
Index theorems and 5d localization
Lectures by Maxim Zabzine notes by Bruno Le Floch

July 23–27, 2018

Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
Mathematical aspects (elliptic, transverse elliptic operators) and 5d

gauge theories. These are lecture notes for the 2018 IHÉS summer school
on Supersymmetric localization and exact results.

1 Lecture 1, July 23
See Pestun https://arxiv.org/abs/1608.02954.

1.1 Equivariant cohomology
Consider a smooth manifold M with a u(1) action u ×M → M . We want to
talk about the cohomology of M/u(1), but of course that space may be singular.

We construct a supermanifold T [1]M , modeled on TM but with the Grass-
mann degree of tangent vectors being shifted by 1 (this is the meaning of [1]).
The bosonic coordinates are xµ (like those ofM) and Grassmann odd coordinates
are ψµ, that transform like dxµ, namely

ψ̃µ = ∂fµ

xν
ψν under x̃µ = fµ(x). (1)

Exercise: the measure is invariant under coordinate changes, namely
∫

dnxdnψ(· · ·) =∫
dnx̃dnψ̃(· · ·). Remember that the ψ anticommute.
(Hint: note that in Grassmann integrals

∫
dψ = 0 and

∫
dψψ = 1 so under a

change of variables ψ̃ = aψ, the relation
∫

dψ̃ψ̃ =
∫

dψψ forces dψ̃ = 1
adψ, the

inverse transformation compared to bosonic variables.)
Note that smooth functions on T [1]M can be expanded as

α(x, ψ) =
∑
k

1
k!αµ1···µkψ

µ1 · · ·ψµk (2)

into forms so C∞(T [1]M) = Ω•(M).
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Using the u(1) action we can define

δxµ = ψµ, δψµ = V µ(x) (3)

where V generates the action. This is a kind of supersymmetry. Acting on a
polyform (a function on T [1]M) we find

δα(x, ψ) =
∑
k

(
1
k!∂ραµ1···µkψ

ρψµ1 · · ·ψµk + 1
k!αµ1···µkV

µ1 · · ·ψµk
)

(4)

so δ acts on polyforms as dV = d + iV . Last week we checked that d2
V = LV .

In Francesco Benini’s class we had the opposite sign in dV .
Since d and iV change degrees in different ways, it is useful to introduce a

formal parameter ξ of degree 2 and use d + ξiV . This now acts with degree 1 on
Ω•(M)[ξ] (polynomials in ξ) or Ω•(M)[[ξ]] (formal series in ξ).

The Cartan model of equivariant cohomology consists of the cohomology of
the restriction of dV to u(1)-invariant forms

Ω•inv(M)[ξ] = {LV α(ξ) = 0}. (5)

(We define in the obvious way equivariantly closed forms and equivariantly exact
forms.) Then H•u(1)(M) = H•(M/u(1)) if the latter exists.

While ξ is important to get the complete grading of the cohomology, we will
work as physicists and just set ξ = 1.

1.2 Atiyah–Bott formula
Our goal is to compute ∫

dnxdnψα(x, ψ) = Z[0] (6)

for an equivariantly closed polyform α. Then we note that for any W with
δ2W = 0,

Z[t] =
∫

dnxdnψ α(x, ψ)e−tδW (x,ψ) (7)

is independent of t. Then to compute the integral we shall send t→∞.
Consider W = vµgµνψ

ν . Exercise: δ2W = 0 ⇔ LV g = 0, namely V is a
Killing vector.

Let us now assume we have a metric g that is u(1)-invariant (if our u(1)
action is a U(1) action then averaging an arbitrary metric works). Then compute

δW = |V |2 + ψµψν∂ν(gµρV ρ). (8)

Then we want to compute

lim
t→∞

∫
dnxdnψ α(x, ψ)e−t|V |

2−tψµψρ(dv)µρ . (9)
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Any point with |V |2 > 0 is exponentially suppressed so only fixed points (|V |2 =
0) contribute.

We look at a fixed point V (P ) = 0 and choose coordinates with P at zero.
Expand

δW = Hµνdxµdxν +O(x3) + Sµνψ
µψν +O(ψ2x) +O(ψ4). (10)

Rescale x̃ =
√
tx and ψ̃ =

√
tψ. This introduces no Jacobian factor (because the

measure on T [1]M is invariant under coordinate changes, see an exercise above).
Then

Z[0] = lim
t→∞

∫
dnx̃dnψ̃ α

(
x̃√
t
,
ψ̃√
t

)
e−Hµν x̃

µx̃ν−Sµν ψ̃µψ̃ν−O(1/
√
t) (11)

= α0(0)
∫

dnx̃dnψ̃e−Hµν x̃
µx̃ν−Sµν ψ̃µψ̃ν ∼ α0(0) Pf(S)√

detH
(12)

up to some factors of π, where the Pfaffian of an antisymmetric matrix S
is essentially Pf(S) =

