
Sur les défauts du type “anneau de Saturne” des
cristaux liquides nématiques
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Nematic Liquid Crystals

Fluid of rod-like particles, partially ordered:
particles prefer to order parallel to their
neighbors

Director n(x), |n(x)| = 1 indicates local
axis of preference: gives on average the
direction of alignment.
Oseen–Frank model: director should minimize elastic energy,

E (n) =

∫
Ω
e(n,∇n) dx

e(n,∇n) = K1(∇ · n)2 + K2[n · (∇× n)]2 + K3[n × (∇× n)]2

Simple case: one-constant approximation K1 = K2 = K3 = 1,

E (n) =
1

2

∫
Ω
|∇n|2 dx , the S2 harmonic map energy.

n is not oriented, −n ∼ n gives same physical state.
=⇒ n : Ω→ RP2.
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Harmonic Maps to S2 (or RP2)

Minimizers n : Ω→ S2 of the Dirichlet energy E (n) = 1
2

∫
Ω |∇n|2 dx

are harmonic maps.

Minimizers solve a nonlinear elliptic system of PDE, −∆n = |∇n|2n
Regularity theory for S2 or RP2-valued harmonic maps:

I Schoen-Uhlenbeck (1982): S2-valued minimizers are Hölder continuous
except for a discrete set of points.

I Brezis-Coron-Lieb (1986): singularities have degree ±1, n ' Rx
|x| , R

orthogonal. (“hedgehog”, “antihedgehog”)

I Hardt-Kinderlehrer-Lin (1986): for Oseen-Frank, min are real analytic
except for a closed set Z , H1(Z ) = 0.
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Applications of colloidal suspensions in nematic liquid crystals: photonics, biomedical sensors, ...

I. Musevic, M. Skarabot and M. Ravnik, Phil Trans Roy Soc A, 2013

When small “colloid”
particles are introduced in a
nematic, we observe both
point and line defects!

Model problem: Spherical
colloid particle, nematic
liquid crystal occupies the
exterior domain
Ω = R3 \ Br0(0).
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Landau–de Gennes Model

A relaxation of the harmonic map energy.

Introduce space of Q-tensors: Q(x) ∈ Q3, symmetric, traceless 3× 3
matrix-valued maps. Q(x) models second moment of the orientational distribution

of the rod-like molecules near x.

Eigenvectors of Q(x) = principal axes of the nematic alignment.

Uniaxial Q-tensor: two equal eigenvalues; principal eigenvector defines
a director n ∈ S2,

Qn = s(n ⊗ n − 1
3 Id).

Qn = Q−n; these represent RP2-valued maps.

Biaxial Q-tensor: all eigenvalues are distinct. Strictly speaking, no
director; but the principal eigenvector is an approximate director.

Isotropic Q-tensor: all eigenvalues are equal, so Q = 0. No preferred
direction, the liquid crystal has no alignment or ordering.
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The LdG Energy

FL(Q) =

∫
Ω

[
L

2
|∇Q|2 + f (Q)

]
dx ,

,

Potential f (Q) = −a

2
tr (Q2) +

b

3
tr (Q3) +

c

4
(tr (Q2))2 − d ,

a = a(TNI−T ), b, c > 0 constant, d chosen so minQ f (Q) = 0.

f (Q) depends only on the eigenvalues of Q.

f (Q) = 0 ⇐⇒ Q = s∗(n ⊗ n − 1
3 Id) with n ∈ S2 (uniaxial) and

s∗ := (b +
√
b2 + 24ac)/4c > 0

Euler–Lagrange equations are semilinear,
L∆Q = ∇f (Q) = −aQ − b

(
Q2 − 1

3 |Q|2I
)

+ c |Q|2Q
Uniaxial solutions are the exception; in most geometries expect
biaxiality rules [Lamy, Contreras–Lamy]

Analogy: Ginzburg–Landau model, a relaxation of the S1-harmonic
map problem:∫

Ω[ ε
2

2 |∇u|2 + (|u|2 − 1)2], u : Ω→ C
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The spherical colloid

Consider a nematic in R3 surrounding a spherical particle Br0(0).

n(x) ' x

|x|
x 2 @Br0

n(x) ' ez,

|x| ! 1

@⌦ = @Br0

Ω = R3 \ Br0(0), exterior domain.

