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The Brouwer degree

paracompact oriented manifold M of dimension n
U ⊂ R

n bounded
u ∈ C∞(U; M)
z ∈ M \ u(∂U)
smooth n-form µ on M with support in the same connected
component of M \ u(∂U) as z with

∫
M µ = 1

Then
deg(u,U, z) =

∫
U

u∗(µ) ,

For regular z ∈ M \ u(∂U),

deg(u,U, z) =
∑

x∈u−1({z})
sgn det Du(x) .
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Statement of main result

Let U ⊂ R
n be open and bounded with

dimbox∂U = d ∈ [n − 1, n], α ∈ (d/n, 1] and u ∈ C 0,α(U;Rn).

Theorem (O. ’15)

Then

‖deg(u,U, ·)‖Lp ≤ C(n,U, α, d , p)‖u‖n/p
C0,α(U;Rn)

for any 1 < p < nα
d .
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Motivation: The C 1,α isometric embedding problem

Why are the integrability properties of deg interesting?

Theorem (Borisov 1960, Conti, De Lellis, Székelyhidi 2012)

Let α > 2
3 , let (S2, g) be a Riemannian manifold with positive

Gauss curvature, and let y ∈ C 1,α(S2;R3) be an isometric
immersion. Then y is rigid, i.e. the unique isometric immersion up
to Euclidean motions.

Crucial part in the proof of this Theorem: Show that the normal
νy has bounded extrinsic curvature, i.e.,

sup
{ N∑

i=1
H2(νy (Ei )) : Ei ⊂ M closed disjoint for i = 1, . . . ,N

}
<∞

νy =unit normal to the the immersed manifold
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“Phase transition” h-principle/rigidity

Nash, Kuiper 1950’s: For
every short immersion
y : R2 ⊃ U → R

3, there exists
a C 1-isometric immersion
arbitrarily close in C 0

De Lellis, Inauen,
Székelyhidi ’15: Also valid
for C 1,α isometric immersions
with α < 1

5

Isometric embedding of the flat torus in R3

(Borrelli, Jabrane, Lazarus, Thibert, PNAS ’12)

Question (e.g. Yau, “Open problems in geometry”)

Does there exist a critical exponent ᾱ such that the C 1,α-
Weyl problem is rigid for α > ᾱ and there is an h-principle
for α < ᾱ?
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C 1,α rigidity: Main step in the proof
Look at Ei ⊂ U closed disjoint for i = 1, . . . ,N
Want to estimate

N∑
i=1
H2(νy (Ei )) =

N∑
i=1

∫
S2
χνy (Ei )(x)dH2(x)

Proposition

Under the assumption νy ∈ C 0,α, we have for all ψ ∈ C∞(S2),∫
S2
ψ(z)deg(ν,Ei , z)dH2(z) =

∫
Ei

ψ(νy (x))κy (x)
√

det gy (x)dx ,

and for κy > 0, we have additionally χνy (Ei ) ≤ deg(ν,Ei , ·).

κy =Gauss curvature of the immersed manifold
Euclidean version:

∫
Rn ψ(z)deg(u,U, z)dz =

∫
U ψ(u(x)) det Du(x)dx
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Plan of proof

For smooth u, we have∫
Rn
ϕ(z)deg(u,U, z)dz =

∫
U
ϕ(u(x)) det Du(x)dx ,

and this allows for an estimate of

‖deg(u,U, ·)‖Lp = sup
‖ϕ‖Lp′≤1

〈deg(u,U, ·), ϕ〉 .

