
Topics on 4d N = 2 theories
Lectures by Zohar Komargodski notes by Bruno Le Floch

July 25–27, 2018

Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
We discuss extremal correlators in 4d N = 2 theories and related

aspects. These are lecture notes for the 2018 IHÉS summer school on
Supersymmetric localization and exact results.

These lecture notes assume familiarity with supersymmetry at the level of
the first few chapters of the book by Wess and Bagger.

1 Lecture 1, July 25
Around 1998, people introduced 4d N = 4 maximally-supersymmetric Yang–
Mills theory. We will start with the story of 4d N = 4, then explain how it is
generalized to 4d N = 2.

1.1 Aspects of zero-coupling 4d N = 4 SYM
SU(N) gauge field Aµ, six real scalars φi, 1 ≤ i ≤ 6, and some fermions ψA, all
in the adjoint representation of SU(N). People have considered

OI = CIi1···ik Tr(φi1 . . . φik ) (1)

where for each I, CIi1···ik is a tensor. These tensors should be symmetric (other
parts don’t contribute) and traceless to be in an irreducible representation of
the R-symmetry Spin(6) = SU(4). These operators are half-BPS and played an
important role in the early days.

We normalize the tensors such that

CIi1···ikC
J,i1···ik = δIJ . (2)

The action is normalized as

S = 1
2g2

YM
Tr(F 2) + · · · (3)
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As a consequence, the propagator is normalized as

〈φia(x)φjb(y)〉 = g2
YM

(2π)2 δ
ijδab

1
|x− y|2

. (4)

Note that by “zero-coupling” we mean that all loop diagrams are set to zero,
namely we only consider the leading zero-loop order using Wick contractions.
We also restrict ourselves to the planar limit.

As an exercise show that

g(x, y) =
〈
Tr
(
φi1 . . . φik

)
(x) Tr

(
φj1 . . . φjk

)〉
= Nkg2k

YM
(2π)2k

(
δi1j1δi2j2 . . . δikjk +cyclic

) 1
|x− y|2k

(5)
in the planar limit. We deduce, setting λ = Ng2

YM, that

〈OI(x)OJ(y)〉 = λk
k

(2π)2k|x− y|2k
δIJ . (6)

The two-point function just tells us that the dimension is k (from the |x − y|
power).

Three-point function How can we draw a planar diagram for 〈OI1OI2OI3〉?
The only option is

k3 k2

k1

We immediately see the triangle inequality ki ≤ kj + kk for {i, j, k} = {1, 2, 3}
has to be obeyed (otherwise there are no diagrams). Let Σ = k1 + k2 + k3 and
αi = Σ/2− ki. We find

〈OI1OI2OI3〉 planar= λΣ/2

N(2π)Σ
k1k2k3〈CI1CI2CI3〉

|x− y|2α3 |x− z|2α2 |y − z|2α1
(7)

where 〈CI1CI2CI3〉 are some combinatorical numbers.
Observations from 1998–2000:

• ∆(OI) = k, independent of the coupling constant; this is unsurprising since
these operators are half-BPS and their dimension is set by their R-charge;

• surprisingly, 〈OOO〉 has exactly the same λ dependence as given by
AdS/CFT for infinite λ (now known for finite N too);

Note that while each operator OI preserves half of the supersymmetry, in general
they preserve different halves of the supersymmetry.
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Higher correlators Let us label operators by their dimension ∆ = k (number
of fields used when constructing the operator).

Extremal correlators are those for which one of the ∆ is equal to the sum of
the others. For a three-point function this means ∆3 = ∆1 + ∆2, so all tree-level
contractions are from one of the operators to all others.

Then for extremal correlators ∆ = ∆1 + · · ·+ ∆N ,

〈
O∆1(x1) · · · O∆N (xN )O∆(y)

〉
= λ#A(∆, N)

N∏
i=1

1
|y − xi|2∆i

(8)

for some power # (sum of dimensions). The position-dependence is fixed and
the coupling dependence is trivial.

The best source of information on this is the TASI lectures by D’Hoker et al.
There it is explained how AdS/CFT relates this to Witten diagrams.

Question from the audience: the OPE of O∆i and O∆j is singular, so how
can adding a heavy operator in the Andromeda galaxy affect this?? Zohar’s
answer. The operator in the Andromeda galaxy is hungry and wants to have
all the lines. If even a single line goes between O∆i and O∆j then the resulting
operator (whose prefactor is a singular function of xi− xj) has zero overlap with
the heavy operator. Despite the distance, taking the correlator with a heavy
operator projects out all these singular terms.

