
4d N = 2 theories and chiral algebras
Lectures by Balt van Rees notes by Bruno Le Floch

July 27, 2018

Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
We discuss chiral algebras obtained by considering the cohomology of

a supercharge in 4d N = 2 theories. These are lecture notes for the 2018
IHÉS summer school on Supersymmetric localization and exact results.

These lecture notes assume familiarity with supersymmetry at the level of
the first few chapters of the book by Wess and Bagger.

1 Lecture 1, July 27
This course is based mainly on one paper: “Infinite chiral symmetry in four
dimensions” by Beem–Lemos–Liendo–Peelaers–Rastelli–van Rees.

Sorry in advance:

• there will be too many Q, so don’t confuse Q, Q, Q, Q etc, especially when
hand-written;

• indices will not be completely consistent;

• we will talk a lot about the representation theory of the superconformal
algebra, which will make it easier to understand the rest of the chiral algebra:
this is hopefully worthwhile because familiarity with the representation
theory is useful more broadly than just in the study of chiral algebras.

1.1 Context
We will consider 4d N = 2 SCFTs at the conformal point (not away on the
Coulomb branch). We will focus on correlators of local operators. We will not
use the Lagrangian (for now).

The local operators OI(x) transform in representations of the superconformal
algebra su(2, 2|2) whose bosonic subalgebra is so(4, 2)⊕ su(2)R ⊕ u(1)r, namely
the conformal algebra of 3 + 1 dimensions, and R-symmetry (notice that Zohar
Komargodski uses S and R instead of our R and r respectively).

Recall the conformal algebra has generators
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• Mα
β andM α̇

β̇ (we distinguished the self-dual and anti-self-dual two-forms);

• Pαα̇ (remember a vector is equivalent to a bispinor);

• Kα̇α;

• D.

Among commutators there is

[D,Pαα̇] = Pαα̇ (1)
[D,Kα̇α] = −Kα̇α (2)

[Kα̇α, Pββ̇ ] = δαβ δ
α̇
β̇
D + δαβM

α̇
β̇ + δα̇

β̇
Mα

β . (3)

We denote generators of su(2)R as R± and R, and the generator of u(1)r
by r. Besides the conformal algebra and the R-symmetry algebra we have the
supercharges:

QIα Q̃Iα Sα̇I S̃Iα̇

su(2)R 2 2 2 2
u(1)r 1/2 −1/2 −1/2 1/2

with

{QIα, Q̃Jα̇} = δIJPαα̇ (4)

{S̃Iα̇, SαJ } = δIJK
α̇α (5)

{QIα, S
β
J } = 1

2δ
I
Jδ
α
βD + δIJMα

β − δβαRIJ . (6)

Here RIJ is appropriately defined in terms of R± and R:(
R1

1 R1
2

R2
1 R2

2

)
=
(
r
2 +R R+

R− r
2 −R

)
. (7)

1.2 Intermezzo: representations of the conformal algebra
Note: in radial quantization there exists a state-operator correspondence

|OI〉 = OI(0)|Ω〉 (8)

where | 〉 denotes a state (a vector in the Hilbert space) on S3, and |Ω〉 is the
vacuum, namely G|Ω〉 = 0 for all generators G.

A primary operator is ÔI(x) that

• has a definite dimension ∆, namely [D, ÔI(0)] = ∆ÔI(0), henceDÔI(0)|Ω〉 =
∆ÔI(0)|Ω〉;
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• is killed by special conformal generators K, namely [Kαα̇, ÔI(0)] = 0,
hence Kαα̇ÔI(0)|Ω〉 = 0.

Starting from this lowest-dimension state, we can act with some Pµ to build
“descendants”:

ÔI(0)|Ω〉 Pµ−−→ ∂µÔI(0)|Ω〉 Pν−−→ ∂µ∂νÔI(0)|Ω〉 · · · (9)

Note that it was important to have put the operator at zero: [K, Ô(x)] is only
guaranteed to vanish when x = 0 and Ô is a primary.