√
detS. The last expression is only defined if Hµν is

non-singular (no quartic point, no manifold of fixed points).
Recall the supersymmetry δxµ = ψµ and δψµ = V µ(x). We can linearize it

to δlx̃µ = ψ̃µ and δψ̃µ = ∂ρV
µ(0)x̃ρ. Then

−Hµν x̃
µx̃ν − Sµνψ̃µψ̃ν = −(δW )2 (13)

where the subscript means we only keep quadratic terms. Then

δl(δW )2 = 0 (14)

implies Hµν = ∂µV
ρ(0)Sρν . We deduce the simplification

α0(0) Pf(S)√
detH

= α0(0) 1√
det ∂µV ρ(0)

(15)

Theorem 1 (Atiyah–Bott formula). Given a U(1) action with no isolated fixed
points, for any equivariantly closed form α,∫

dnxdnψ α(x, ψ) =
∑

fixed points x

πdimM/2α0(x)√
det(∂µV ρ(x))

. (16)

Always two sets of calculations: either take quadratic piece and compute
Gaussian integrals, or your term has more symmetries and we have use the
simplifications giving just the determinant in the denominator.

There is a more general version of Atiyah–Bott when the fixed points are not
isolated: ∫

M

α =
∫
Mu(1)

α|M
e(NMu(1))

(17)

Exercise (hard): understand this very carefully (e.g., using Riemann normal
coordinates). You have to split coordinates along the fixed locus and transverse
to the locus, take curvature into account etc.
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1.3 Bundles
Consider now a vector bundle E on M . Define E[1] to be the supermanifold
whose coordinates χa along the fiber (expressed in a basis of sections of E) are
Grassmann odd, and whose coordinates xµ along M are even.

Then we consider the vector bundle T [1]E[1] over the manifold E[1]. It has
coordinates (xµ, ψµ, χa, Ha), where ψµ transforms as dxµ and Ha transforms as
dχa, where d is the exterior derivative on the supermanifold E[1]. Here xµ and
Ha are even and ψµ and χa are even.

A vector bundle over a vector bundle is not a vector bundle!
Consider a change of coordinates χ̃a = gab(x)χb on the fibers of E[1]. Then

H̃a = dχ̃a = gab(x)dχb + ∂ρ(gab)dxρχb = gab(x)Hb + ∂ρ(gab)dxρχb. (18)

There is an extra term compared to how a section (such as χa) would transform.
For instance HahabH

b is BAD.
Now consider a u(1)-equivariant bundle on M , namely we have an action of

u(1) on E that acts compatibly with the action u(1)×M →M . Then

δxµ = ψµ, δψµ = vµ(x), δχa = Ha, δHa = LV χa (19)

following the previous definitions. It is sometimes convenient to change H (in a
non-canonical way) to get a covariantized version

δ∇χ
a = Ha −Aabµψµχb, δ∇H

a = LV χa + extra terms. (20)

This is useful because H can be made to transform as a section.
We can do all of Atiyah–Bott.
The relevant thing here is the Mathai–Quillen formalism. There are different

ways of expressing it: a non-equivariant version, an equivariant version, and a
version with P × V/G that should be used to deal with gauge theories properly
(see Atiyah–Jeffrey).

1.4 Atiyah–Bott with bundles
Let us see some aspects of Atiyah–Bott.

We consider W such that

δW = δ
(
χahab(Hb − Sb(x))

)
+ δ(ψµgµνV ν). (21)

Here hab is a metric on E, gµν is a metric onM , s is a section on E, and δ2W = 0
and LV g = 0 and s is a u(1)-equivariant section. For later purposes we call D
the matrix with components ∂ρsb at the fixed point.

Linearize this near a fixed point. First we linearize the supersymmetry
transformations to1

δX = ψ, δψ = R0X, δχ = H, δH = R1χ (22)
1It may be more covariant to redefine H such that δχ = H − iDX and δH = R1χ+ iDψ?
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where R0 and R1 are linear operators. Then we write W itself:

W = 〈ψ,R0X〉+ 〈χ,H − iDX〉. (23)

Exercise: check that δ2W = 0 using the nice property that R1D = DR0.

0 E0 E−1 0

0 E0 E−1 0

−iD

iD

R0 R1

X χ

ψ H (24)

We can work out that R0 and R1 are antiHermitian like LV .
Then compute (recall that Grassmann-odd quantities, including δ, pick up

signs when we exchange them; this shows up in the Leibniz rule)

δW = 〈R0X,R0X〉 − 〈ψ,R0ψ〉+ 〈H − iDX,H〉 − 〈χ,R1χ+ iDψ〉 (25)

and integrate H to get

δW |H integrated = 〈X, (−R2
0 + 1

4D
†D)X〉︸ ︷︷ ︸

analogue of Hµνxµxν

−〈ψ,R0ψ〉−〈χ,R1χ〉−〈χ,
i

2Dψ〉+〈ψ,
i

2D
†χ〉.

