Integrability of the Brouwer degree and chain rules for distributional Jacobians

Heiner Olbermann

26 April 2018

Workshop "Transitions de phase et équations non-locales", Institut de l'Académie Roumaine

UNIVERSITÄT LEIPZIG

Heiner Olbermann Integrability of the Brouwer degree

Overview

1 Introduction and statement of main result

2 Sketch of the integrability proof

- Interpolation and the weak Jacobian
- A Counterexample

3 Further results: Chain rules, and more

- Extrinsic curvature
- Chain rules for distributional Jacobians

A (1) < A (1) </p>

The Brouwer degree

- paracompact oriented manifold M of dimension n
- $U \subset \mathbb{R}^n$ bounded
- $u \in C^{\infty}(\overline{U}; M)$
- $z \in M \setminus u(\partial U)$
- smooth *n*-form μ on *M* with support in the same connected component of $M \setminus u(\partial U)$ as *z* with $\int_M \mu = 1$

Then

$$\deg(u, U, z) = \int_U u^*(\mu) \,,$$

For regular $z \in M \setminus u(\partial U)$,

$$\deg(u, U, z) = \sum_{x \in u^{-1}(\{z\})} \operatorname{sgn} \operatorname{det} Du(x).$$

イロト イポト イヨト イヨト

Statement of main result

Let $U \subset \mathbb{R}^n$ be open and bounded with $\dim_{\text{box}} \partial U = d \in [n-1, n], \ \alpha \in (d/n, 1] \text{ and } u \in C^{0, \alpha}(U; \mathbb{R}^n).$

Theorem (O. '15)

Then

$$\|\deg(u, U, \cdot)\|_{L^p} \leq C(n, U, \alpha, d, p) \|u\|_{\mathcal{C}^{0,\alpha}(U;\mathbb{R}^n)}^{n/p}$$

for any 1 .

イロン 不同 とうほう 不同 とう

Motivation: The $C^{1,\alpha}$ isometric embedding problem

Why are the integrability properties of \deg interesting?

Theorem (Borisov 1960, Conti, De Lellis, Székelyhidi 2012)

Let $\alpha > \frac{2}{3}$, let (S^2, g) be a Riemannian manifold with positive Gauss curvature, and let $y \in C^{1,\alpha}(S^2; \mathbb{R}^3)$ be an isometric immersion. Then y is rigid, i.e. the unique isometric immersion up to Euclidean motions.

Crucial part in the proof of this Theorem: Show that the normal ν_y has bounded extrinsic curvature, i.e.,

$$\sup \Big\{ \sum_{i=1}^N \mathcal{H}^2(
u_y(E_i)): \ E_i \subset M ext{ closed disjoint for } i=1,\ldots,N \Big\} < \infty$$

 $\nu_y =$ unit normal to the the immersed manifold

イロト イポト イヨト イヨト

"Phase transition" h-principle/rigidity

- Nash, Kuiper 1950's: For every short immersion $y: \mathbb{R}^2 \supset U \rightarrow \mathbb{R}^3$, there exists a C^1 -isometric immersion arbitrarily close in C^0
- De Lellis, Inauen, Székelyhidi '15: Also valid for $C^{1,\alpha}$ isometric immersions with $\alpha < \frac{1}{5}$

Isometric embedding of the flat torus in \mathbb{R}^3 (Borrelli, Jabrane, Lazarus, Thibert, PNAS '12)

Question (e.g. Yau, "Open problems in geometry")

Does there exist a critical exponent $\bar{\alpha}$ such that the $C^{1,\alpha}$ -Weyl problem is rigid for $\alpha > \bar{\alpha}$ and there is an *h*-principle for $\alpha < \bar{\alpha}$?