Example: free massless boson Consider φ(x) with �φ(x) = 0. Exercise:
show that φ(x) and : φn :(x) and

Tµν = :
(
∂µφ∂νφ−

1
d
ηµν∂

ρφ∂ρφ+
(2
d
− 1
)
φ∂µ∂νφ

)
: (10)

are primary operators1. Similarly, show that ∂µφ(x) and : φ∂µφ : are descendants.
Note that sometimes a descendant is null, meaning that its norm vanishes

and it decouples from the theory. Once we quotient by (the sub-representation
spanned by) this state, the representation that remains is then called short. Null
descendants only exist if the quantum numbers of the primary operator obey
some constraints. For instance

• �φ is null only if φ has dimension (d− 2)/2;

• ∂µjµ = 0 only if the current has ∆ = d− 1;

• ∂µTµν = 0 = ∂νT
µν only if the tensor has ∆ =.

Exercise: using the relation between Pµ and the stress tensor, show that the
stress tensor is a primary operator.

1.3 Representations of su(2, 2|2)
A superconformal primary ÔI(0)|Ω〉 is

• an eigenvector of D, J3
L and J3

R (space-time rotations Mα
β and Mα

β), and
R-symmetries R and r, with eigenvalues denoted (∆, j1, j2, R, r),

• killed by all K, S and S̃.

We can act on the superconformal primary with supercharges to get new confor-
mal primaries (actually we may need to project out conformal descendants). We

1In 2d, operators that are primary with respect to the finite-dimensional subalgebra we are
considering here are called quasi-primary operators.
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can draw things as

ÔI(0)|Ω〉

XJ |Ω〉 YK |Ω〉

Q̃Jα̇ Q S

. . . . . . (11)

We describe some representations, first in the notations of Dolan and Osborn,
then in the notations of Cordova, Dumitrescu and Intrilligator.

• A∆
R,r,(j1,j2) also called LL[j1, j2](R,r)∆ is a long multiplet, we can act on the

superconformal primary with Q’s 4 times, and 4 times with Q̃.

• Ĉ0(0,0) also called AlAl[0, 0](0,0) contains the stress tensor; the supercon-
formal primary has ∆ = 2, j1 = j2 = 0, R = r = 0

T

• •

• jαα̇, j
(IJ)
αα̇

•

• •

Tµν (12)

where jαα̇, j(IJ)
αα̇ are u(1)× su(2) R-symmetry currents of dimension ∆ = 3,

and we have supercurrents at dimension ∆ = 7/2 and the stress tensor
Tµν at ∆ = 4.

• B̂R also called B1B1[0, 0](R,0) whose superconformal primary has ∆ = 2R
and j1 = j2 = r = 0.

– In particular for R = 1/2 we have the usual hypermultiplet, with
the hypermultiplet scalars QI at the top (obeying �QI = 0) and the
fermions λ̃α̇ and λα have ∆ = 3/2 (hence are in the second row of
the diagram).
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– An other example is for R = 1 we get

µA(IJ)

• •

jAαα̇ (13)

where jAαα̇ is a conserved flavour symmetry current (A is an adjoint
index for the flavour symmetry). It has dimension 3 while µA(IJ) has
dimension 2. In the case of a Lagrangian theory with Nf hypermulti-
plets in the representation R of the gauge algebra g:

µA(IJ) = : ÃaImQbJn :δmnTAba (14)

where m and n are gauge indices, a and b are flavour indices.

1.4 Chiral algebras — pedestrian approach
All of the structure we will outline now will have a nice cohomological explanation.

Consider an n-point function of local operators〈
O O . . . O

〉
. (15)

We only consider Schur operators2, nmaely ∆ = j1 + j2 + 2R. These are
always in short representations of the superconformal algebra. They always have
R > 0. They are always a highest weight of su(2)R × suleft × su(2)right, namely
can be written as

O1···1
+···++̇···+̇ (16)

with 2R > 0 (one or more) R-symmetry indices (superscripts) and zero or more
of each kind of Lorentz spinor indices. We need the R-symmetry multiplet of
the Schur operators:

OI1···I2R
+···++̇···+̇(x) (17)

and we will restrict x to the two-plane x1 = x2 = 0 and set z = x3 + ix4 and
z = x3 − ix4, then contract each R-symmetry index with a position-dependent
vector

uI(z) =
(

1
z

)
. (18)

A typical correlator we consider is

uI(z1)uJ(z2)uK(z3)uL(z3)
〈
OI++̇(z1, z1)OJ++(z2, z2)OKL(z3, z3)

〉
. (19)

2These operators are called Schur operators because they contribute to the Schur index,
which is named like that because of its link with Schur polynomials.
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The claim is that all of these correlators are meromorphic: no z dependence!