1.2 Broad overview of what’s true in 4d N = 2 SCFT
We will define here chiral ring operators and define extremal correlators thereof.
The coordinate dependence will still be

∏N
i=1|y − xi|−2∆i . Unlike N = 4, there

is a non-trivial dependence on the coupling constant. It is exactly computable,
and non-holomorphic in τ and τ .

(Incidentally, there hasn’t been a lot of work on theories which are not
superconformal; the questions we may want to ask are a little bit different.)

1.2.1 Coordinate dependence

Let us first understand the coordinate dependence

〈
O∆1(x1) · · · O∆N (xN )O∆(y)

〉
= (· · ·)

N∏
i=1

1
|y − xi|2∆i

. (9)

Back to general CFT. A two-point function of primary operators goes like
〈O1O2〉 ∼ |x − y|−2∆, while a three-point function goes like 〈O1O2O3〉 ∼
|x− y|−(∆1+∆2−∆3)|x− z|−(∆1+∆3−∆2)|y− z|−(∆2+∆3−∆1). Something we learn
in 2d CFT is that the conformal group can be used to formally put an operator
at infinity. But we need to avoid making the formulas non-sensical. So an
operator at infinity is defined as O∆(∞) := limy→∞ y2∆O∆(y). Then the two
and three-point functions are

〈O1(0)O2(∞)〉 ∼ 1, 〈O1(x)O2(y)O3(∞)〉 ∼ |x− y|−(∆1+∆2−∆3). (10)
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All correlators behave nicely. Of course sending a point to infinity is a reversible
process.

Let’s apply this procedure to the extremal correlator. Putting y →∞ we get
no dependence on xi positions:〈

O∆1(x1) · · · O∆N (xN )O∆(∞)
〉

= (· · ·). (11)

This looks very similar to things happening in supersymmetric theories. However
a crucial difference is that the lack of position-dependence only happens once we
put a specific one of the operators at infinity. Since the result is independent of
distances we can just OPE these O∆i(xi) operators and keep only the regular
piece, until we only have a single operator Õ(0) left.

1.2.2 Review of 4d N = 2 SCFT

The supercharges are Qiα, Q
i

α̇, Siα and Siα̇ with α = 1, 2, α̇ = 1, 2 spinor indices,
and i = 1, 2 R-symmetry indices. The conformal group is SO(5, 1) and the
R-symmetry is su(2)× u(1).

Superconformal primaries are those annihilated by the supercharges S and
S. The quantum numbers of these operators are:

• ∆ conformal dimension;

• jL and jR spins under SU(2)× SU(2) space-time symmetries;

• S the SU(2) R-symmetry quantum number;

• R the U(1) R-symmetry charge.

Knowing this classification is important in the conformal bootstrap program.
There is a huge amount of work on special classes of these operators. The
superconformal index, the chiral ring, the chiral algebra, the Schur index, . . . all
of these are names for some classes of these operators.

Today we are interested in half-BPS operators. This means they are anni-
hilated by half of the Q and Q in addition to all of the S and S. That’s 12
supercharges.

Chiral operators We choose Q.
Chiral operators, also called chiral ring operators, also called Coulomb branch

operators, are those that obey [Qiα,O] = 0 for all α and i.
Very schematically, from the N = 2 superconformal algebra, (see appendix

of Minwalla et al on Superconformal Index)

{Q,S} = εε(∆ +RU(1)) + Lorentz +RSU(2) (12)

An operator annihilated by both Q and S must be such that all these charges
vanish. In particular, jr = 0 and S = 0 and ∆ = |R/2|. In all known Lagrangian
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constructions, jl = 0, but this is not a consequence of the algebra.1 Note the
absolute value. More precisely, ∆ = R/2 for chiral operators and ∆ = −R/2 for
anti-chiral operators. These operators saturate a unitarity bound

∆ ≥ |R|/2. (13)

The relation between R-charge and dimension implies that the OPE

OI(x)OJ(y) =
∑
K

CkIJ(x, y)Ok(x) (14)

where Ok is not necessarily chiral. The R-charge of Ok is RI + RJ , so its
dimension is at least (RI + RJ)/2 = ∆I + ∆J . Given the x − y dependence
of CkIJ we learn that the OPE has no singular term. In addition, the term of
order 1 has dimension exactly equal to half of its R-charge, in other words it is
a chiral ring operator. Altogether,

OI(x)OJ(y) =
∑
K

CKIJOK(z) + regular, non-chiral. (15)

Here the positions x, y, z are arbitrary and CKIJ is independent of them. The
residual terms go to zero as |x − y| → 0. We will show that these non-chiral
operators contribute nothing to extremal correlators. If we knew the CKIJ , which
dependend non-holomorphically on coupling constants, then we would know the
extremal correlator by repeatedly taking the OPE.