(26)
The last four terms are the analogue of Sµνψµψν . We get

Z1-loop ∼
det1/2

(
R0

i
2D
†

− i
2D R1

)
det1/2(−R2

0 + i
4D
†D)

. (27)

Note that the formula only makes sense if the denominator has no kernel (or if
the numerator has corresponding zero modes), so −R2

0 + i
4D
†D needs to be a

second order elliptic operator. For the numerator we compute(
R0

i
2D
†

− i
2D R1

)(
R0

i
2D
†

− i
2D R1

)†
=
(
−R2

0 + 1
4D
†D i

2 (R0D
† −D†R1)

i
2 (DR0 −R1D) −R2

i + 1
4DD

†

)
.

(28)
The off-diagonal blocks vanish and we get partial cancellation:

Z1-loop ∼
det1/4(−R2

1 + 1
4DD

†)
det1/4(−R2

0 + 1
4D
†D)

. (29)

This is the analogue of
√

detS/
√

detH.
Outside the kernels of DD† and D†D there are huge cancellations. The

kernel contributes

Z1-loop ∼
det1/4

DD†
(−R2

1)
det1/4

D†D
(−R2

0)
∼ det1/2R1

det1/2R0
(30)

(we ignore phases). This final formula is an analogue of 1/
√

det ∂v(0).
Next time we will see elliptic and transversely elliptic operators.
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2 Lecture 2, July 24
In infinite-dimensional settings, R0, R1, D are differential operators.

2.1 Elliptic operators
The symbol σ(D) of an operator D with

Du =
∑
|α|≤m

aα(x)∂αu =
∑
|α|≤m

aα(x)∂α1
1 · · · ∂αnn u (31)

is defined in terms of the highest-order part (|α| = m) as

σ(D) =
∑
|α|=m

aα(x)ξα =
∑
|α|=m

aα(x)ξα1
1 · · · ξαnn ∈ C∞(M)[ξ1, . . . , ξn]. (32)

The operator is called elliptic if the symbol is non-degenerate away from ξ = 0.
Example: the symbol of the Laplacian is σ(∆) =

∑N
i=1 ξ

2
i so this operator is

elliptic.
Example: the operator ∆p = dd† + d†d on p-forms is elliptic.
Exercise: the Dirac operator is /D elliptic.
Definition: D is a Fredholm operator if both kerD and cokerD are finite-

dimensional.
Theorem: on a compact manifold M , any elliptic operator D is Fredholm.
Consider now the action for a scalar field

S =
∫
M

dφ ∧ ?dφ = 〈φ,∆φ〉. (33)

Then the Gaussian integral gives us 1/
√

det ∆, so this operator has better have
no kernel or cokernel, or at least a finite-dimensional one. This is guaranteed by
ellipticity.

For the gauge field,∫
F ∧ ?F =

∫
dA ∧ ?dA = 〈A,d†dA〉 (34)

is not elliptic. This is not surprising because of gauge-invariance. After gauge-
fixing though the operator is elliptic.∫

F ∧ ?F + d†A ∧ ?d†A =
∫

dA ∧ ?dA = 〈A,d†dA〉 (35)

2.2 Transversally elliptic operators
Example: Consider the elliptic operator ∂ on S2.
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Lift the problem to S1×S2 with coordinates (t, z, z̄). (The Laplace operator is
∆ = −∂2

t +∂z∂z̄.) A horizontal form is a form that has no component in the t di-
rection. We denote these by Ωp,qH where p, q are the holomorphic/antiholomorphic
grading. Then the holomorphic exterior derivative2 maps ∂H : Ωp,qH → Ωp+1,q

H .
This has no way of being elliptic because the t-dependence is not controlled

at all. On the other hand we can expand in Fourier modes Ltωn = inωn. Then
∂ : (Ω0,0

H )n → (Ω1,0
H )n and we get an elliptic operator for each n. The original

operator ∂H is then called transversally elliptic.
Example: S3 embedded as |z1|2 + |z2|2 = 1 in C2. The Hopf fibration is an

S1 fibration of S3 with base S2. This defines v and κ with ivκ = 1 and ivdκ = 0.
Then forms can be decomposed into vertical and horizontal forms:{

Ω = ΩV ⊕ ΩH
ω 7→ (κ ∧ ivω, ω − κ ∧ ivω).

(36)

Now on to the general definition. Consider a manifold with an action of G,
then

T ∗GM =
{
ξ ∈ T ∗M, 〈ξ, v〉 = 0∀v associated to the action of G

}
. (37)

Then a differential operator D is transversally elliptic if for each ξ ∈ T ∗GM , σ(D)
is invertible.

Typically, when writing ∆ = −R2
0 +DD† with ∆ a second-order elliptic oper-

ator and R0 roughly a Lie derivative, the residual operator DD† is transversely
elliptic.

Typically dim(kerD) =∞ but the space kerD decomposes into representa-
tions of the symmetry G and the pieces are finite-dimensional. (Sometimes this
is also useful in non-compact spaces because elliptic does not imply Fredholm.)