Multiply deg(u,U, ·) ∈ Lp with a test function ϕ ∈ Lp′ , and
use the trick

ϕ(u(x)) det Du(x) =
n∑

i=1
det Dv i (x) ,

where v i := (u1, . . . , ui−1, ψi ◦ u, ui+1, . . . , un), and ψ is a
solution of divψ = ϕ.
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Plan of the proof continued

For u ∈ C 0,α, define the Jacobian determinant det Du by
multi-linear interpolation, and choose α high enough, so that
“det Du = div f with f ∈ C 0,β”
In this way, make rigorous sense of the change of variables
formula

〈[Ju], χU〉 =
∫

U
det Dudx =

∫
Rn

deg(u,U, y)dy

For Hölder functions f ∈ C 0,β and bounded sets U ⊂ R
n with

dimbox∂U = d , we may define the integral∫
U

div f dx

with the help of the Gauss-Green theorem if β > d − (n − 1)
(see Harrison, Norton, 1991)
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Definition of the weak Jacobian

Define

j : C∞(U;Rn)→C∞(U;Rn)

u 7→1
n u cof Du

j is chosen such that div ju = det Du.

Define [Ju] ∈ (C 1
c (U))∗ by 〈[Ju], ϕ〉 :=

∫
U ju · Dϕ dx

Theorem (Brezis, Nguyen ’14)
For u, v ∈ C∞(U;Rn) and ϕ ∈ C 1

c (U), we have

〈[Ju]− [Jv ], ϕ〉 . |u − v |W (n−1)/n,n
(
|u|n−1

W (n−1)/n,n + |v |n−1
W (n−1)/n,n

)
‖Dϕ‖L∞ .
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Distributional Jacobian as a trace

Interpolation spaces as trace spaces:

u ∈W (n−1)/n,n(U) ⇔

 ε 7→
d
dεuε ∈ Ln(R+, Ln(U))

ε 7→ uε ∈ Ln(R+,W 1,n(U))

Estimates are computed via the equation
〈[Ju], ϕ〉 =

∫∞
0

d
dε 〈juε,Dϕ〉 dε

In this representation, the Null Lagrangian property of the
determinant can be exploited to shift the derivatives
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Definition of the weak Jacobian, Hölder setting

Set X00 = {ω ∈ C∞(U;Rn) : divω = 0} and define two norms on the
quotient space C∞(U;Rn)/X00:

‖ω‖X0 := inf{‖ω + α‖C0 : α ∈ X00}
‖ω‖X1 :=‖divω‖C0

Lemma
Let U ⊂ R

n be bounded and open, let u1, . . . , un ∈ C∞(U), and for
i = 1, . . . , n, let αi ∈ (0, 1) such that θ :=

(∑n
i=1 αi

)
− (n − 1) > 0.

Then

‖ju‖(X0,X1)θ,∞ ≤ C(n, α1, . . . , αn)
n∏

i=1
‖ui‖C0,αi (U) ,

and hence j extends to a multi-linear operator
C 0,α̃1 (U)× · · · × C 0,α̃n (U)→ (X0,X1)θ,∞ for α̃i > αi , i = 1, . . . , n.

Heiner Olbermann Integrability of the Brouwer degree



Introduction and statement of main result
Sketch of the integrability proof

Further results: Chain rules, and more
Interpolation and the weak Jacobian
A Counterexample

Whitney decomposition

Lemma (Whitney∼1930s)

There exists a countable collection W = {Qi : i ∈ N} of cubes Qi with the
following properties:

For every Q ∈W , there exist m ∈ Zn, k ∈ Z such that
Q = 2−k (m + (0, 1)n). For fixed k, the union of cubes for which this
holds (for some m) is denoted by Wk .
U ⊂ ∪Q∈W Q
The cubes in W are mutually disjoint
dist (Q, ∂U) ≤ diam Q ≤ 4dist (Q, ∂U) for all Q ∈W

With u ≡ u(t), t > 0, a representative of u ∈ C 0,α = (C 0,C 1)α,∞, we
are going to estimate∣∣∣∣∫

U
div judx

∣∣∣∣ ≤∑
i∈N

∣∣∣∣∫
Qi

div judx
∣∣∣∣ .
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Estimate on a cube

Consider Whitney decomposition of U into cubes

Let Q be such a cube. We have

ju(0) =ju(0)− ju(t) + ju(t)

=−
∫ t

0
(ju)′(s)ds + ju(t)