By the way, the OPE (15) defines a multiplication, hence a ring structure on
the set of chiral operators.

Special case R = 4. Then ∆ = 2 and we can add
∫

d4θO to the action (here
we are in N = 2 superspace) and this deformation is exactly marginal (we are
not going to prove it has no anomalous dimension). In particular, we will learn
in the next lectures that 〈OO†〉 is the Zamolodchikov metric in theory space.
It is easy to show that all exactly marginal deformations correspond to some
∆ = 2 chiral ring operator. It is reasonable to assume that all such deformations
can be seen (locally in the conformal manifold) as gYM and ϑ of some simple
gauge group.

In all Lagrangian SCFTs, Coulomb branch operators have no spin, and
the chiral ring is freely generated.2 A (false) conjecture is that this holds for
non-Lagrangian theories too. There are some non-Lagrangian constructions of
models where the chiral ring is not freely generated, but in all cases where the
construction is on solid ground, the same chiral ring can be obtained by gauging
a discrete symmetry in a theory where the chiral ring is freely generated.

1In Lagrangian theories one can show that this holds, but in non-Lagrangian theories it is
an open question to know whether there exists any spinning Coulomb branch operator. It is
reasonable to conjecture that this is universally true.

2A ring is freely generated if there is a set of generators (Ai)i∈I such that the ring consists
of all polynomials in the Ai, with no relations between them.
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Higgs branch sector Here the condition is

[Q1
α,H] = [Q1

α̇,H] = 0. (16)

(An imprecise terminology is “Schur sector”.) Then we find ∆ = 2S while
jl = jr = R = 0.

While the chiral ring coefficients had perturbative and non-perturbative
contributions to CKIJ , the corresponding CKIJ for the Higgs branch are tree-level
exact.3 This is therefore very boring for Lagrangian theories. In non-Lagrangian
theories this is still interesting and hard to compute.

... Typically an SCFT has coupling constants such as gYM and ϑ, but also a
space of vacua, namely different superselection sectors in infinite volume. For
instance in N = 4 we have a huge space of vacua R6/Γ. Among these vacua
there are some vacua where U(1)R is spontaneously broken, while there are some
where SU(2)R is spontaneously broken. These branches of vacua are essentially
orthogonal.

• The expectation value of Coulomb branch operators is a U(1) R-symmetry
order parameter parametrizing whether U(1) R-symmetry is broken.

• The expectation value of Higgs branch operators is a SU(2) R-symmetry
order parameter parametrizing whether SU(2) R-symmetry is broken.

It is not clear in full generality what the CKIJ mean geometrically.
Tomorrow we will compute the CKIJ of the chiral ring (Coulomb branch) and

extremal correlators using supersymmetric localization.
Question: why are vacua superselection sectors? Answer by example:

• in quantum mechanics with a double-well potential there is a single vacuum
ψ+ + ψ−, while the state ψ+ − ψ− has energy difference proportional to
the instanton action;

• in d > 2 QFT with a double-well potential there are two vacua, because
the tunneling rate has a factor of volume (in other words the instanton
action which controls the (log of the) tunneling rate is proportional to the
volume).

This is related to how there are no Goldstone boson in 2d. If the potential is
exactly flat, there is a complication due to strong correlations in 2d; the volume
factor in e−VolSQM can get erased.

3Intuitively, the reason is as follows: the coupling constant dependence comes from deforming
the theory by an exactly marginal operator, hence by a Coulomb branch operator. Then the
Higgs branch operators don’t talk to the Coulomb branch operators. Since the Yang–Mills
coupling (and other couplings) are coefficients of Coulomb branch deformations, the Higgs
branch correlators are independent of it.
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2 Lecture 2, July 26
Recall the half-BPS sectors
• Coulomb branch operators [Qiα,O] = 0 with ∆ = R/2 (the U(1) R-charge),
while (assuming the conjecture above) jl = jr = S = 0.

• Higgs branch operators [Qiα,O] = [Qiα,O] = 0 with ∆ = 2S (this is the
SU(2) R-symmetry isospin) and R = jl = jr = 0.

Since (gYM, θ) are parameters for a Coulomb branch operator, Higgs branch ring
data is perturbatively (tree-level?) exact.