Minimize LdG over Q(x) ∈ H1(Ω;Q3).

As |x | → ∞, Q is uniaxial, with vertical
director, Q(x)→ s∗

(
ez ⊗ ez − 1

3 I
)
.

On ∂Br0 , homeotropic (normal) anchoring:
I Strong (Dirichlet) with n = er = x

|x| ,

Q(x)|∂Br0
= Qs := s∗

(
er ⊗ er − 1

3 I
)
.

I Weak anchoring, via surface energy,
Ŵ
2

∫
∂Br0
|Q(x)− Qs |2 dS

I =⇒ L
Ŵ
∂Q
∂ν = Qs − Q on ∂Br0 .
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Part I: Size matters
Physicists observe that the character of the minimizers should depend on
particle radius r0 and anchoring strength W.

an equatorial disclination loop embracing the droplet, which is known as the
Saturn-ring configuration, first envisioned theoretically by Kuksenok et al. [105, 106]
on the basis of Frank–Oseen theory; and then observed experimentally in
thermotropic [107, 108] as well as lyotropic nematics [109] (figure 7). Computer
simulations also suggest that the hyperbolic hedgehog can transform into the Saturn
ring when the size of the spherical particle decreases [110, 111]. The interparticle
interactions acquire quadrupole symmetry when the dipole hedgehog configuration
changes to that of the Saturn ring symmetry in the external electric field,
as demonstrated by Loudet and Poulin [104].

The interparticle interactions become much weaker, F / 1=d 6, when the normal
boundary conditions are changed to the tangential ones [112, 113]. The director field
acquires two defects, boojums at the poles of the particle, and the symmetry of
a quadrupole. As established experimentally with the help of optical tweezers [114],
the interaction might be of repulsive or attractive nature, depending on the mutual
position of the two droplets, but it deviates from the quadrupolar model when the
distances between the particles become comparable to a few D’s.

The studies of dynamics of defect formations in colloidal systems are at the stage
of infancy [115, 116]. For example, Stark and Ventzki [115] calculated the Stokes
drag of spherical particles moving in a nematic host for three different configurations
shown in figure 7. The hedgehog configuration is very different from the other
two because of its dipolar symmetry.

4. Conclusion

The large birefringence of liquid crystals allow easy optical microscopy observations
of defects, whose number is scarce in the field of view, due to the viscous relaxation

(a) (b) (c)

Figure 7. A spherical inclusion in a uniformly aligned nematic matrix with homeotropic
boundary conditions (a) resembles a radial hedgehog and produces a hyperbolic satellite when
its size is much larger than the anchoring extrapolation length K/W; (b) causes a Saturn ring
configuration when the two are comparable; and (c) is ineffective to distort the director when
much smaller than K/W.

Topological point defects in nematic liquid crystals 4133

Kleman & Lavrentovich, Phil. Mag. 2006.

(a) For large r0, a “dipolar” configuration, with a detached (antihedghog)
defect;

(b) For small r0 with large W, a “quadripolar” minimizer, with no point
singularity but a “Saturn ring” disclination;

(c) For small r0 and low W, no singular structure at all.
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Two scaling limits

Rescaling by particle radius r0 and non-dimensionalizing with respect to
reference energy, a(TNI ), we reduce to two parameters,

F̃(Q) =
∫

Ω

[
1
2 |∇Q|2 + 1

ξ2 f (Q)
]
dx + W

2

∫
∂B1
|Qs − Q|2dA.

with coherence length ξ2 = L̂
r2

0 a(TNI )
,W =

Ŵ r2
0 a(TNI )
L , anchoring strength.

For fixed parameters ξ,W , there exists a minimizer in H∞,
Q(x)→ Q∞ uniformly as |x | → ∞.

We consider two limits:
I Small particle limit. ξ →∞, with W → w ∈ (0,∞].

I Large particle limit. ξ → 0, with Strong (Dirichlet) anchoring.
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Size Theorem (Alama-B-Lamy, 2016)
Small particle limit:

When ξ →∞, W → w ∈ (0,∞]:

Minimizers converge to a smooth limiting Q-tensor, which is biaxial
a.e.; principal eigenvector is approximate nematic director.

Defect is due to an eigenvalue crossing λ1 = λ2, eigenvectors
exchange =⇒ discontinuous director!