∂

∂zi

(
uI(z1)uJ(z2)uK(z3)uL(z3)

〈
OI++̇(z1, z1)OJ++(z2, z2)OKL(z3, z3)

〉)
= contact terms, like ∂z

1
z
' δ(2)(z, z).

(20)

The strategy is then

• determine residues at all of its poles (where operators collide);

• determine the behaviour at infinity;

• deduce the whole correlation function thanks to meromorphicity.

Trivial example: free hypermultiplet The free hypermultiplet’s scalars
QI and Q̃J have ∆ = 1 and R = 1/2 and r = j1 = j2 = 0 so they are Schur
(∆ = j1 + j2 + 2R). We compute

uI(z)uJ(w)
〈
QI(z, z)Q̃J(w,w)

〉
= εIJ
|z − w|2

uI(z)uJ(w) = w − z
|z − w|2

= 1
w − z

(21)

which is meromorphic. The other Schur operators in this free theory are normal-
ordered products

: Q · · ·Q · · · Q̃ · · · Q̃ · · · ∂++̇ · · ·Q · · · Q̃ · · · ∂++̇ · · · : (22)

Note that ∂++̇ = ∂z.

Constructing the chiral algebra Introduce a notation for each Schur oper-
ator contracted with uI(z):

q(z) := [uI(z)QI(z, z)]χ, q̃(z) := [uI(z)Q̃I(z, z)]χ (23)

where the subscript χ just mean “in the chiral algebra”. All other Schur operators
contracted with uI are obtained by normal-ordered products from q(z) and q̃(z)
like

: q∂q̃ :(z) = lim
w→z

(
q(w)∂q̃(z)− singular terms in OPE

)
. (24)

Notice a sleigh of hands: we had used the normal-ordered product in 4d and
now we are using the 2d normal-ordered product.

Correlators of these operators are meromorphic. All the axioms of vertex
operator algebras as considered by mathematicians are obeyed.

In the free hypermultiplet case, the chiral algebra is generatred by q(z) and
q̃(z) with singular OPE

q(z)q̃(w) ∼ −1
z − w

, q(z)q(w) ∼ 0, q̃(z)q̃(w) ∼ 0, (25)
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where ∼ means “up to regular terms”, so ∼ 0 means that there is no short-
distance singularity. This chiral algebra has a name: it is the chiral algebra of
symplectic bosons with hq = h

q̃
= 1/2.

Notice that the chiral algebra is not unitary, even though the original 4d
theory was. This is not particularly surprising because we are computing some
complexified correlators in the 4d theory anyways.

1.5 Chiral algebras — proper approach
Let Q = Q1

− + S̃2−̇ and Q† = S−1 + Q̃2−̇. Then Q2 = 0 and

{Q, Q†} = D −M+
+ −M +̇

+̇ − 2R. (26)

We deduce that for all states in a unitary theory ∆− j1 − j2 − 2R ≥ 0. We also
deduce that an operator is Schur (equality case) if and only if QO(0)|Ω〉 = 0.

We are going to work in the cohomology of Q. Acting on the vacuum with
a Schur operator at 0 gives a Q-closed state. What about moving it? We have
[Q, P1] 6= 0, [Q, P2] 6= 0, but [Q, Pz] = 0 so

QezPzO(0)|Ω〉 = 0. (27)

What about moving in the z direction? Well, remember we contracted with
u:

∂z

(
uI(z)OI(z, z)

)
= uI(z)

[
Pz,OI(z, z)

]
+O2(z, z) = uI(z)

[
Pz +R−,OI(z, z)

]
(28)

and it turns out that Pz +R− = {Q, . . . }. This implies not only that Pz +R−

acts on the cohomology (it is Q-closed) but it actually acts trivially, in contrast
with Pz which acts non-trivially. We learn that correlators of “twisted-translated”
Schur operators only depend meromorphically on z (namely don’t depend on z).