Extremal correlators Extremal correlators are〈
O1(x1) . . .On(xn)O†(y)

〉
(17)

where the total R-charge must vanish. Given the relation of dimension and
R-charge for the chiral operators and the single antichiral operator O†, we must
take the latter to have

∆ =
n∑
i=1

∆i. (18)

We shall now prove that the coordinate-dependence is very simple and not
renormalized:〈

O1(x1) . . .On(xn)O†(y)
〉

= A
(
{gYM, θ}

) n∏
i=1
|y − xi|−2∆i . (19)

We will use QO = 0, QO† = 0, and ∂ ∼ {Q,Q}, and finally a trick: mapping
y → ∞ by conformal symmetry through O†(∞) = limy→∞ y2∆OO†(y). Then
we want to prove that 〈O1(x1) . . .On(xn)O†(∞)〉 is independent of the xi. Of
course that’s equivalent to the original statement, but it’s a bit nicer to work
with. We care about ∂/∂x1 acting on the correlator. This is equivalent to acting
with {Q,Q}. Now,

[{Q,Q},O1] = {Q, [Q,O1]}+ {Q, [Q,O1]} = {Q, [Q,O1]} (20)

by chirality. Then we can integrate by parts Q and note that it does not act on
any Oi:

∂

∂x1

〈
O1(x1) . . .On(xn)O†(∞)

〉
=
〈

[Q,O1](x1) . . .On(xn)[Q,O†](∞)
〉

(21)

Recall that [Q,O†](∞) is defined as the limit of y2∆O [Q,O†](y). The key is that
this is not the right power of y: the correlator at finite y behaves as〈

[Q,O1](x1) . . .On(xn)[Q,O†](y)
〉
∼ y−2(∆O+1/2) as y →∞ (22)

because [Q,O†] has dimension ∆O + 1/2 (the details of the other operators are
unimportant). Multiplying by y2∆O and sending y → ∞ gives a y−1 scaling,
which goes to zero. This concludes the proof.
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Exactly marginal operators Consider the special case n = 1 and ∆ = 2,
such that we are considering a two-point function of operators that can be used
to construct exactly marginal deformations of the Lagrangian. Now the prefactor
A has a physical meaning:〈

Oi(x)O†j(y)
〉

= Gij(gYM, θ)
1

|x− y|4
. (23)

Here Gij are (components of) the Zamolodchikov metric in theory space.
Don’t get confused: the Coulomb branch operators we consider here have

dimension 2 but the marginal operator actually added to the Lagrangian is∫
d4θO which has dimension 4 hence is marginal (and exactly marginal it turns

out).

2.1 Forget about susy
Suppose we have a CFT in dimension d and suppose it has real (Hermitian)
operators Oi whose conformal dimension is d. It is natural to deform the action
by

δS =
∑
i

λi
∫
Oi(x)ddx. (24)

Does the theory remain conformal.
Examples:

• 4-dimensional free-field theory
∫

(∂φ)2d4x. An interesting deformation is
to add λ

∫
φ4d4x. This does not remain a conformal field theory: the beta

function is non-zero and in fact the deformation is marginally irrelevant.
In this case we go back to the original free theory. No conformal manifold.

• 4d N = 4 super Yang–Mills has an exactly marginal deformation corre-
sponding to gYM and θ.

• 4d N = 2 super QCD with gauge group SU(N) and Nf = 2N fundamental
hypermultiplet. Again the exactly marginal deformation is gYM and θ.

• 4d N = 1 beta-deformation of 4d N = 4 super–Yang–Mills theory.

• (not good): 2d WZW model, actually the parameter k is discrete, not
continuous.

• (not good): Liouville, where we can change the linear dilaton coupling,
which is very strange because it changes the central charge.

• Ashkin–Teller model (has c = 1), consisting of a compact boson of radius R,
where the radius R is an exactly marginal deformation. This is equivalent
to a fermionic model with quartic fermion interaction (Thirring model).
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Let βi be the beta function of the coupling λi. Then

βi = 0λa + Ciabλ
aλb + Ciabcλ

aλbλc + · · · (25)

For the operator to be exactly marginal we need to have βi = 0 so 0 = Ciab =
Ciabc = · · · This gives infinitely many constraints on the CFT data at λ = 0. For
instance Ciab = 0 states

Oa(x)Ob(y) OPE 6 ⊃Oi(x). (26)

The next condition Ciabc = 0 states that a specific integral of a four-point function
must vanish, etc.

This is reviewed in recent work by Bashmakov et al, and by Connor Behan
et al. The hope would be to show that these constraints could only be satisfied
(so that there exists a conformal manifold) if we have supersymmetry (or are in
d = 2). By the way, we say “conformal manifold” but it could have singularities.