Example: on C, ∂ is elliptic but not Fredholm since {ker ∂} = Span{1, z, z2, . . . }.
However, using the rotation action of U(1) on C we find that the index

ind ∂ = 1 + t+ t2 + · · · =
∞∑
k=0

tk = 1
1− t . (38)

2.3 Serious examples
2.3.1 Two dimensions version 1

We consider maps S2 → Cn (chiral fields).
Then

δXµ = ψµ, δψµ = 0, δχiz̄ = Hi
z̄ − ∂Xi, δHi

z̄ = i∂ψi. (39)

Now R0 = 0 and R1 = 0. Here, χiz̄ ∈ Ω(0,1)(S2, X∗(T 1,0Cn)
)
to be pedantic.

2The exterior derivative splits as d = dV +dH , then dH = ∂H +∂H as in any almost-complex
manifold.
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In our earlier formalism M = Maps(S2 → Cn) and we are working with
T [1]M .

We have holomorphic map that is isolated. ∂ is elliptic.

δW = δ
(
χiz̄gij̄(H j̄

z − ∂X j̄)
)

= ∂Xigij̄∂X
j̄ + χizgij̄∂zψ

j̄ . (40)

Fixed points ∂Xi = 0 We find determinants det1/2(∂∂)/ det1/2(∂∂) = 1. Study-
ing these maps gives rise to Gromov–Witten invariants.

2.3.2 Two dimensions version 2 (equivariant)

Using D = ∂ and R0 = Lv on Ω0,0 and R1 = Lv on Ω(1,0) (or Ω(0,1)). (Impor-
tantly D and R commute.) Then

δXµ = ψµ, δψµ = LvXµ, δχiz̄ = Hi
z̄ − ∂Xi, δHi

z̄ = Lvχiz̄ + ∂ψi.
(41)

Then δ2 = Lv. We compute

δW = δ
(
ψµgµνLvXν + χiz̄gij̄(H j̄

z − ∂X j̄)
)

(42)

Now we are working with −L2
v + ∂∂. The determinant is non-trivial

detΩ(1,0)(T (0,1))(Lv)

det1/2
Ω(0,0)(Lv)

. (43)

Now this is a non-trivial calculation.

2.3.3 Three-dimensions

We take the U(1) translation along the Hopf fiber of S3, and we decompose into
vertical and horizontal forms and introduce Ωp,qH and ∂H as before.

δXµ = ψµ, δψµ = LvXµ, δχiz̄ = Hi
z̄ − ∂HXi, δHi

z̄ = Lvχiz̄ + ∂Hψ
i.

(44)
Now χiz̄, H

i
z̄ ∈ Ω0,1

H

(
X∗(T 1,0M)

)
. We write

δW = δ
(
ψµgµνLvXν + χiz̄gij̄(H j̄

z − ∂X j̄). (45)

Then we see in the first term the operator −L2
v + ∂H∂H appear. The operator

∂H∂H is transversely elliptic. The determinant is

detΩ(1,0)(T (0,1))(Lv)
detΩ(0,0)(Lv)

(46)

In all three situations we just saw, the operator −R2
0 +D†D has to be elliptic.
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2.4 Index theorems
(Index theorems and some examples on CP2 and CP3.)

Take a compactM and elliptic differential operator D (D is Fredholm). Then
we define the analytical index3

indD = dim kerD − dim cokerD ∈ Z. (47)

Computing it analytically is tough, but there are ways to compute it using
topology. A slight generalization of this index is when we have a complex instead
of just a single operator:

· · · → Ωp d−→ Ωp+1 d−→ Ωp+1 d−→ · · · (48)

with d2 = 0 then we define the index as an alternating sum. For instance for
the Dolbeault operator ∂ twisted by a vector bundle E (we mean that we add a
connection term),

ind(∂,E) =
∑
k

(−1)k dimHk(M,E). (49)

3 Lecture 3, July 25
Theorem 2 (Atiyah–Singer index theorem). The index can be computed as an
integral of characteristic classes:

ind(∂,E) = 1
(−2πi)n

∫
M

td(T 1,0
M ) ch(E). (50)

There are many variants of this index theorem.
Note that the characteristic classes can be written as invariant polynomials

in field strengths, but the full integral is an integer independent of the choice
of connection on the bundle. In fact, it is a priori surprising that the integral
gives an integer. In a sense, the Atiyah–Singer theorem is a generalization of the
Gauss–Bonnet theorem.

Consider an element p ∈ R[g]G namely a G-invariant polynomial. Then
choose a connection and let F be its field strength. Then p(F ) ∈ H•(M,R) is
independent of the choice of connection.