⇒
∣∣∣∣∫

Q
div ju(0)dx

∣∣∣∣ ≤∫ t

0
ds
∣∣∣∣∫
∂Q

(ju)′(s)dσ
∣∣∣∣+
∣∣∣∣∫ div ju(t)dx

∣∣∣∣
≤
∫ t

0
ds s−θHn−1(∂Q)‖ju‖(X0,X1)θ,∞

+ Ln(Q)t−θ‖ju‖(X0,X1)θ,∞

t:=Ln(Q)/Hn−1(∂Q)
≤ CHn−1(∂Q)1−θLn(Q)θ‖ju‖(X0,X1)θ,∞ .
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How many cubes of given size are there?

Nr (∂U) := number of n-dimensional cubes of side length r that is
required to cover ∂U

Definition

dimbox(∂U) = lim
r→0

log Nr (∂U)
− log r ,

Theorem (Martio, Vuorinen 1987)

lim
k→∞

log2 #Wk
k = dimbox(∂U) .
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Summing up Whitney cubes
From the estimate for a single cube and the estimate on #Wk , we
get (with d = dimbox∂U)∑

i∈N

∣∣∣∣∫
Qi

div judx
∣∣∣∣ ≤C

∑
k≥k0

2kd (2−k(n−1))1−θ(2−kn)θ‖ju‖(X0,X1)θ,∞

≤
∑

2k(d−(n−1)−θ)‖ju‖(X0,X1)θ,∞ .

Now we use the trick

div (ψ(u)cof Du) = Tr(Dψ(u)Idn×n det Du) = (divψ)(u) det Du

=
n∑

i=1
det Dv i

with v i (x) = (u1, . . . , ui−1, ψi ◦ u, ui+1, . . . , un) and
divψ = ϕ ∈ Lp′ .
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By standard Lp theory, ‖ψ‖W 1,p′ . ‖ϕ‖Lp′

By the Sobolev embedding for p′ > n, ‖ψ‖C0,1−n/p′ . ‖ψ‖W 1,p′

With α̃ := (1− n/p′)α, we have
‖ψi ◦ u‖C0,α̃ . ‖ψ‖C0,1−n/p′‖u‖1−n/p′

C0,α .
Hence, with θ = n(1− 1/p′)α− (n − 1) = nα/p − (n − 1),

‖jv i‖(X0,X1)θ,∞ ≤ C‖ϕ‖Lp′‖u‖n/p
C0,α .

Thus we get for ‖ϕ‖Lp′ ≤ 1,∫
Rn
ϕ(z)deg(u,U, z)dz morally=

∫
U
ϕ(u(x)) det Du(x)dx

=
∑

i

∫
U

div jv idx

≤
∑

i

∑
k

2k(d−(n−1)−θ)‖jv i‖(X0,X1)θ,∞

≤C‖u‖n/p
C0,α .
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A slight improvement

Let U ⊂ R
n be open and bounded with dimbox∂U = d ∈ [n − 1, n],

α ∈ (d/n, 1] and u ∈ C 0,α(U;Rn).

Theorem (O. ’15)

Then
‖deg(u,U, ·)‖Lp ≤ C(n,U, α, d , p)‖u‖n/p

C0,α(U;Rn)

for any 1 < p < nα
d .

Theorem (De Lellis, Inauen ’17)
Then

|deg(u,U, ·)|Wβ,p ≤ C(U, n, α, β, p)|u|n/p−β
C0,α

for any pair (β, p) with p ≥ 1 and 0 ≤ β < n
p −

d
α .
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Counterexample for d = n − 1 = 1, nα < pd

De Lellis, Inauen ’17: Consider U = B(0, 1) ⊂ R
2, and

define u ∈ C 0,α(∂B1;R2) as in the sketch:

u(Ik) needs to cover Sk , k times. Then u ∈ C 0,α,
deg(u,U, ·) 6∈ L1(Rn).
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Extrinsic curvature in higher dimension
With similar methods, one can show:

Theorem (Behr, O. ’16)
Let (M, g) be a 2m-dimensional Riemannian manifold with positive
Pfaffian form, α > 2m/(2m + 1), and let y ∈ C 1,α(M;R2m+1) be
an isometric immersion. Then the surface y(M) has bounded
extrinsic curvature.