Assume we have a conformal manifold What structure does the conformal
manifold Mconformal have? Coordinates are coupling constants. Observation by
Zamolodchikov (well, this is a bit misattributed, he didn’t really discuss this
question but related questions): the two-point function

〈Oi(0)Oj(∞)〉λ = Gij(λ) (27)

defines a positive matrix G(λ) at each point λ ∈Mconformal.
Recall from differential geometry that the metric at a point does not make

sense on its own.

• One can choose an orthonormal basis for the Oi so that Gij = 0 at one
point.

• Then (harder) one can choose Riemann normal coordinates, such that
∂kGij = 0. This corresponds to a subtle choice of contact terms, which
sets Ciab = 0 in the notations above.

• The first invariant quantity is Rijkl, which is an integrated four-point func-
tion with appropriate antisymmetrizations. For instance in two dimensions,

Rijkl =
∫

d2η
〈
Oi(0)Oj(η)Ok(1)Ol(∞)

〉
log|η|2. (28)

2.2 Anomalies on the conformal manifold
Let us re-introduce the coordinates x and y. The two-point function is〈

Oi(x)Oj(y)
〉

= Gij(λ)
|x− y|2d

. (29)

Use ∫
eipxx−2dddx =

{
pd log(p2) if d is even;
pd if d is odd

(30)
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to switch to momentum space.
Consider d even, which is a more interesting case. Note that the log must

be there because in even dimensions pd is a polynomial so its Fourier transform
would be ultralocal �dδ(x). We learn that〈

Õi(p)Õj(−p)
〉

= Gij(λ)pd log
(
p2

∆2

)
. (31)

At first this looks like the scale ∆ violates conformal invariance. Under scaling we
get an extra contribution pd in addition to the usual conformal transformations.

This is very similar to the anomaly that gives rise to the central charges a
and c in 4d.

The mathematical way to handle this is to let couplings depend on space:
λi → λi(x). The partition funciton becomes a functional:

Z[λ(x)] =
∫
DX eSCFT+

∫
λi(x)Oi(x). (32)

Then under a Weyl transformation g → e±2σ(x)g (not sure about the sign) we
compute

δσ(x) logZ[λ, g] =
∫

ddxL
(
λi(x), gµν(x)

)
(33)

In 4d, we get

δσ(x) logZ[λ, g] = 1
192π2

∫
d4x
√
g δσ

[
Gij�̂λ

i�̂λj + · · ·
]

(34)

where �̂λI = �λI + ΓIJKλJλK is the Paneitz–Fradkin–Tseytlin operator. The
WZ consistency conditions imply that ΓIJK is the Levi–Civita connection of the
Zamolodchikov metric.

Supersymmetry Supersymmetry (4d N = 2) implies various restrictions on
the anomaly. A particularly interesting term that pops out is

δσ logZ ⊃ 1
2

∫
d4xK(λi, λi)�2(δσ). (35)

Here the λi are 4π
g2

YM
+ iθ

2π and appear in front of the
∫

d4θO complex operators

built from chiral ring operators, and λ
i are their complex conjugates. The

conformal manifold is automatically an even-dimensional manifold, and in fact
the metric is complex, namely only the Gij components corresponding to λi and
λj are non-zero. Moreover,

Gij = ∂i∂jK(λ, λ) (36)

Question: can the anomaly polynomial here be found by anomaly inflow?
Answer: people have not been successful in getting such conformal anomalies
with anomaly inflow.

Question: what geometric structures do conformal manifolds M have? An-
swer: without supersymmetry, M has a Riemannian structure (a metric).
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• In 4d N = 4: M is a Kähler manifold, which in known Lagrangian examples
(SYM) has constant curvature, essentially upper half plane mod SL(2,Z).

• In 4d N = 2: M is a Kähler manifold.

• In 4d N = 1: M is a Kähler manifold.

• In 3d N = 4: there are no exactly marginal deformations so M is a point.

• In 3d N = 2: M is a Kähler manifold.

• In 3d N = 1: M is just Riemannian, like in the absence of supersymmetry.

There are interesting questions about these spaces. For instance a conjecture
consistent with what we know is that the volume may be finite.

Question: don’t conformal anomalies break conformal symmetry. Answer:
there are two types of anomalies in physics.

• An ABJ anomaly implies an explicit violation of the symmetry. It is as
bad as breaking a symmetry by turning on a mass term etc. In 4d it is
tested by triangle diagrams with two dynamical fields and one background
one.

• A ’t Hooft anomaly has to do purely with background fields, and does not
point to any breaking of symmetry (in a trivial background). It has to
match between UV and IR for instance (while ABJ anomalies don’t need
to match since the symmetry is not existent at all). In 4d it is tested by
triangle diagrams with three background fields.