Elliptic complex We have seen the notion of elliptic operator D : E → F
mapping sections to sections. Now we can define an elliptic complex as

0→ E1
D1−−→ E2

D2−−→ · · · Dn−1−−−→ En → 0 (51)

such that at the level of the symbols the complex is exact, namely σ(Di+1)σ(Di) =
0 for all i. The usual case is retrieved by looking at the complex

0→ E → F → 0. (52)
3Note that dim cokerD = dim kerD†.
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Indeed, such a complex is exact if and only if the map in the middle is invertible.
Example: we saw the elliptic PDE F+ = 0 and d†A = 0. A similar problem

is to show that the following complex is elliptic

0→ Ω0(M4) d−→ Ω1(M4) d+

−−→ Ω2+(M4)→ 0 (53)

where d+ = 1
2 (1 + ?)d.

3.1 Equivariant version of index theorem
Consider a G-equivariant bundle on a manifold M with G action. Consider a
G-equivariant connection DA,G = DA + εaiva and

FA,G = D2
A,G − εaLva . (54)

This is a 0-form plus a 2-form.4 Then for p any invariant polynomial, p(FA,G) ∈
H•G(M) is an equivariantly closed form. Then the integral can be computed
using the Atiyah–Bott localization theorem∫

M

p(FA,G) =
∑

fixed points

p0(FA,G)√
· · ·

. (55)

The big difference compared to the non-equivariant setting is that now we know
how to compute the integral coming out of the Atiyah–Singer theorem.

ind(∂,E)(eϕaT
a

) = 1
(2πi)k

∫
tdG(TM ) chG(E) (56)

=
∑

fixed points x

TrEx(g)
detT 1,0

x
(1− g−1) (57)

where Ex and T 1,0
x are fibers at x. The end slogan is: when we want to compute

the index of some G-equivariant differential operator, we only need to find fixed
points of the G action and do a linear algebra problem near that point.

Example: CP1 = S2 Define CP1 =
{

(z1, z2) ∼ (λz1, λz2) | λ ∈ C∗ = C \ {0}
}
.

Cover it by

• U1 = {z1 6= 0} with coordinate ξ = z2/z1;

• U2 = {z2 6= 0} with coordinate λ = z1/z2.

Of course ξ = 1/λ on the overlap. The U(1) action on CP1 is given by ξ → tξ
and λ→ t−1λ for t ∈ U(1) =

{
|t| = 1 | t ∈ C

}
.

4Side-note: in localization in any dimension we find a BPS locus with 0 = ivF + dAϕ,
namely F + ϕ is equivariantly-closed.
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Now consider E = Ω0,0(CP1) and F = Ω0,1(CP1) and ∂ : E → F . Let us try
to see slowly how to apply the index theorem. First check

ξ → t−1ξ, dξ → t−1dξ, dξ → tdξ, (58)
λ→ tλ, dλ→ tdλ, dλ→ t−1dλ. (59)

The index theorem (57) states

ind ∂ =
∑

fixed points x

TrEx t− TrFx t
detTx(1− ρ(t)) (60)

= 1− t−1

(1− t)(1− t−1) + 1− t
(1− t)(1− t−1) = 1. (61)

Here Ex and Fx are fibers of the bundles defined above, while Tx is the tangent
space of M at x, while ρ(t) is the representation in which t acts on the bundle.

Each of the two terms comes from one fixed point. Each of these is equal
to the index we saw on C yesterday, namely 1 + t + · · · = 1/(1 − t), and the
analogue with t→ t−1.

Example: O(n) bundle on CP1 The total space of the line bundle is defined
by identifying points of

(
C2 \ {(0, 0)}

)
× C as (z1, z2, z3) ∼ (λz1, λz2, λ

nz3).
Again we have to open sets U1 and U2 with coordinate ξ1 and λ1 on the base of
the line bundle, and with coordinates

ξ2 = z3

zn1
and λ2 = z3

zn2
(62)

on the fibers, respectively. On the overlap,

ξ1 = 1
λ1
, and ξ2 = λ2

λn1
. (63)

Consider the U(1) action defined by ξ1 → tξ1 and ξ2 → ξ2, which implies
λ1 → t−1λ1 and λ2 → t−nλ2.

Then consider E = Ω0,0 ⊗O(n) and F = Ω0,1 ⊗O(n) and

∂ : E → F. (64)

Then the equivariant index theorem implies

ind ∂ = 1− t−1

(1− t)(1− t−1) + t−n − t1−n

(1− t)(1− t−1) = 1− n. (65)

Example: S3 Consider |z1|2 + |z2|2 = 1 in C2. Consider the T 2 action
z1 → eiαz1 and z2 → eiβz2. Consider the diagonal U(1) action U(1)× S3 → S3.
Orbits define the Hopf fibration U(1)→ S3 → S2.
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There are nice coordinates

z1 = eiθ√
1 + ξξ

; z2 = eiθξ√
1 + ξξ

(66)

mapping to C×S1. Exercise: find another C×S1 coordinate patch with λ = 1/ξ
and some θ̃ = (?).

Given a horizontal form on S1×M we can do a Fourier expansion: ΩpH(S1×
S2) = ⊕nΩpH,n(S2). Similarly, when you have a horizontal form in ΩpH(S3) you
can Fourier expand it in one of the C × S1 coordinate patches and (exercise)
doing carefully the change of patch we get

ΩpH(S3) = ⊕nΩpH(S2,O(n)). (67)

Then we will use the index result (65) above to compute one-loop determinants
on S3.