Pfaffian form:

Pf(Ω) = 1
2mm!

∑
σ∈Sym(2m)

Ωσ(2)
σ(1) ∧ · · · ∧ Ωσ(2m)

σ(2m−1) ,

where Ωj
i are the curvature forms on (M, g).

Crucial additional ingredient: Gauss-Bonnet-Chern.
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Chain rules for distributional Jacobians

With C 0 3 ϕ = divψ as before, define
Ψi (x) = (x1, . . . , xi−1, ψi (x), xi+1, . . . , xn). We have shown∑

i

∫
U

div j(Ψi ◦ u)dx =
∫
Rn
ϕ(z)deg(u,U, z)dz .

This is also true for n = 2, u ∈ C 0,α with α > 1
2 .

If we have that [Ju] is a Radon measure, and validity of the chain
rule

〈[J(Ψi ◦ u)], ϕ〉(C1
c )∗,C1

c
= 〈[Ju], ϕ det DΨi (u)〉M,C0

for all test function ϕ, then we can use the same arguments as
Conti, De Lellis, Székelyhidi to prove rigidity in the C 1,α

Weyl problem with α > 1
2 . This is the so-called strong chain rule.
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Strong chain rule

For a ∈ Rn, let ua = u−a
|u−a| .

De Lellis, ’03: Let u ∈W 1,p(U;Rn) be continuous with
p > n − 1. If ∫

Rn
|[Jua]|M da <∞ ,

then the strong chain rule holds. In particular, this is true for
u ∈W 1,n ∩ C 0(U;Rn)

Theorem (Strong chain rule; Gladbach, O. ’18)

Let u ∈W n/(n+1),n+1(U;Rn) such that [Ju] defines a Radon measure,
and F ∈ C 2

c (Rn;Rn). Then

〈[J(F ◦ u)], ϕ〉(C1
c )∗,C1

c
= 〈[Ju], ϕ det DF (u)〉M,C0

for all ϕ ∈ C 1
c (U).
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Weak coarea formula

For smooth u, ∂U and a 6∈ u(∂U),

deg(u,U, a) = 1
Ln(B(0, 1))

∫
∂U

juads ,

where ua(x) = u(x)−a
|u(x)−a| .

Theorem (Jerrard, Soner, ’02)

Let u ∈W 1,n−1 ∩ L∞(U;Rn). Then ua ∈W 1,n−1 ∩ L∞(U;Rn) for
a.e. a ∈ Rn and the weak coarea formula holds:

〈[Ju], ϕ〉 = 1
Ln(B(0, 1))

∫
Rn
〈[Jua], ϕ〉 da .
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Weak chain rule

Jerrard, Soner ’02: Let u ∈W 1,n−1 ∩ L∞(U;Rn). Then
ua ∈W 1,n−1 ∩ L∞(U;Rn) for a.e. a ∈ Rn and the weak chain rule
holds:

〈[J(F ◦ u)], ϕ〉 = 1
Ln(B(0, 1))

∫
Rn

det DF (a) 〈[Jua], ϕ〉 da .

Theorem (Weak coarea formula + chain rule; Gladbach, O. ’18)
Let u ∈W s,n ∩ L∞(U;Rn) with s > (n − 1)/n, and F ∈ C 1(Rn;Rn).
Then we have that for all ϕ ∈ C 1

c (Rn),

〈[Ju], ϕ〉 = 1
Ln(B(0, 1))

∫
Rn
〈[Jua], ϕ〉da

〈[J(F ◦ u)], ϕ〉 = 1
Ln(B(0, 1))

∫
Rn

det DF (a) 〈[Jua], ϕ〉da .
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34-4, 933-959, 2017.
S. Behr, H. O., “Extrinsic curvature of codimension one
isometric immersions with Hölder continuous derivatives”
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