7 Exercise session 7, July 26

7.1 Exercises for Maxim Zabzine's lecture

Exercise 7.1. On S^{1} consider $D=\mathrm{d} / \mathrm{d} x+\lambda$ with $\lambda \in \mathbb{C}$. Check that ind D does not depend on λ (it is topological), in contrast to the dimensions of the kernel and cokernel of D separately.

Exercise 7.2. Show that the following complex is elliptic

$$
\begin{equation*}
0 \rightarrow \Omega^{0}\left(M_{4}\right) \xrightarrow{\mathrm{d}} \Omega^{1}\left(M_{4}\right) \xrightarrow{\mathrm{d}^{+}} \Omega^{2+}\left(M_{4}\right) \rightarrow 0 \tag{1}
\end{equation*}
$$

where $\mathrm{d}^{+}=\frac{1}{2}(1+\star) \mathrm{d}$.
Exercise 7.3. The sphere $S^{5}:\left\{\left|z_{1}\right|^{2}+\left|z_{2}\right|^{2}+\left|z_{3}\right|^{2}=1\right\}$ has a T^{3} action multiplying each coordinate by a phase; let e_{i} be the vector field rotating z_{i}. Choose the Reeb vector field to be a generic linear combination $v=\omega_{1} e_{1}+\omega_{2} e_{2}+\omega_{3} e_{3}$. Compute κ.

Exercise 7.4. Using the fibration $S^{5} \rightarrow \mathbb{C P}^{2}$ mapping $\left(z_{1}, z_{2}, z_{3}\right) \mapsto\left(z_{1}: z_{2}: z_{3}\right)$ show the decomposition

$$
\begin{equation*}
\Omega_{H}^{0, p}\left(S^{5}\right)=\oplus_{n} \Omega^{0, p}\left(\mathbb{C P}^{2}, \mathcal{O}(n)\right) \tag{2}
\end{equation*}
$$

Exercise 7.5. On a 5 d contact manifold, show that there is an orthogonal decomposition of the space of two-forms:

$$
\begin{equation*}
\Omega^{2}=\Omega_{V}^{2}+\Omega_{H}^{2+}+\Omega_{H}^{2+} \tag{3}
\end{equation*}
$$

where some projectors are $\frac{1}{2}\left(1 \pm i_{V} \star\right)$.
Exercise 7.6. On a contact manifold show

$$
\begin{equation*}
F_{H}^{+}=0 \quad \text { and } \quad F_{V}=0 \quad \Longleftrightarrow \quad \star F=-\kappa \wedge F \tag{4}
\end{equation*}
$$

7.2 Exercises for Zohar Komargodski's lecture

Exercise 7.7. Using the propagator $\left\langle\phi_{a}^{i}(x) \phi_{b}^{j}(y)\right\rangle=\frac{g_{Y M}^{2}}{(2 \pi)^{2}} \delta^{i j} \delta_{a b} \frac{1}{|x-y|^{2}}$ and Wick contractions, show that

$$
\begin{equation*}
g(x, y)=\left\langle\operatorname{Tr}\left(\phi^{i_{1}} \ldots \phi^{i_{k}}\right)(x) \operatorname{Tr}\left(\phi^{j_{1}} \ldots \phi^{j_{k}}\right)\right\rangle=\frac{N^{k} g_{\mathrm{YM}}^{2 k}}{(2 \pi)^{2 k}}\left(\delta^{i_{1} j_{1}} \delta^{i_{2} j_{2}} \ldots \delta^{i_{k} j_{k}}+\operatorname{cyclic}\right) \frac{1}{|x-y|^{2 k}} \tag{5}
\end{equation*}
$$

in the planar limit.
Exercise 7.8. Show that an operator that is both chiral and anti-chiral is the identity operator.
Exercise 7.9. Using the appendix of Minwalla et al on Superconformal Index, show that Coulomb branch operators (namely those obeying $[S, \mathcal{O}]=[\bar{S}, \mathcal{O}]=[\bar{Q}, \mathcal{O}]=0$) must obey $j_{r}=0$ and $S=0$.

Exercise 7.10. Let \mathcal{O}_{i} be the marginal operators in a CFT, and λ^{i} the corresponding couplings. Consider the $O\left(\lambda^{2}\right)$ term $C_{a b}^{i} \lambda^{a} \lambda^{b}$ in the beta function β_{i}. Show that $C_{a b}^{i}$ is proportional to the coefficient of \mathcal{O}_{i} in the OPE of \mathcal{O}_{a} and \mathcal{O}_{b}.

Exercise 7.11. Check that

$$
\int e^{i p x} x^{-2 d} \mathrm{~d}^{d} x= \begin{cases}p^{d} \log \left(p^{2}\right) & \text { if } d \text { is even; } \tag{6}\\ p^{d} & \text { if } d \text { is odd }\end{cases}
$$