Question from the audience: will we compute the index on S3, what will this
be used for?

Answer: remember we had detkerD R1/ detkerD† R0, so we will work out how
the Lie derivative gets expanded into modes through (67), then find that the
ratio of determinants includes an exponent equal to the index 1− n computed
above.

3.2 Chern–Simons, unlike Witten did
The goal is to compute the S3 partition function. All fields are Lie-algebra
valued, we’ll ignore this in the notations.

Consider a gauge bundle P → S3; the Chern–Simons action can be written

SCS(A) = k

4π

∫
Tr
(
AdA+ 2

3A
3
)

(68)

for A in the space A of connections on the gauge bundle. We have a U(1)
symmetry on S3. Then in analogy to δxµ = ψµ, δψµ = φavµa (x), δφa = 0, we
have

δA = Ψ, δΨ = LvA+ dAΦ, δΦ = 0 (69)

where ψ is a Grassmann-odd one-form. A variant, using the field strength F is

δA = Ψ, δΨ = ivF + idAσ, iδσ = ivΨ. (70)

The map back is Φ = iσ − ivA, and σ ∈ Ω0 is a (Lie algebra valued) zero-form.
Note that (A,Ψ) lives in T [1]A, on which there is a canonically defined

measure (important for supersymmetric localization, as stressed earlier).
Supersymmetric Chern–Simons is

SSCS = SCS(A− iκσ)− k

4π

∫
κ ∧ ψ ∧ ψ (71)
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and is invariant under δ. Exercise: show this using that κ = g(v, ) ∈ Ω1(S3)
obeys ivκ = 1 and ivdκ = 0.

We need more fields to ensure that the operators are transversally elliptic
where appropriate. Then we add an odd zero-form χ and an even zero-form H
and write

δA = Ψ, δΨ = ivF+idAσ, δσ = −iivΨ, δχ = H, δH = LAv χ−i[σ, χ]
(72)

with
LAv = dAiv + ivdA = Lv + [ivA, ]. (73)

Incidentally this is a 3d N = 2 vector multiplet; counting odd components
we see enough to build a 4d N = 1 Dirac spinor, consistent with 3d N = 2
supersymmetry.

We compute

δW = δ
(

Ψ ∧ ?δΨ + χ ∧ ?(H − FH)
)

= F ∧ ?F + dAσ ∧ ?dAσ + · · · (74)

Recall ivκ = 1 and the vertical/horizontal forms Ω• = Ω•V ⊕ Ω•H where the
first factor is obtained by κ ∧ iv. In particular, Ω2

V and Ω2
H have ranks 2 and 1

respectively.
Exercise: write the fixed-point equations and find F = 0 and σ constant.

Then using our supersymmetric localization machinery, get an incomplete result∫
dσe−# Tr(σ2)

√
detΩ0(S3)(Lv + adσ)√
detΩ1(S3)(Lv + adσ)

. (75)

We forgot to gauge fix! We need to add c, c, b. This gives an extra determinant∫
dσe−# Tr(σ2)

√
detΩ0(S3)(Lv + adσ) detΩ0(S3)(Lv + adσ)√

detΩ1(S3)(Lv + adσ)
. (76)

Since we know a lot about the harmonics we can compute these determinants
very explicitly. But instead we can use the identity we saw in the first lecture,

√
detS√
detH

= 1√
det ∂v

. (77)

We can decompose one-forms to

Ω1(S3) = Ω1
V + Ω1,0

H + Ω0,1
H . (78)

Then ΩV is basically zero-forms, and Ω1,0
H and Ω0,1

H are the same up to the phase.
Ignoring the phase we find a cancellation:∫

dσe−# Tr(σ2) detΩ0(Lv + adσ)
detΩ1,0

H
(Lv + adσ) . (79)
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Next we shall use that ∂H is transversally elliptic, and decompose into modes
then uses Lvωn = 2πinωn with ωn ∈ Ω•H(S2,O(n)). Then we need to compute
the mismatch between kernel and cokernel and the one-loop determinant is∏

n

(2πin+ adσ)n−1 (80)

where the n− 1 comes from the index theorem we worked with earlier.

4 Lecture 4: Chern–Simons theory
The reference is Källén in 2012.

Ω0 Ω1 Ω2
H Ω0

[c] [A] [χ]⊗ [c]

[σ] [ψ] [H]⊗ [b]
R ' Lv + adσ

D (81)
The problem with [c], [A], [χ] is a transversally elliptic problem.

0 E0 E1 E2 0

0 F0 F1 F2 0
R

D (82)

Of course all of this is made less clear by the supersymmetric formulation.
The correct way to deal with all of this is to consider the spaceA of connections

on some bundle, etc, and to take into account constant gauge transformations.
The BPS equations are F = 0 and σ constant. The end result is

ZS3 =
∫
g

dσ e−# Trσ2
sdetΩ0,0

H
(S3,g)

(
Lv+adσ

)
=
∫
t

dσ e−# Tr(σ2)
∏

root β 6=0
sin
(
i〈β, σ〉).