$C^{1,\alpha}$ rigidity: Main step in the proof

Look at $E_i \subset U$ closed disjoint for $i = 1, \ldots, N$ Want to estimate

$$\sum_{i=1}^{N} \mathcal{H}^2(\nu_y(E_i)) = \sum_{i=1}^{N} \int_{S^2} \chi_{\nu_y(E_i)}(x) \mathrm{d}\mathcal{H}^2(x)$$

Proposition

Under the assumption $u_y \in C^{0, \alpha}$, we have for all $\psi \in C^{\infty}(S^2)$,

$$\int_{S^2} \psi(z) \mathrm{deg}(\nu, E_i, z) \mathrm{d}\mathcal{H}^2(z) = \int_{E_i} \psi(\nu_y(x)) \kappa_y(x) \sqrt{\det g_y(x)} \mathrm{d}x \,,$$

and for $\kappa_y > 0$, we have additionally $\chi_{\nu_y(E_i)} \leq \deg(\nu, E_i, \cdot)$.

 $\kappa_y =$ Gauss curvature of the immersed manifold Euclidean version: $\int_{\mathbb{R}^n} \psi(z) \deg(u, U, z) dz = \int_U \psi(u(x)) \det Du(x) dx$

Plan of proof

• For smooth *u*, we have

$$\int_{\mathbb{R}^n} \varphi(z) \mathrm{deg}(u, U, z) \mathrm{d}z = \int_U \varphi(u(x)) \det Du(x) \mathrm{d}x \,,$$

and this allows for an estimate of

$$\|\deg(u, U, \cdot)\|_{L^p} = \sup_{\|\varphi\|_{L^{p'}} \leq 1} \langle \deg(u, U, \cdot), \varphi \rangle .$$

• Multiply $\deg(u, U, \cdot) \in L^p$ with a test function $\varphi \in L^{p'}$, and use the trick

$$\varphi(u(x)) \det Du(x) = \sum_{i=1}^n \det Dv^i(x),$$

where $v^i := (u_1, \ldots, u_{i-1}, \psi_i \circ u, u_{i+1}, \ldots, u_n)$, and ψ is a solution of div $\psi = \varphi$.

Plan of the proof continued

- For u ∈ C^{0,α}, define the Jacobian determinant det Du by multi-linear interpolation, and choose α high enough, so that "det Du = div f with f ∈ C^{0,β}"
- In this way, make rigorous sense of the change of variables formula

$$\langle [Ju], \chi_U \rangle = \int_U \det Du \mathrm{d}x = \int_{\mathbb{R}^n} \mathrm{deg}(u, U, y) \mathrm{d}y$$

• For Hölder functions $f \in C^{0,\beta}$ and bounded sets $U \subset \mathbb{R}^n$ with $\dim_{\text{box}} \partial U = d$, we may define the integral

$$\int_U \operatorname{div} f \, \mathrm{d} x$$

with the help of the Gauss-Green theorem if $\beta > d - (n-1)$ (see Harrison, Norton, 1991)

Interpolation and the weak Jacobian A Counterexample

Definition of the weak Jacobian

Define

$$\mathbf{j}: C^{\infty}(U; \mathbb{R}^n) \to C^{\infty}(U; \mathbb{R}^n)$$
$$u \mapsto \frac{1}{n} u \operatorname{cof} Du$$

- **j** is chosen such that $\operatorname{div} \mathbf{j} u = \det D u$.
- Define $[Ju] \in (C_c^1(U))^*$ by $\langle [Ju], \varphi \rangle := \int_U \mathbf{j} u \cdot D\varphi \, \mathrm{d} x$

Theorem (Brezis, Nguyen '14)

For
$$u, v \in C^{\infty}(U; \mathbb{R}^n)$$
 and $\varphi \in C^1_c(U)$, we have

$$\langle [Ju] - [Jv], \varphi \rangle \lesssim |u - v|_{W^{(n-1)/n,n}} \left(|u|_{W^{(n-1)/n,n}}^{n-1} + |v|_{W^{(n-1)/n,n}}^{n-1} \right) \|D\varphi\|_{L^{\infty}}.$$

イロト イヨト イヨト イヨト

Interpolation and the weak Jacobian A Counterexample

Distributional Jacobian as a trace

Interpolation spaces as trace spaces:

$$u \in W^{(n-1)/n,n}(U) \quad \Leftrightarrow \begin{cases} \varepsilon \mapsto \frac{\mathrm{d}}{\mathrm{d}\varepsilon} u_{\varepsilon} \in L^{n}(\mathbb{R}^{+}, L^{n}(U)) \\ \varepsilon \mapsto u_{\varepsilon} \in L^{n}(\mathbb{R}^{+}, W^{1,n}(U)) \end{cases}$$

