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Lectures by Nikita Nekrasov notes by Bruno Le Floch
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Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
Instantons. These are lecture notes for the 2018 IHÉS summer school

on Supersymmetric localization and exact results.

1 Lecture 1, July 23
We are interested in path integrals in Euclidean QFT. Space-time is a Riemannian
manifold but the space of fields may be complexified.

1.1 Finite-dimensional analogy
In finite-dimensional integrals of analytic functions it is sometimes convenient to
deform the contour in the complexified space. Let us say we want to compute∫

X

e−S/~Ω (1)

over some manifold X with volume form Ω, where S : X → R is some function.
The strategy is to embed X into a complexification XC such that the volume
form extends to a holomorphic volume form ΩC on XC, and S extends to a
holomorphic function S : XC → C. Then X is a middle-dimensional contour
inside XC and we can deform it to a middle-dimensional contour Γ. The integral
has better converge. Let

X∞ =
{
x | <

(
S

~

)−1
> c

}
(2)

for some constant c very large. This defines some sectors in XC, and the contour
must go to one of these sectors at infinty. What matters for the value of the
integral is the homology class

[Γ] ∈ Hn(XC, X∞) (3)
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of Γ in the relative homology (abelian) group. Here n = dimX.
Then

ZΓ(~) =
∫

Γ
e−S/~Ω (4)

obeys a fundamental system of Picard–Fuchs equations. The question then boils
down to writing X in a nice basis of contours.

1.1.1 Basis of Lefschetz thimbles

In the ~→ 0 limit the integrals are dominated by the critical points p of S. For
each such point p we can construct a contour Lp “Lefschetz thimble” as follows.
These contours define a basis of Hn(XC, X∞). Then the (relative) homology
class of any contour can be written as

[Γ] =
∑
p

npLp. (5)

How to build Lp?
Pick a generic Hermitian (i.e. compatible with complex structure) metric h

on XC. Look at the gradient flow of <(S/~), namely

ẋ = ∇h<(S/~). (6)

Near p, expand S ' S(p) +
∑n
i=1

1
2z

2
i . Let ~ be real to make our lives simpler.

Then

<(S/~) = <(S(p)/~) + 1
~

n∑
i=1

(x2
i − y2

i ) (7)

so half of the eigenvalues are positive and the other half negative. The Hermitian
metric is h =

∑
i(dx2

i + dy2
i ). Then the gradient flow gives

ẋi = 1
~
xi, ẏi = −1

~
yi. (8)

We then define the contour Lp as the union of outgoing trajectories “x-lines”.
Exercise: study the Airy function

A~(x) =
∫

dte(i/~)(tx−t3/3), (9)

find its two critical points and its Lefschetz thimbles. The Airy function obeys a
second-order differential equation.

Interestingly, =(S/~) is constant along the flow. Thus for generic (complex)
~, trajectories coming from a critical point do not intersect those coming from
another critical point. There is an interesting story of when the trajectories do
intersect, and a story of phase transition when ~ is varied.
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1.2 Non-relativistic particle in a double-well potential
We consider the simplest infinite-dimensional case: path integral in quantum
mechanics. Specifically we take a potential

U(x) = λ

4 (x2 − v2)2. (10)

Classically we have motion around each minimum.
The Hamiltonian is of course

Ĥ = −~2

2 ∂
2
x + U(x). (11)

It acts on H = L2(R). Quantum mechanically we want

Ĥψ = Eψ. (12)

We wish to analyse Low-energy states, namely those with “small” E.
Consider the Euclidean trace

Z~(T ) = TrH e−
TĤ
~ (13)

in the regime <(T/~)� 0. Let us use a slightly unusual method of writing it as
a phase-space path integral

Z~(T ) =
∫

(p,x) : S1→R2
DpDx exp

[
i

~

∫
pdx− T

~

∫
H(p, x)dt

]
(14)

where 0 ≤ t ≤ 1. We writ the exponent as −S/~ with

S = −i
∮
pdx+ T

∮
H(p, x)dt (15)

complex.
Then we treat {(p, x) : S1 → R2} as a middle-dimensional contour in the

loop space LC2 of C2,

LC2 = {(p, x) : S1 → C2} =
{

(p, x)
∣∣∣ p(t), x(t) ∈ C, p(t+1) = p(t), x(t+1) = x(t)

}
.

(16)
We stress that we don’t change the nature of time, t is not made complex (well,
we have Wick rotated but that’s a completely unrelated step). Critical points of
the action obey

−iẋ+ Tp = 0 (17)
+iṗ+ TU ′(x) = 0. (18)

In a usual treatment, p is already integrated out and we just find that x moves in
an inverted potential. Here we see more: even for real x, p needs to be complex.
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We need to find periodic solutions. Since ∂tH(p, x) = 0, the trajectory (p, x)
sits on a complex curve H(p, x) = E for some E . For the given potential that
curve is

p2

2 + λ

4 (x2 − v2)2 = E , (19)

which is an elliptic curve1. After a change of variables we get y2 = 4x̃3−g2x̃−g3
for some parameters g2 and g3. In these coordinates the elliptic curve is a
branched double-cover of the x complex plane (each sheet is one choice of
sign for y) with two branch cuts. The two noncontractible cycles of the torus
correspond to: a contour going around one branch cut, and a contour going
through both branch cuts. The uniformizing coordinate z =

∫
dx̃/y =

∫
dx/p is

such that z ∼ z + n1ω1 + n2ω2 with ω1 and ω2 the periods of the torus.
In this coordinate, we want to solve z(t) = z(0) + V0(E)t for some constant

V0(E) that should be V0 = nω1(E) + mω2(E) for some n,m ∈ Z. Solutions at
a given energy will be characterized by the integers m,n. More precisely this
depends on a choice of basis in the torus (what we call A-cycle and B-cycle),
which can be made locally continuously in E .