We can construct a Q-closed sl(2)z with generators

L−1 = Pz, L1 = Kz, 2L0 = D +M+
+ +M +̇

+̇. (29)

We deduce that [uI(z)OI(z, z)]χ has conformal weight h = (∆ + j1 + j2)/2. It is
easy to check that this is consistent with the example of the free hypermultiplet.

We can construct a Q-exact ŝl(2)z (the hat means twisted) with generators

L̂−1 = Pz +R−, L̂1 = Kz −R+, 2L0 = D−M+
+ −M +̇

+̇ − 2R. (30)

In fact, the ŝl(2)z algebra considered here is a diagonal subalgebra of sl(2|2) that
is inside sl(2, 2|2), so we should expect a similar chiral algebra story in other
theories that are invariant under at least sl(2|2), for instance

• 6d (2, 0) theories (the paper is already out);

• 4d N = 2 theories (discussed in these notes);
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• 2d N ≥ (0, 4) theories (upcoming paper).

Notice that our supercharge Q involves S, and not only Q, thus Q does not
commute with P . This is why we could have some position dependence rather
than none as in earlier cohomological stories.

1.6 Notable Schur operators
From B̂1/2, Q̃I and QJ are Schur.

From B̂1, µA(IJ) is Schur, namely

jA(z) =
[
uIuJµA(IJ)

]
Q

(31)

(we changed the subscript from χ to Q because the chiral algebra is just the Q

cohomology). This operator jA has h = (∆ + j1 + j2)/2 = 1.
Recall the two-point function of conserved currents in 4d,

〈
JAµ (z, z)JBν (w,w)

〉
= 12k4dδ

AB x
2gµν − 2xµxν
|x|8

(32)

where k4d > 0 (by unitarity) is the flavour central charge (a number independent
of exactly marginal deformations). By supersymmetry this current two-point
function gives the two-point function of µA(IJ), from which we can deduce the
singular OPE

jA(z)jB(w) ∼ k2dδ
AB

(z − w)2 + ifABCj
C(w)

z − w
(33)

with k2d = −k4d/2. Altogether we learn that a 4d flavour symmetry gives rise
to an affine Kač–Moody subalgebra of the 2d chiral algebra.

Question: the Sugawara construction starting from a Kač–Moody algebra
gives a Virasoro subalgebra of the chiral algebra; does it have a physical meaning?

In Ĉ0(0,0) (stress-tensor multiplet) we have j(IJ)
αα̇ with ∆ = 3, R = 1, j1 =

j2 = 1/2, giving rise to a (quasi)primary with h = 2 in the conformal algebra,
neutral under all flavour symmetries. This is exactly right to produce a Virasoro
algebra. Let

T (z) :=
[
uIuJj

(IJ)
++̇

]
Q
. (34)

From the two-point function 〈TµνTρσ〉 = c4d(· · ·)µνρσ/|x|8 we find3

T (z)T (0) ∼ c2d/2
z4 + 2T (0)

z2 + ∂T (0)
z

. (35)

In all known examples this is the stress-tensor of the chiral algebra, namely its
OPE with all chiral primaries is exactly right in order to generate the sl(2)z
coming from 4d. This is not proven in general: the chiral algebra could have
many Virasoro subalgebras.

3In our conventions the free hypermultiplet has c4d = 1/12. In any unitary theory, c4d > 0.
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To come back to the question, the Sugawara construction is : jAjA :(z);
sometimes it coincides with the stress-tensor T (z), but often it is a mixture
of T (z) with an operator that comes from some other Schur operator in the
4d theory. This leads to interesting consistency constraints on k4d and c4d for
instance.

2 Lecture 3, July 27
Comment: the OPE in chiral algebras is single-valued so powers are integers.

Chiral algebras for gauge theories can be found using the fact that the Higgs
branch data is independent of (gYM, θ) so we can work at zero coupling.