• Another interesting case in 4d is to have to background and one dynamical
fields.

2.3 Meaning of sphere partition function
The stereographic map from S4 to R4 involves a (finite) Weyl transformation,
which can be probed by integrating small δσ transformations. Integrating the
anomaly polynomial we find (the actual computation is quite messy and needs
all terms in the anomaly polynomial)

ZS4 = e
1

12K(λi,λ
i). (37)

This is the physical meaning of the four-sphere partition function. Therefore,
since the metric is a derivative of the Kähler potential,

Gij =
〈
Oi(0)O†

j
(∞)

〉
R4 = 16 ∂

∂λi
∂

∂λ
j

logZS4 = 1(
ZS4

)2 det
(

ZS4
∂
∂λiZS4

∂

∂λ
j
ZS4

∂
∂λi

∂

∂λ
j
ZS4

)
.

(38)
Question: K is not well-defined, it can be shifted K → K + F (λ) + F (λ)

so shouldn’t this mean that the four-sphere partition function is ambiguous?
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Answer: yes, Pestun’s S4 partition function was computed in one “choice of
Kähler frame”, physically meaning one choice of regularization scheme.

Question: is there a similar formula for other four-manifolds. Answer. As
a side-comment, for 2d N = (2, 2) theories, ZS2 = e−K exactly, which lets
you compute the Zamolodchikov metric etc. What about 4d N = 2 on S3 ×
S1? Speculation ZS3×S1 could be related to the exponential of a line-bundle
introduced by Neitzke. For 3d, ZS3 = e−F but F is independent of the coupling
constants; it is monotonic in RG flow.

An open question in 3d is to compute the Zamolodchikov metric. Nobody
knows.

Question: the sphere partition function can be split into conformal blocks
(hemisphere partition function), so you can cut and glue. Answer: there is a
paper by Bachas et al about the Calabi diastasis. The idea is that the hemisphere
partition function teaches us about the Calabi diastasis.

Next time we will consider SU(2) and SU(N).

3 Lecture 3, July 27
Yesterday we discussed the two half-BPS sectors of 4d N = 2 SCFTs:

• Higgs branch operators, whose structure constants are independent of gYM
and θ hence are boring for Lagrangian theories, while for non-Lagrangian
theories they can be studied using the chiral algebras discussed in Balt
van Rees’ class;

• Coulomb branch operators, whose structure constants depend non-trivially
(and non-holomorphically) on gYM and θ, so that they are intersting even
in Lagrangian theories; in non-Lagrangian theories it is not clear how to
start studying them but there has been some progress using bootstrap
(Hamburg group).

Yesterday we saw that ZS4 = eK namely the four-sphere partition function
captures the Kähler potential, hence the Zamolodchikov metric. Consider Oi
some chiral operators with ∆(Oi) = 2. Then what we are saying is〈

Oi(0)O†
j
(∞)

〉
= Gij(gYM, θ) = ∂i∂j logZS4(gYM, θ). (39)

3.1 SU(2) gauge theory
There are two 4d N = 2 SCFTs with gauge group SU(2):

• with an adjoint hypermultiplet we get 4d N = 4 SU(2) SYM;

• with four fundamental hypermultiplets it is called SQCD; this is a genuine
N = 2 theory.
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Exercise: φ2 := −4πiTr(ϕ2) is a chiral ring (Coulomb branch) operator,
where ϕ is the scalar in the 4d N = 2 vector multiplet. Note that Tr(ϕ) = 0 so
we have to take a square; the factor of −4πi is for later convenience. It turns
out that the chiral ring (in both SCFTs we study here) is freely generated by φ2,
so it is spanned as a vector space by

On = (φ2)n (40)

where ∆(On) = 2n. (Here, O0 = 1.) In fact, O1 is the exactly marginal operator:
the action has

τ

∫
O1d4θd4x+ c.c. (41)

with coupling constant τ = 4πi
g2

YM
+ θ

2π .
We chose to normalize the operators such that the chiral ring multiplication

is simple:
OnOm = On+m, (42)

but two-point functions〈
On(0)O†m(∞)

〉
= δmnG2n(τ, τ) (43)

are complicated. We could have normalized operators canonically to get rid of
the G2n factor, but this would complicate the multiplication. From the G2n we
can deduce all extremal correlators:

〈
On1(x1) · · · Onk

(xk)O†n1+···+nk
(y)
〉

= G2(n1+···+nk)(τ, τ)
k∏
i=1

1
|y − xi|4ni

. (44)

Since G2 is the Zamolodchikov metric on the space of theories, we learned
yesterday that

