1 − x2
2 + 3

4 , that corresponds to a simply
connected domain, the stopping test is obtained for n = 3, the
values of the cost function are: j(g0) = 1.51761,
j(g1) = −0.417807, j(g2) = −0.421269, j(g3) = −0.423723.
Some computed domains are presented in the following
Figures.
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Figure: First iteration Ex 2
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Figure: Second iteration Ex 2
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Figure: Third iteration Ex 2
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One motivating application for the above discussion is in shape
optimization problems. A typical example has the form:

Min
Ω∈O

∫
Λ

j(x , yΩ(x))dx ,

−∆yΩ = f in Ω,

yΩ = 0 on ∂Ω

with other supplementary constraints, if necessary. Other
differential operators or other boundary conditions may be
studied as well.
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Here, O is a family of admissible domains in R3, satisfying
certain regularity hypotheses and conditions like

E ⊂ Ω ⊂ D, ∀ Ω ∈ O

where E ,D are given (bounded) domains, E may be even void,
etc.
Function f ∈ L2(D) and Λ may be either E (if nonvoid) or Ω or
∂Ω, etc. The integrand j(·, ·) : D × R → R is of Carathéodory
type.
The problem has a similar structure with an optimal control
problem, the main difference and difficulty being that the
minimization parameter is the domain Ω itself.



Introduction Parametrization in Arbitrary Dimension Examples in dimension three Generalized solutions Examples critical case: dimension three Penalization Plate with holes Applications

Applications

The idea is to represent the unknown domains as level sets
F (x1, x2, x3) ≤ 0 in D. We assume as usual F,1(x0) 6= 0.

Now, to compute the gradient of such a cost functional, we can
use functional variations that are perturbations of the form

F (x1, x2, x3) + λh(x1, x2, x3) = 0,

Such perturbations of the geometry may be very complex,
including topological and boundary perturbations
simultaneously. This is important in applications to shape
optimization .
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We approximate the equation in D

−∆yε +
1
ε

(1− Hε(g))yε = f in D,

yε = 0 on ∂D.

Proposition If Ω = Ωg is of class C, then yε|Ωg → y (the
solution of the original state system) weakly in H1(Ωg) and
strongly in L2(Ωg).



Introduction Parametrization in Arbitrary Dimension Examples in dimension three Generalized solutions Examples critical case: dimension three Penalization Plate with holes Applications

Applications

An example in dimension two is the following

Min
Ω∈O

∫
Λ

(
∂yΩ

∂n

)2

dσ,

−∆yΩ = f in Ω,

yΩ = 0 on ∂Ω,

E ⊂ Ω ⊂ D, ∀ Ω ∈ O.

We assume that the admissible domains in O are defined as
level sets of functions g ∈ Gad .
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Proposition If f ∈ Lp(D),p > 2, the directional derivative of the
cost is given by

L =
∫

I [A + B + C],

where

A = 2
∂yε
∂ng

(xg(t), yg(t)){ ∂

∂ng
[∇yε(xg(t), yg(t))].(z(t),w(t))+[∇yε(xg(t), yg(t))].

[∇ng(xg(t), yg(t)).(z(t),w(t))]}
√

(ẋg(t))2 + (ẏg(t))2,
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B = 2
∂yε
∂ng

(xg(t), yg(t)){[∇yε.∇h/|∇g|](xg(t), yg(t))−[
∂yε
∂ng
∇g.∇h/|∇g|2]

(xg(t), yg(t))}
√

(ẋg(t))2 + (ẏg(t))2,

C = 2{[ ∂yε
∂ng

2
|∇g|−2](xg(t), yg(t))}(ẋg(t), ẏg(t)).(z(t),w(t)).

where (z,w) solve the system in variations associated with the
Hamiltonian system describing the geometry and I is its
existence interval.
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