Defect occurs along a circle, Uw = (rw , θ, 0), with rw root of:

r3 − w
1+w r2 − w

3+w = 0.

Large particle limit:

Assume axial symmetry (consistent with physical intuition) and strong
anchoring (Dirichlet BC).

When ξ → 0, converge to uniaxial Q-tensor, with oriented director
n(x), an S2-valued harmonic map.

There is a unique point defect on the z-axis.
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The Saturn Ring

w =∞

w = 3.

w = 1.732 ≈
√
3.

w = 1.

Lia Bronsard (McMaster) Spherical Colloid Bucarest, 2018 11 / 21



Part II: Confinement and magnetic fields

In practice, ring defects are observed even for relatively large colloids.

Role of confined geometries: colloid in a narrow channel prefers ring
to point defect (Lavrentovich).

Narrower transition to vertical directors reduces energy of the ring.

H. Stark (2002): a strong applied magnetic field plays the role of
confinement, penalizing deviation from vertical director.
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Adding a magnetic field term

We use the energy density (Fukuda-Yokohama)

emag (Q) = h2 g(Q) = h2

[√
2
3 − Q33

|Q|

]
For Q = n ⊗ n − 1

3 I uniaxial, g(Q) =
√

3
2 (1− n2

3) favors vertical

alignment.

The normalization Q33/|Q| prevents high h from influencing the norm
of Q.

Together with the bulk potential, the effective potential
f (Q) + hg(Q) ≥ c(h) |Q − Q∞|2, Q∞ := e3 ⊗ e3 − 1

3 I .

For large h, expect Q ' Q∞ except for a boundary layer around ∂B1.

Defect should live inside the boundary layer.
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LdG with magnetic term
Two length scales:

ξ=nematic coherence length: defect core size.

η = ξ/h magnetic correlation length: boundary layer thickness

The LdG energy becomes:

Eη(Q) =

∫
Ω

1

2
|∇Q|2 +

1

ξ2
f (Q)︸ ︷︷ ︸

Enem

+

∫
Ω

1

η2
g(Q)dx︸ ︷︷ ︸

Emag

,

f (Q) = −1

2
|Q|2 − tr (Q3) +

3

4
|Q|4 + c, g(Q) =

√
2

3
− Q33

|Q| .

Heuristic (Stark):
I Hedgehog: Enem ∼ O(1) (point defect), Emag ∼ O(η−1)
I Ring: Enem ∼ O(| ln ξ|) (line defect), Emag ∼ O(1)

So ring should be preferred for high fields, η < ηc ' 1
| ln ξ| .

Difficulty: we don’t even know if solutions with ring or point defects
exist!
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Ansatz-free energy bounds

Idea: On each ray, Q
connects from uniaxial Qr on
∂B1 to Q∞ at infinity. The
transition (of scale η) is like a
vector-valued Allen-Cahn
(Modica-Mortola; Sternberg)

✓

⌘

Q1 = e3 ⌦ e3 � I/3

Qr = er ⌦ er � I/3

er

e3

Eη(Qη) =

∫
S2

∫ ∞
1

[
1

2
|∇Qη(r , ω)|2 +

1

ξ2
f (Qη) +

1

η2
g(Qη)

]
r2 dr︸ ︷︷ ︸

=:Ẽη(Qη(·,ω))

dS(ω)

We bound Ẽη(Qη(·, ω)) from below after a change of scale. . .
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Ansatz-free bounds, II

Fix a point ω ∈ S2, and restrict a minimizer Q = Qη(r , ω) to that ray:

Q̃ω(t) = Qη(1 + η(t − 1), ω), t ∈ [1,∞) rescaled along ray,

Q̃ω(1) = er (ω)⊗ er (ω)− I
3 , Q̃ω(∞) = Q∞ = ez ⊗ ez − I

3

Ẽη(Qη(·, ω)) ≥ 1

η

∫ ∞
1

[
1

2
|Q̃ ′ω(t)|2 +

η2

ξ2
f (Q̃ω) + g(Q̃ω)

]
dt

We assume λ = lim
η→0

η/ξ ∈ (0,∞], and consider minimizers of a

limiting energy along rays:

If λ <∞, Fλ(Q̃ω) =
∫∞

1
1
2 [|Q̃ ′ω(t)|2 + λf (Q̃ω) + g(Q̃ω)] dt.