Gauge theories A free vector multiplet E1(0,0), E1(0,0) looks like

φ

λ̃α̇

Fα̇β̇ (36)

Here λ̃α̇ has j2 = 1/2, j1 = 0, ∆ = 3/2, R = 1/2, hence it is Schur, with h = 1.
So if

b(z) =
[
uI(z)λ̃I+̇(z, z)

]
Q

(37)

∂c(z) =
[
uI(z)λ̃I+(z, z)

]
Q

(38)

then the chiral algebra is generated by b and c after removing the zero mode of
c. The OPE is

b(z)c(w) ∼ 1
z − w

. (39)

Consider now a gauge theory Tgauge, obtained by coupling vector multiplets
in the adjoint representation of g, coupled to a matter theory T with global
symmetry g and with k4d = 4h∨g . This relation between the flavour central
charge of T and the dual Coxeter number of g is needed for the result to be an
SCFT.

How to get the chiral algebra χ[Tgauge] of Tgauge from the chiral algebra χ[T ]
of T?

• Note that χ[T ] ⊃ g contains an affine Kač–Moody algebra at level k2d =
−2h∨g ; denote the currents by jA(z).

• Note that the chiral algebra χ[f.v.] of a free vector multiplet contains bA
and cA minus the zero modes of cA (we denote this by “\zero-modes”).
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Then define

QBRST =
∮ dz

2πijBRST(z), (40)

jBRST = cA

[
jA − i

2f
ABCcBbC

]
. (41)

Then we claim that χ[Tgauge] is given by the cohomology of QBRST, namely

χ[Tgauge] = H•BRST

[
ψ ∈ χ[T ]⊗ χ[f.v.]

]
\ zero-modes. (42)

Note that QBRST is nilpotent: [QBRST, [QBRST, . . .}} = 0 only if k4d = 4h∨g .
Example: consider a charged operator Oi(z) in χ[T ] (we would also need to

work out the same for the gauginos). Then

jA(z)Oi(0) = · · ·+ 1
z
TAi

jOj(0) + · · · (43)

while the OPE of c an b with Oi(0) is regular. Then using the definition of
QBRST,

[QBRST,Oi(0)] =
∮ dz

2πi

(
cAj

A − i

2f
ABCcAcBbC

)
Oi(0) = cA(0)TAijOj(0)

(44)
and that’s it. This only vanishes if Oi is actually neutral under the flavour
symmetry that is being gauged, in other words if Oi is a genuine operator in the
gauge theory.

SU(N) SQCD Consider 4d N = 2 SU(N) with 2N fundamental hypermulti-
plets. Take N ≥ 3 to avoid discussing flavour symmetry enhancement. Before
gauging SU(N) we have the following.

• QaIi and Q̃iIa where I is still an su(2)R symmetry index, i is a flavour
index and a a gauge index. These give rise to qai (z) and q̃ia(z) in the chiral
algebra

• λ and λ giving rise to bA(z) and cA(z).

We want to build gauge-invariant, or QBRST closed, operators. They lie in
various multiplets.

• B̂1 multiplet: Q(I|jQ̃
i
|J)a, which gives rise to the u(1) × su(Nf ) current

qaj q̃
i
a = jij where su(Nf ) is at level −Nc.

• Ĉ0
(0,0) multiplet: j(IJ)

µ (z, z), which gives rise to T (z) = 1
2 (q∂z q̃− q̃∂zq)−b∂c.

Something funny happening here is that if we have a flavour symmetry
current jA we can define TSugawara = : jAjA :, which acts on currents like
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a stress-tensor. In the original (ungauged) chiral algebra this is different
from the T (z), but in fact

T (z)− TSugawara(z) =
{
QBRST, · · ·

}
(45)

so these operators are the same in the cohomology, hence the same in the
chiral algebra of the gauge theory.

• We also have baryons Bi1···iN = qa1
i1
· · · qaNiN εa1···aN and of course an-

tibaryons B̃i1···iN .

Even for this theory, it is still conjectural whether there are other generators.
This is a well-defined problem in cohomology.

One thing that can be done is to compute the Schur index (a certain limit
of the S3 × S1), which is almost the vacuum character of the chiral algebra: in
fact there is a (−1)F , so it is the graded character of the chiral algebra. The
matching between Schur index and graded character of the chiral algebra gives
some evidence that all the generators were found, but

• the (−1)F could lead to cancellations so some generators could be hiding;

• the comparison is only done level by level because the (graded) vacuum
character is hard to compute for the given (negative) levels of the affine–
Kač–Moody algebra.