G2(τ, τ) = 16 1
(ZS4)2 det

(
ZS4 ∂τZS4

∂τZS4 ∂τ∂τZS4

)
= 16∂τ∂τ logZS4 . (45)

For 4d N = 4 SU(2) SYM,

ZS4 =
∫ +∞

−∞
da e−4π=(τ)a2

(2a)2, (46)

while for 4d N = 2 SU(2) with 4 fundamental hypermultiplets,

ZS4 =
∫ ∞
−∞

da e−4π=(τ)a2
(2a)2 H(2ia)H(−2ia)(

H(ia)H(−ia)
)4 ∣∣Zinstanton(ia, τ)

∣∣2. (47)

A word of warning: these partition functions are not quite invariant under
SL(2,Z) S-duality: instead it changes precisely by a Kähler transformation. In
fact, no one checked this explicitly for the SQCD case but it should be possible
to get it from the AGT corespondence. A (seemingly open) question is whether
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the Kähler transformations that come up in 4d N = 4 and in SQCD are the
same.

For 4d N = 4 SU(2) SYM we find exactly

G2 = 6g
2
YM
4π . (48)

This is saying that only tree-level diagrams contribute to the Zamolodchikov
metric.

For 4d N = 2 SU(2) with 4 fundamental hypermultiplets,

G2 = 6g
2
YM
4π − 135ζ(3)

2π2
1

(=τ)4 + 1575ζ(5)
4π3

1
(=τ)5 + · · ·︸ ︷︷ ︸

perturbative

+ cos θe−8π2/g2
(

6
(=τ)2 + 3

π

1
(=τ)3 + · · ·

)
+ · · ·

(49)

where we see a perturbative series, a one instanton contribution that comes
with a perturbative series, etc. Both SCFTs have a conformal manifold with
coordinate (gYM, θ) in the upper half plane modulo SL(2,Z). The two SCFTs
give rise to two different metrics on the same manifold. The 4d N = 4 theory
gives the standard metric with constant negative curvature on the Poincaré disk:

ds2 = 6
(=τ)2 dτdτ . (50)

The SQCD theory gives

ds2 = 6
(=τ)2 dτdτ + · · · (51)

This deformed metric shares many features with the Poincaré disk metric:

• the volume of a fundamental domain of the action of SL(2,Z) is finite;

• the weak coupling point is logarithmically far away.

In the AGT correspondence, we can think of SQCD as arising from twisted-
compactifying the 6d N = (2, 0) theory on a sphere with four punctures. Then
the metric we get now is an interesting metric on Teichmüller space, which is
different from the standard Weyl–Peterson metric. On the other hand 4d N = 4
comes in AGT from the torus with one puncture, and we would say that the
same Teichmüller space is equipped with the standard metric.

3.2 Relation to resurgence
Dyson argued that the coefficients of a perturbative series

a1λ+ a2λ
2 + · · ·+ e−1/λ(#λ+ #λ2 + · · · ) + · · · (52)
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should obey |an+1/an| ∼ n. We can check that this holds for the perturbative
series we find now.

Brodsky, Karliner, etc. proposed a more stringent criterion (which in 4d can
only be checked in the present situation of extremal correlators). Suppose we
have computed n loops of a perturbative series (n even). Then we can make a
(n/2, n/2) Padé approximation by fitting∑n/2−1

i=0 ciλ
i∑n/2−1

i=0 diλi
(53)

to the first n terms computed so far. This makes a prediction for an+1. We can
ask how well this works. The conjecture is that in any QFT,∣∣∣∣aPadé

n+1
an+1

− 1
∣∣∣∣ ≤ Ce−σn as n→∞, (54)

for some constants C and σ.
We can plot4

n

|aPadé/a− 1|

100

10−40

10−30

10−20

10−10

and the slope is aroud σ ' 0.7, which matches with QCD calculations suggesting
that many observables have σ ' log 2.

The series we get are Borel summables, namely the Borel transform has no
poles on the positive axis. In fact, the Borel transform only has poles on the
negative real axis, whose interpretation is not completely clear. These poles
should have to do with instantons that we need to add to repair the perturbative
series. This suggests that there could be some way to retrieve the Nekrasov
instanton contributions from the perturbative series, maybe some recursion
relations?

3.3 Some references
• arXiv:1405.7271 Derivation of Z = e−K from an approach well-suited to
supersymmetric localization.

4The figure in the present notes is built from fake data; for the real data, see the original
paper arXiv:1602.05971.
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• arXiv:1509.08511 Derivation of Z = e−K from the trace anomaly.