(83)
In even dimensions the problem is elliptic and lifting it one dimension up

gives a transversally elliptic problem.
2d 3d 4d 5d 6d 7d
N = 2 N = 2 N = 2 N = 1
F = 0 FH = 0 F+ = 0 F+

H = 0

4.1 Contact geometry
Original idea from 1997 (B., Losev, Nekrasov). The toy model for our situation
is as follows. Given a M4 with the equation F+ = 0 on it, we can consider
S1 ×M4 with v = ∂t and the equations i∂tF = 0 and F+

H = 0.

14



Crash course on contact geometry A 2n− 1 dimensional manifold M is
a contact manifold if there exists a one-form κ such that κ ∧ (dκ)n−1 is nonzero.
Then there exists a unique Reeb vector field v (also denoted R) such that ivκ = 1
and ivdκ = 0. There also exists some metric g such that g(v, ) = κ. [Then on
the contact plane (orthogonal to v) such that dκ is a symplectic form? and there
exists an almost complex structure on that plane?]

Every orientable 3d manifold is a contact manifold. In 5d most examples are
contact manifolds.

Given a contact structure we can split forms into vertical and horizontal,
with ΩpV obtained by projecting using κ ∧ iv and ΩpH using 1− κ ∧ iv.

Exercise: the two spaces are orthogonal. (Hint: iv? ∼ ?(κ∧ ).)
In 5d we can split

Ω2(M5) = Ω2
V + Ω2

H = Ω2
V + Ω2+

H + Ω2−
H . (84)

Exercise: show that these spaces are orthogonal (the projectors are 1
2 (1 + iV ?)

and 1
2 (1− iV ?)). The problem we are interested in is not at all elliptic because

there are not the right number of equations (but it can be embedded in an
elliptic problem):

F+
H = 0 and FV = 0 ⇐⇒ ?F = −κ ∧ F (contact instanton). (85)

The choice of sign in this last equation is important; supersymmetry chooses
that sign; with that sign the Yang–Mills equation is automatically satisfied.

Symplectization The cone M2n−1 × R+ where we denote the coordinate on
R+ as r is the symplectization. The symplectic form used is ω = d(r2k); the
metric is gcone = dr2 + r2gM2n−1 .

• If the cone is Kähler then M2n−1 is Sasaki.

• If the cone is Calabi–Yau then M2n−1 is Sasaki–Einstein.

Of course these also have intrinsic definitions. Killing spinors on the base of the
cone is equivalent to covariantly constant spinors on the cone. On Calabi–Yau
manifolds there are such covariantly constant spinors, so all SYM is defined on
all Sasaki–Einstein manifolds. Thus we have millions of (toric) examples.

Example: the cone over S5 is C3; there are many covariantly constant spinors.
Example: the conifold C4//(1, 1,−1,−1) is a cone with base called T 1,1,

topologically S2 × S3.
Example: Y p,q (again topologically S2 × S3) is the base of C4//(p − q, p +

q,−p,−p) for coprime p, q > 0.

Round sphere Consider S5 : {|z1|2 + |z2|2 + |z3|2 = 1} and the T 3 action
zi → eiαizi. Denote ei the action on zi.

• v = e1 + e2 + e3 gives the Hopf fibration. Exercise: write κ.
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• For generic ωi ∈ R+ choose v = ω1e1 + ω2e2 + ω3e3. Exercise: compute κ.
We can picture S5 as follows:

z2=0

z1=0

z3=0

(86)

where each corner is an S1, each point on the sides is T 2 and each point
in the bulk is T 3.
Conjecture: ?F = −κF has no smooth solution and only has singular
solutions on the closed orbits of v, which are three S1 at the three corners
of the triangle.

Weinstein conjecture: prove that every contact manifold has at least one
closed orbit.

4.2 Super Yang–Mills on Sasaki–Einstein manifolds
On a Sasaki–Einstein manifold consider

δA = Ψ, δΨ = ivF + idAσ, δσ = −i ivΨ,
δχ+

H = H+
H , δH+

H = LAv χ+
H − i[σ, χ

+
H ]

(87)

where A is a connection, Ψ is an odd 1-form, σ an even 0-form, χ+
H an odd

horizontal self-dual 2-form, H+
H an even horizontal self-dual 2-form, all in the

adjoint representation of the gauge group. This is in fact a N = 1 vector
multiplet expressed in a cohomological field theory form.

There are exactly the right number of fields, for instance counting odd fields
we find Ψ has 5 components and χ+

H being self-dual has 3 components, and
5 + 3 = 8 is the number of odd components in a 5d N = 1 vector multiplet.
Supersymmetry is more clever than us: if we had tried to put more fields by
hand we would get badly behaved problems.