- Estimates are computed via the equation $\langle [Ju], \varphi \rangle = \int_0^\infty \frac{\mathrm{d}}{\mathrm{d}\varepsilon} \langle \mathbf{j} u_\varepsilon, D\varphi \rangle \,\mathrm{d}\varepsilon$
- In this representation, the Null Lagrangian property of the determinant can be exploited to shift the derivatives

イロト イポト イヨト イヨト

Definition of the weak Jacobian, Hölder setting

Set $X_{00} = \{ \omega \in C^{\infty}(U; \mathbb{R}^n) : \operatorname{div} \omega = 0 \}$ and define two norms on the quotient space $C^{\infty}(U; \mathbb{R}^n) / X_{00}$:

$$\begin{split} \|\omega\|_{X_0} &:= \inf\{\|\omega + \alpha\|_{C^0} : \alpha \in X_{00}\} \\ \|\omega\|_{X_1} &:= \|\operatorname{div} \omega\|_{C^0} \end{split}$$

Lemma

Let $U \subset \mathbb{R}^n$ be bounded and open, let $u_1, \ldots, u_n \in C^{\infty}(U)$, and for $i = 1, \ldots, n$, let $\alpha_i \in (0, 1)$ such that $\theta := (\sum_{i=1}^n \alpha_i) - (n-1) > 0$. Then

$$\|\mathbf{j}\boldsymbol{u}\|_{(X_0,X_1)_{\theta,\infty}} \leq C(n,\alpha_1,\ldots,\alpha_n) \prod_{i=1}^n \|\boldsymbol{u}_i\|_{C^{0,\alpha_i}(U)},$$

and hence **j** extends to a multi-linear operator $C^{0,\tilde{\alpha}_1}(U) \times \cdots \times C^{0,\tilde{\alpha}_n}(U) \to (X_0, X_1)_{\theta,\infty}$ for $\tilde{\alpha}_i > \alpha_i$, i = 1, ..., n.

イロト イヨト イヨト イヨト

э

Interpolation and the weak Jacobian A Counterexample

Whitney decomposition

Lemma (Whitney~1930s)

There exists a countable collection $W = \{Q_i : i \in \mathbb{N}\}$ of cubes Q_i with the following properties:

- For every Q ∈ W, there exist m ∈ Zⁿ, k ∈ Z such that Q = 2^{-k} (m + (0, 1)ⁿ). For fixed k, the union of cubes for which this holds (for some m) is denoted by W_k.
- $U \subset \cup_{Q \in W} \overline{Q}$
- The cubes in W are mutually disjoint
- dist $(Q, \partial U) \leq \text{diam } Q \leq 4 \text{dist} (Q, \partial U)$ for all $Q \in W$

With $u \equiv u(t)$, t > 0, a representative of $u \in C^{0,\alpha} = (C^0, C^1)_{\alpha,\infty}$, we are going to estimate

$$\left|\int_{U} \operatorname{div} \mathbf{j} u \mathrm{d} x\right| \leq \sum_{i \in \mathbb{N}} \left|\int_{Q_i} \operatorname{div} \mathbf{j} u \mathrm{d} x\right| \,.$$

イロン 不同 とくほど 不同 とう

Interpolation and the weak Jacobian A Counterexample

Estimate on a cube

- Consider Whitney decomposition of U into cubes
- Let Q be such a cube. We have

$$\begin{aligned} \mathbf{j}u(0) = \mathbf{j}u(0) - \mathbf{j}u(t) + \mathbf{j}u(t) \\ = -\int_0^t (\mathbf{j}u)'(s) \mathrm{d}s + \mathbf{j}u(t) \\ \Rightarrow \left| \int_Q \mathrm{div} \, \mathbf{j}u(0) \mathrm{d}x \right| \leq \int_0^t \mathrm{d}s \left| \int_{\partial Q} (\mathbf{j}u)'(s) \mathrm{d}\sigma \right| + \left| \int \mathrm{div} \, \mathbf{j}u(t) \mathrm{d}x \right| \\ \leq \int_0^t \mathrm{d}s \, s^{-\theta} \mathcal{H}^{n-1}(\partial Q) \| \mathbf{j}u \|_{(X_0, X_1)_{\theta, \infty}} \\ + \mathcal{L}^n(Q) t^{-\theta} \| \mathbf{j}u \|_{(X_0, X_1)_{\theta, \infty}} \\ t := \mathcal{L}^n(Q) / \mathcal{H}^{n-1}(\partial Q) \mathcal{C} \mathcal{H}^{n-1}(\partial Q)^{1-\theta} \mathcal{L}^n(Q)^{\theta} \| \mathbf{j}u \|_{(X_0, X_1)_{\theta, \infty}}. \end{aligned}$$