• arXiv:1602.05971 Extremal correlators.

• arXiv:1803.07366 and arXiv:1805.04202 and Donagi–Morrison on global
properties.

• arXiv:1603.06207 and subsequent papers on resurgence.

• arXiv:1710.07336 and arXiv:1804.01535 and arXiv:1803.00580 on
limits of heavy operators.

• arXiv:0910.4963 and arXiv:1409.4212 and arXiv:1409.4217 and arXiv:1508.03077
and arXiv:1602.05871 etc. on tt∗ geometry, Toda, integrability.

• arXiv:1712.02551 and arXiv:1712.01164 on the 2d story, there is prob-
ably a lot more to be explored there.

3.4 tt∗ geometry
Let M be the infinite matrix with components Mmn = 1

ZS4
∂nτ ∂

m
τ ZS4 , namely

M =

 1 ∂τZ/Z · · ·
∂τZ/Z ∂τ∂τZ/Z · · ·

...
...

. . .

 . (55)

Then it turns out that G2n =
〈
On(0)O†n(∞)

〉
is given by

G2n = (16)n Dn

Dn−1
, with Dn = det

2n×2n
(Mij)0≤i,j<2n. (56)

Nontrivial exercise: check that this is invariant under Z → eF+FZ.
The G2n obey recursion relations. This is true for more general 4d N = 2

theories, but we don’t know in general what the integrable system is. It is not
terribly hard to show that

∂τ∂τ logDn = Dn+1Dn−1

D2
n

− (n+ 1)D1. (57)

Now change variables to Dn = 16neqn−logZS4 . Then the differential equation
becomes

∂τ∂τqn = eqn+1−qn − eqn−qn−1 (58)

This is called the half-infinite Toda chain, and it is familiar from the integrability
literature. It basically describes a bunch of masses along springs. This Toda
equation lives on the space of chiral operators; it is totally different from the
one that lives on the Seiberg–Witten curve; it is totally different from the Toda
system that lives on the other side of the AGT correspondence.
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Given a boundary condition this system is exactly solvable. The typical
technique involves taking ratios of determinants. Unsurprisingly our result
takes the form of a ratio of determinants. In fact, whenever you see a ratio of
determinants you should think integrability.

Actually 4d N = 4 SU(2) SYM and 4d N = 2 SU(2) SQCD both obey the
same equations, but the initial conditions are different, trivial in the first case
but not the second.

SU(N) SQCD We now consider 4d N = 2 SU(N) theory with 2N hypermul-
tiplets in the fundamental representation. The chiral ring is generated by Tr(ϕ2),
Tr(ϕ3), . . . , Tr(ϕN ), where again ϕ is the scalar in the vector multiplet. Then
extremal correlators boil down to two-point functions〈(

Trϕ2 Trϕ3)(Trϕ2 Trϕ3)〉 (59)

and these are again expressed in a form that generalizes this ratio of determinants.
The operator Tr(ϕ2) has ∆ = 2 (exactly marginal) and its correlators obey a
generalization of the Toda chain found for SU(2). It is not clear how this
integrable system is called.

There is a problem: in the SU(2) case we needed to know ∂nτ ∂
m
τ Z, which

were just derivatives of ZS4 with respect to the gauge coupling. On the other
hand in SU(N) we need to access Tr(ϕk) for k > 2. This requires adding

λ

∫
d4θOn (60)

to the Lagrangian, at least infinitesimally, to get all orders in perturbation theory.
This is an irrelevant deformation. Then we want derivatives like

∂...ZS4

∂...λ∂...λ

∣∣∣∣
λ=0

. (61)

Unfortunately, the partition function has not been computed using localiza-
tion. More precisely it takes the form∫

da eλa
2n

Zstandard
perturbative(a)|Zinstanton(τ, λ, . . . )|2. (62)

Here the perturbative part is the same as the standard one (except for the
classical contribution λa2n), while the instanton partition function is affected.

Question by Maxim Zabzine: why is the instanton partition function affected?
Answer: [. . . ] for U(N) gauge groups, see Fucito–Morales, it’s known exactly.
The really tough thing is to extract the U(1) factor in a principled way.

17


	Lecture 1, July 25
	Aspects of zero-coupling 4d N=4 SYM
	Broad overview of what's true in 4d N=2 SCFT
	Coordinate dependence
	Review of 4d N=2 SCFT


	Lecture 2, July 26
	Forget about susy
	Anomalies on the conformal manifold
	Meaning of sphere partition function

	Lecture 3, July 27
	SU(2) gauge theory
	Relation to resurgence
	Some references
	t-tstar geometry