Of course we are missing the ghosts (c, c, b) namely a ghost, anti-ghost, and
Lagrangian multiplier. Then

Ω0 Ω1 Ω2
H Ω0

[c] [A] [χ+
H ]⊗ [c]

[σ] [ψ] [H]⊗ [b]

d d+
H
⊕ d†iv

(88)

Then we find A = 0 and the determinant we want is

det1/2
Ω2+
H

(Lv + adσ) detΩ0(Lv + adσ)

det1/2
Ω1 (Lv + adσ)

(89)
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4.2.1 Localization

Write

δW = δ
(
Ψ∧ ?δΨ +χ+

H ∧ ?(H
+
H − F

+
H )
)

= FV ∧ ?FV +F+
H ∧ ?F

+
H + dAσ ∧ ?dAσ.

(90)
Note that FV ∧ ?FV + F+

H ∧ ?F
+
H = F ∧ ?F + κ ∧ F ∧ F . The equations are

written either as
FV = 0, F+

H = 0, dAσ = 0 (91)

or equivalently as
?F = −κ ∧ F, dAσ = 0. (92)

The solutions are F = 0 (hence A = 0 up to gauge transformation) and σ
constant, except for singular solutions of ?F = −κ ∧ F .

We decompose using the Kähler form ω and using v:

Ω2+
H = Ω2,0

H + Ω0,2
H + Ω0ω (93)

Ω1 = Ω1,0
H + Ω0,1

H + Ω0v (94)

Split determinants according to this decomposition, and ignore phases (somehow
in 5d they don’t matter) so that Ω2,0

H and Ω0,2
H contribute the same. The

determinant is then

detΩ0,2
H

(Lv + adσ) detΩ0(Lv + adσ)
detΩ0,1

H
(Lv + adσ) = sdetΩ0,•

H
(Lv + adσ). (95)

We have the complex
Ω0,0
H

∂H−−→ Ω0,1
H

∂H−−→ Ω0,2
H . (96)

Just like in 3d,
Ω0,p
H (S5) = ⊕nΩ0,p(CP2,O(n)

)
(97)

and we can derive that ind
(
∂,O(n)

)
= 1+ 3

2n+ 1
2n

2. Thus the super determinant
reduces to ∏

n 6=0

(
2πin+ adσ

)1+ 3
2n+ 1

2n
2

(98)

for the round sphere. This is a triple-sine function at special values.

4.2.2 Final result

Consider the squashed sphere, obtained using generic v = ω1e1 + ω2e2 + ω3e3.
Then

Zperturbative
S5
ω1,ω2,ω3

=
∫
t

dσ e−# Tr(σ2)
∏
β 6=0

S3
(
i〈σ, β〉

∣∣ ω1, ω2, ω3
)

(99)

for some coefficient # (see the original references).
There is a nice pattern:
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• S1 gives sin functions, which is periodic;

• S3 gives double-sine function S2(x|ω1, ω2), which is periodic up to sines;

• S5 gives triple-sine functions S3(x|ω1, ω2, ω3), which is periodic up to
double-sines.

Explicitly,

S3(x|~ω) =
∏

n1,n2,n3≥0
(x+ ~n · ~ω)

∏
n1,n2,n3≥1

(−x+ ~n · ~ω) regularized (100)

= e...
(
e2πix/ω1

∣∣∣ e2πiω2/ω1 , e2πiω3/ω1
)
∞(

e2πix/ω2
∣∣∣ e2πiω3/ω2 , e2πiω1/ω2

)
∞

(
e2πix/ω3

∣∣∣ e2πiω1/ω3 , e2πiω2/ω3
)
∞

(101)

where
(z|q1, q2)∞ =

∏
n,m≥0

(
1− zqn1 qm2

)
(102)

for |q1| < 1 and |q2| < 1 and otherwise the function is defined by analytic
continuation.

Each of the three factors in (101) is the perturbative part of the 5d R4 × S1

Nekrasov partition function. In the first factor for instance, the S1 has radius
1/ω1 and epsilon parameters are ω2/ω1 and ω3/ω1. This leads to a conjecture:

Zperturbative
S5
ω1,ω2,ω3

=
∫
t

dσ e···ZNekrasov
R4×S1

(
ω2

ω1
,
ω3

ω1
,

1
ω1

)
ZNekrasov
R4×S1

(
ω3

ω2
,
ω1

ω2
,

1
ω2

)
ZNekrasov
R4×S1

(
ω1

ω3
,
ω2

ω3
,

1
ω3

)
.

(103)

This is a conjecture, but it has passed many tests.
Actually the problem is also there in Pestun’s S4 result: what does it even

mean to say that we get localization to singular solution? This is very different
from the non-compact setting (Omega background) where the moduli space of
instantons is under control, and the non-commutative deformation is well-defined.

Question: why do we stop at 7d? The main problem is that we cannot put
SYM on S8 while preserving supersymmetry and isometry. Indeed, the bosonic
group would have so(9) isometry, and that is the same as asking for a 7d SCFT.
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