イロン 不同 とくほど 不同 とう

臣

Interpolation and the weak Jacobian A Counterexample

How many cubes of given size are there?

 $N_r(\partial U) :=$ number of *n*-dimensional cubes of side length *r* that is required to cover ∂U

Definition

$$\dim_{\mathrm{box}}(\partial U) = \lim_{r \to 0} \frac{\log N_r(\partial U)}{-\log r},$$

Theorem (Martio, Vuorinen 1987)

$$\lim_{k\to\infty}\frac{\log_2\#W_k}{k}=\dim_{\mathrm{box}}(\partial U)\,.$$

イロト イヨト イヨト イヨト

Interpolation and the weak Jacobian A Counterexample

Summing up Whitney cubes

From the estimate for a single cube and the estimate on $\# W_k$, we get (with $d = \dim_{\text{box}} \partial U$)

$$\begin{split} \sum_{i \in \mathbb{N}} \left| \int_{Q_i} \operatorname{div} \mathbf{j} u \mathrm{d} x \right| &\leq C \sum_{k \geq k_0} 2^{kd} (2^{-k(n-1)})^{1-\theta} (2^{-kn})^{\theta} \| \mathbf{j} u \|_{(X_0, X_1)_{\theta, \infty}} \\ &\leq \sum 2^{k(d-(n-1)-\theta)} \| \mathbf{j} u \|_{(X_0, X_1)_{\theta, \infty}} \,. \end{split}$$

Now we use the trick

div
$$(\psi(u) \operatorname{cof} Du) = \operatorname{Tr}(D\psi(u) \operatorname{Id}_{n \times n} \det Du) = (\operatorname{div} \psi)(u) \det Du$$

 $= \sum_{i=1}^{n} \det Dv^{i}$
with $v^{i}(x) = (u_{1}, \dots, u_{i-1}, \psi_{i} \circ u, u_{i+1}, \dots, u_{n})$ and
 $\operatorname{div} \psi = \varphi \in L^{p'}$.

イロン 不同 とくほど 不同 とう

Interpolation and the weak Jacobian A Counterexample

- By standard L^p theory, $\|\psi\|_{W^{1,p'}} \lesssim \|\varphi\|_{L^{p'}}$
- By the Sobolev embedding for p' > n, $\|\psi\|_{C^{0,1-n/p'}} \lesssim \|\psi\|_{W^{1,p'}}$
- With $\tilde{\alpha} := (1 n/p') \alpha$, we have

$$\|\psi_i \circ u\|_{C^{0,\tilde{\alpha}}} \lesssim \|\psi\|_{C^{0,1-n/p'}} \|u\|_{C^{0,\alpha}}^{1-n/p'}.$$

Hence, with $\theta = n(1 - 1/p')\alpha - (n - 1) = n\alpha/p - (n - 1)$,

$$\|\mathbf{j}\mathbf{v}^{i}\|_{(X_{0},X_{1})_{\theta,\infty}} \leq C \|\varphi\|_{L^{p'}} \|u\|_{C^{0,\alpha}}^{n/p}.$$

Thus we get for $\|\varphi\|_{L^{p'}} \leq 1$,

$$\begin{split} \int_{\mathbb{R}^n} \varphi(z) \deg(u, U, z) \mathrm{d}z &\stackrel{\mathsf{morally}}{=} \int_U \varphi(u(x)) \det Du(x) \mathrm{d}x \\ &= \sum_i \int_U \mathrm{div} \, \mathbf{j} v^i \mathrm{d}x \\ &\leq \sum_i \sum_k 2^{k(d - (n-1) - \theta)} \| \mathbf{j} v^i \|_{(X_0, X_1)_{\theta, \infty}} \\ &\leq C \| u \|_{C^{0, \alpha}}^{n/p}. \quad \Box \end{split}$$

Interpolation and the weak Jacobian A Counterexample

A slight improvement

Let $U \subset \mathbb{R}^n$ be open and bounded with $\dim_{\text{box}} \partial U = d \in [n-1, n]$, $\alpha \in (d/n, 1]$ and $u \in C^{0, \alpha}(U; \mathbb{R}^n)$.