Conjectures for chiral algebras of some theories The strategy is to
compare the known Schur index of theories with the graded vacuum character.

• The chiral algebra of 4d N = 4 super Yang–Mills has “small” 2d N = 4
supersymmetry.

• Chiral algebras of 4d N = 3 theories have 2d N = 2 supersymmetry.

• The chiral algebra of SU(N) with 2N fundamental hypermultiplets contains
an su(2N)−N ⊕ u(1) affine Kač–Moody algebra plus baryons.

• The chiral algebra of the Minahan–Nemeschansky E6 theory must contain
(E6)−3 affine Kač–Moody, and in fact that seems to be it.

• The chiral algebra of the TN theory must contain su(N)3 affine Kač–Moody
at the critical level (because gauging together two su(N) flavour symmetries
should give an SCFT).

S-duality should not change the chiral algebra; it is very non-trivial to check or
use such a bootstrap approach.
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2.1 Unitarity bound
Consider a theory T with flavour symmetry g. Then in χ[T ] we have jA(z), and
the theory’s R-symmetry current gives T (z), with OPEs

jA(z)jB(0) ∼ k2dδ
AB

z2 + ifABcj
c(0)

z
, (46)

T (z)T (0) ∼ c/2
z4 + 2T

z2 + ∂T

z
, (47)

T (z)jA(0) ∼ jA(0)
z2 + ∂jA(0)

z
. (48)

This is enough to determine all correlators of T and jA. For instance using the
singularities at 0, 1, ∞ imposed by the jj OPE we find〈

jA(0)jB(z)jC(1)jD(∞)
〉

= k2
2d
z2

(
δABδCD + z2δACδBD + z2

(1− z)2 δ
ADδBC

− z

k2d
fACEfBDE − z

k2d(z − 1)f
ADEfBCE

) (49)

Let j2(z) = : jAjA :(z) = limw→z
[
jA(w)jA(z)− k2d(dim g)/(w − z)2]. This can

come from a Ĉ0(0,0) or B̂2 supermultiplet in 4d, or a linear combination of the
two. We are interested in the B̂2 part. To get rid of the Ĉ0(0,0) piece we subtract
a multiple of the stress-tensor so that the result is orthogonal to the stress tensor.

Compute 〈T (z)T (0)〉 = c/2
z4 and

〈T (z)j2(0)〉 = lim
w→0

〈
T (z)ja(w)ja(0)

〉
= lim
w→0

〈
ja(w)

(
ja(0)
z2 + ∂jA

z
+ · · ·

)〉
+ w ↔ 0

= k2d dim g

z4

(50)

and
〈j2(z)j2(0)〉 = · · · = 2k2d(dim g)

(
k2d + h∨

)
. (51)

Here h∨ comes as fABCfABC . We define

ĵ(z) = j2(z)− 2k2d dim g

c
T (z). (52)

This operator in the chiral algebra is a twisted B̂2 operator and we can check

〈ĵ(z)T (0)〉 = 0, 〈ĵ(z)ĵ(0)〉 = 2k2d dim g

z4

(
(k2d + h∨)− k2d dim g

c2d

)
. (53)
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While two-point functions in the chiral algebra can have any sign, here it comes
from twisting a B̂2 operator in 4d:

〈ĵ(z)ĵ(0)〉 = 〈uIuJuKuLM (IJKL)(z, z)uAuBuCuDM (ABCD)(0)〉 = u · · ·uε
IAεJBεKCεLD

|x|8
N

(54)
Unitarity of the 4d theory implies N ≥ 0 (in some conventions), from which we
learn that

dim g

c4d
≥ 24h∨

k4d
− 12. (55)

This inequality has been checked explicitly to hold in a large class of 4d theories.
When it is saturated, this means that the Sugawara construction gives the true
stress tensor; it means that the B̂2 decouples from the theory.

Comment: the key benefit from using the chiral algebra here was to be able
to deduce the four-point function 〈jjjj〉 (and 〈Tjj〉) from knowing the OPE of
a pair of j.

There are similar inequalities

c4d ≥
11
30 , k4d ≥ · · · (56)
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