When λ =∞, we restrict Q to be uniaxial, and
F∞(Q̃ω) =

∫∞
1

1
2 [|Q̃ ′ω(t)|2 + g(Q̃ω)] dt.

In either case, the potential vanishes at a unique uniaxial Q-tensor
Q∞ = ez ⊗ ez − I/3, its nondegenerate minimum.

Call Dλ(ω) the minimum of Fλ over all Q̃ω satisfying the BCs, so
Ẽη(Qη(·, ω)) ≥ 1

ηDλ(ω).
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The lower bound on rays

Dλ(ω) = inf
Q(1)=er (ω)⊗er (ω)−I/3

Q(∞)=Q∞

∫ ∞
1

1

2
[|Q ′(t)|2 + λf (Q) + g(Q)] dt,

D∞(ω) = inf
Q=n⊗n−I/3

n(1)=er (ω),n(∞)=±e3

∫ ∞
1

1

2
[|Q ′(t)|2 + g(Q)] dt

As observed by Sternberg, Dλ(ω) is a geodesic distance in a
degenerate weighted metric.

Symmetry: for ω = (θ, φ) spherical coords, Dλ is independent of
equatorial angle φ, and Dλ(ω(π − θ, φ)) = Dλ(ω(θ, φ))

For λ =∞, the minimizers trace geodesics on S2, to the North Pole if
0 < θ < π

2 and South Pole for π
2 < θ < π.

Explicit calculation: D∞(ω(θ, φ)) = 4
√

24(1− | cos θ|)
At θ = π/2 the minimizer is not unique (the defect!)
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The defect
Constructing an upper bound to match the Modica-Mortola lower bound is like a

recovery sequence in Γ-convergence:

The minimizer Qξ(r , θ, φ) is well-approximated by the minimizing heteroclinic

along the ray at (θ, φ) ∈ S2.

While the geodesic length Dλ(ω) is Lipschitz continous in ω ∈ S2, the minimizing

paths Q̃ω may not be.

For λ =∞ (uniaxial case) this only occurs at θ = π/2 (’cut locus’) where

geodesics are not unique. At θ = π/2 there is a topological obstruction: this is our

ring defect!

For λ <∞, we know less about the geodesics; we use the continuity of the energy

via a Riemann sum approx.

For λ =∞:

In a thin sector around the

equator the degree is − 1
2
.

The energy cost is O(| ln ξ|)

⌘
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Energy Asymptotics
For measurable S ⊂ S2, define the cone over S ,
CS = {rω : ω ∈ S , r > 1}.

Theorem (Alama-B-Lamy, ’17)

Assume λ = limη→0
η
ξ ∈ (0,∞], and η ln ξ → 0. Then, the minimizer Qη

has energy in CS :

Eη(Qη; Ω ∩ C(S)) = 1
η

∫
ω∈S Dλ(ω) dS(ω) + o

(
1
η

)
The energy calculation is local, over arbitrary sectors CS over
spherical domains. The main contribution is from a boundary layer of
scale η around the sphere.

To highest order in energy, Qξ has quadripolar symmetry (axial
rotation and equatorial reflection).
The Saturn Ring has quadripolar symmetry; a point defect would not.

The defect itself has energy O(| ln ξ|)� η−1, so we cannot deduce
the presence or absence of point or line defects.
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Ring vs Hedgehog?
Can we verify Stark’s heuristic comparison of ring vs point defect?

Take λ = limη→0
η
ξ =∞.

Then the minimizing paths for D∞(θ) are uniaxial, associated to
geodesics on S2,

D∞(θ) = 4
√

24(1− | cos θ|).

Assume uniaxial Qn(x) = n(x)× n(x)− 1
3 I , with orientable director

field n(x).

For orientable n, the north and south poles are distinguished, so
heteroclinics (geodesics) must connect to ez , with energy
4
√

24(1− cos θ).

Thus, an orientable uniaxial tensor field Qn must have much larger
energy:

ηEξ(Qn) ≥ 8π 4
√

24 ≥ 4 limξ→0 (ηEξ(Qξ)) .

So Stark is right in principle, but wrong in the details: the energies of
the ring and point defects are of the same scale, just a factor of 4
distinguishes them.
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Félicitations!!

mulţumesc!
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