Theorem (O. '15)

Then

$$\|\deg(u, U, \cdot)\|_{L^p} \leq C(n, U, \alpha, d, p)\|u\|_{C^{0,\alpha}(U;\mathbb{R}^n)}^{n/p}$$

for any 1 .

Theorem (De Lellis, Inauen '17)

Then

$$|\mathrm{deg}(u,U,\cdot)|_{W^{eta,p}} \leq \mathcal{C}(U,n,lpha,eta,p)|u|_{\mathcal{C}^{0,lpha}}^{n/p-eta}$$

for any pair (β, p) with $p \ge 1$ and $0 \le \beta < \frac{n}{p} - \frac{d}{\alpha}$.

イロン イヨン イヨン イヨン

æ

Interpolation and the weak Jacobian A Counterexample

Counterexample for d = n - 1 = 1, $n\alpha < pd$

• De Lellis, Inauen '17: Consider $U = B(0,1) \subset \mathbb{R}^2$, and define $u \in C^{0,\alpha}(\partial B_1; \mathbb{R}^2)$ as in the sketch:

• $u(I_k)$ needs to cover S_k , k times. Then $u \in C^{0,\alpha}$, $\deg(u, U, \cdot) \notin L^1(\mathbb{R}^n).$

Extrinsic curvature Chain rules for distributional Jacobians

Extrinsic curvature in higher dimension

With similar methods, one can show:

Theorem (Behr, O. '16)

Let (M, g) be a 2m-dimensional Riemannian manifold with positive Pfaffian form, $\alpha > 2m/(2m+1)$, and let $y \in C^{1,\alpha}(M; \mathbb{R}^{2m+1})$ be an isometric immersion. Then the surface y(M) has bounded extrinsic curvature.

• Pfaffian form:

$$\operatorname{Pf}(\Omega) = \frac{1}{2^m m!} \sum_{\sigma \in \operatorname{Sym}(2m)} \Omega_{\sigma(1)}^{\sigma(2)} \wedge \cdots \wedge \Omega_{\sigma(2m-1)}^{\sigma(2m)},$$

where Ω_i^j are the curvature forms on (M, g).

• Crucial additional ingredient: Gauss-Bonnet-Chern.

Chain rules for distributional Jacobians

• With
$$C^0 \ni \varphi = \operatorname{div} \psi$$
 as before, define
 $\Psi_i(x) = (x_1, \dots, x_{i-1}, \psi_i(x), x_{i+1}, \dots, x_n)$. We have shown
 $\sum_i \int_U \operatorname{div} \mathbf{j}(\Psi_i \circ u) \mathrm{d}x = \int_{\mathbb{R}^n} \varphi(z) \mathrm{deg}(u, U, z) \mathrm{d}z$.

This is also true for n = 2, $u \in C^{0,\alpha}$ with $\alpha > \frac{1}{2}$.

• If we have that [*Ju*] is a Radon measure, and validity of the chain rule

$$\langle [J(\Psi_i \circ u)], \varphi \rangle_{(C_c^1)^*, C_c^1} = \langle [Ju], \varphi \det D\Psi_i(u) \rangle_{\mathcal{M}, C^0}$$

for all test function φ , then we can use the same arguments as Conti, De Lellis, Székelyhidi to prove rigidity in the $C^{1,\alpha}$ Weyl problem with $\alpha > \frac{1}{2}$. This is the so-called strong chain rule.

イロト イポト イヨト イヨト

Extrinsic curvature Chain rules for distributional Jacobians

Strong chain rule

• For
$$a \in \mathbb{R}^n$$
, let $u^a = \frac{u-a}{|u-a|}$.

• De Lellis, '03: Let $u \in W^{1,p}(U; \mathbb{R}^n)$ be continuous with p > n-1. If $\int_{\mathbb{R}^n} |[Ju^a]|_{\mathcal{M}} \,\mathrm{d}a < \infty \,,$

then the strong chain rule holds. In particular, this is true for $u \in W^{1,n} \cap C^0(U; \mathbb{R}^n)$

Theorem (Strong chain rule; Gladbach, O. '18)

Let $u \in W^{n/(n+1),n+1}(U; \mathbb{R}^n)$ such that [Ju] defines a Radon measure, and $F \in C_c^2(\mathbb{R}^n; \mathbb{R}^n)$. Then

$$\langle [J(F \circ u)], \varphi \rangle_{(C_c^1)^*, C_c^1} = \langle [Ju], \varphi \det DF(u) \rangle_{\mathcal{M}, C^0}$$

for all $\varphi \in C_c^1(U)$.

Extrinsic curvature Chain rules for distributional Jacobians

Weak coarea formula

For smooth $u, \partial U$ and $a \notin u(\partial U)$,

$$\deg(u, U, a) = \frac{1}{\mathcal{L}^n(B(0, 1))} \int_{\partial U} \mathbf{j} u^a \mathrm{d} s \quad ,$$

where $u^a(x) = \frac{u(x)-a}{|u(x)-a|}$.

Theorem (Jerrard, Soner, '02)

Let $u \in W^{1,n-1} \cap L^{\infty}(U; \mathbb{R}^n)$. Then $u^a \in W^{1,n-1} \cap L^{\infty}(U; \mathbb{R}^n)$ for a.e. $a \in \mathbb{R}^n$ and the weak coarea formula holds:

$$\langle [Ju], \varphi \rangle = \frac{1}{\mathcal{L}^n(B(0,1))} \int_{\mathbb{R}^n} \langle [Ju^a], \varphi \rangle \, \mathrm{d}a.$$

イロト イヨト イヨト イヨト 二日

Extrinsic curvature Chain rules for distributional Jacobians

Weak chain rule

• Jerrard, Soner '02: Let $u \in W^{1,n-1} \cap L^{\infty}(U; \mathbb{R}^n)$. Then $u^a \in W^{1,n-1} \cap L^{\infty}(U; \mathbb{R}^n)$ for a.e. $a \in \mathbb{R}^n$ and the *weak* chain rule holds:

$$\langle [J(F \circ u)], \varphi
angle = rac{1}{\mathcal{L}^n(B(0,1))} \int_{\mathbb{R}^n} \det DF(a) \langle [Ju^a], \varphi
angle \, \mathrm{d} a \, .$$

Theorem (Weak coarea formula + chain rule; Gladbach, O. '18)

Let $u \in W^{s,n} \cap L^{\infty}(U; \mathbb{R}^n)$ with s > (n-1)/n, and $F \in C^1(\mathbb{R}^n; \mathbb{R}^n)$. Then we have that for all $\varphi \in C_c^1(\mathbb{R}^n)$,

$$\begin{split} \langle [Ju], \varphi \rangle &= \frac{1}{\mathcal{L}^n(B(0,1))} \int_{\mathbb{R}^n} \langle [Ju^a], \varphi \rangle \, \mathrm{d}a \\ \langle [J(F \circ u)], \varphi \rangle &= \frac{1}{\mathcal{L}^n(B(0,1))} \int_{\mathbb{R}^n} \det DF(a) \, \langle [Ju^a], \varphi \rangle \, \mathrm{d}a \, . \end{split}$$

Literature

- H. O., "Integrability of the Brouwer degree for irregular arguments", *Ann. Inst. H. Poincaré Analyse Non-Linéaire* 34-4, 933-959, 2017.
- S. Behr, H. O., "Extrinsic curvature of codimension one isometric immersions with Hölder continuous derivatives" *arXiv preprint* 1601.05959, 2016.
- C. De Lellis, D. Inauen, "Fractional Sobolev regularity for the Brouwer degree", *Communications in Partial Differential Equations* 42-10, 1510-1523, 2017.

イロト イヨト イヨト イヨト