Then we have to tune the energy E so that

n

∮
A-cycle

dx
p

+m

∮
B-cycle

dx
p

= T

i
. (20)

We get infinitely many solutions depending on m,n. In 1969, Bender and Wu
studied some other potential.

At low temperatures T →∞, one can safely expect that E → 0, which makes
the elliptic curve nearly degenerate. Then

n+ m

πi
log(E/E0) ∼ T/(iT0) (21)

with E0 ∼ λv4/4 and T0 ∼ 1/
√
U ′′(v). Then

En,m ∼ e−πT/(mT0)e2πin/(2m). (22)

This means that the trajectory passes many times through the pinched points in
the nearly degenerate elliptic curve.

For most of the t-time the trajectory solves

iẋ

T
= p = ±

√
2U (23)

where the sign flips whenever the trajectory passes through the pinched point,
so 2m times, where m is the number of times the B-cycle occurs.

As E goes around 0, the distance
√
E between branch points in the x plane

picks up a sign, so the B-cycle is dressed by two A-cycles (two because there are
two pairs of branch points).

1An elliptic curve is a complex one-dimensional manifold that is homeomorphic to the real
two-torus. This page footer is too short to say everything about these beautiful objects.
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The building blocks, solutions of iẋ/T = p =
√

2U are instantons, and
iẋ/T = p = −

√
2U are anti-instantons. We are looking at m pairs of instantons

and anti-instantons plus n perturbative fluctuations (to be glued on top of pairs
of instanton and anti-instanton).

1.3 Many-body systems (algebraic integrable systems)
We shall look at the complexified phase-space of dimension 2n. What coordinates
do we have? The usual coordinates and momenta, but also the action-angle
variables: the symplectic form is then

n∑
a=1

dpa ∧ dxa =
n∑
a=1

daa ∧ dϕa. (24)

Here, ϕa ∼ ϕa + 2π(na + τab(a)mb) with na ∈ Z and mb ∈ Z.
The partitiono function is

Z~(Tk) =
∫
DpDx exp

[
i

~

∫ ∑
a

padxa −
∑
k

Tk
~

∫
Hk(p, x)dt

]
(25)

where

0 = d
( n∑
a=1

naaa +maa
a
D −

n∑
k=1

TkHk(a)
)
. (26)

1.4 Supersymmetric quantum mechanics
In previous stories we could not separate instantons and antiinstantons. Super-
symmetry is when you can separate them.

On phase space we have coordinates (x, p) bosonic and (ψ,ψ) fermionic.
Then one supercharge does

δx = ψ, δψ = p, δψ = 0, δp = 0. (27)

It obeys δ2 = 0. We ignore the other supercharge.
Consider V a Morse function on R where V ′ = 0 and V ′′ 6= 0 (at what

point?). We consider a δ-exact action:

S = iδ

∫
ψ

(
ẋ+ i

2p− V
′(x)

)
(28)

= i

∫
pẋ−

∫
p2

2 − i
∫
pV ′ + fermionic terms. (29)

On-shell, p = i(ẋ − V ′). When δ = 0 you get instantons, namely gradient
trajectories ẋ = V ′.

Now introduce a metric and write a new action

S = iδ

∫
ψa

(
ẋa + i

2g
ab(pb − γcbdψdψc)− gab∂bv

)
(30)
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As in Zabzine’s lecture, even though p looks like it transforms like a section it
doesn’t:

δ

(
ψ
∂x

∂x̃

)
= p

∂x

∂x̃
+ ψ

∂2x

∂x̃∂x̃
ψ
∂x

∂x̃
(31)

To make the action coordinate-invariant we need to add the extra term with
γcbd.

In the large-volume limit gab → 0 and V → ∞ such that V a = gab∂bV is
finite. This retrieves Morse theory in the way Morse conceived it.

1.5 Infinite-dimensional case
We will be interested in 2d sigma models and 4d gauge theories, sometimes
combined.

1.5.1 Sigma models

Let Σ be a Riemann surface and X be some Riemannian manifold with metric g
and with a B-field. We write a sigma model with fields Σ→ X, with action

S = 1
2

∫
Σ
gmndxm ∧ ?dxn + i

2

∫
Σ
x∗B (32)

where x∗B is the pull-back of the two-form to Σ. This is the bosonic part of a
supersymmetric system if

• X is Kähler and B is the symplectic form;

• or if X has an almost complex structure and the metric and B-field are
related by this complex structure as gmn = BmkJ

k
n .

In those cases, by the Bogomolny trick the action can be written as

S =
∥∥∥∥(1− iJ

2

)n
m∂x

m

∥∥∥∥2
+ i

∫
x∗ω (33)

If ω = B + ig · J happens to be closed then this action is only sensitive to the
topology of the space.

Instantons are pseudo-holomorphic maps, namely solutions to

(1− iJ)nm∂xm = 0. (34)
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1.5.2 Yang–Mills theory in 4d

We’ll take G = SU(N), the trace is taken in the fundamental representation and
the Hodge star ?2 = +1 on two-forms.

SYM = 1
4g2

∫
M4

TrFA ∧ ?FA + iθ

8π2

∫
M4

TrFA ∧ FA (35)

= ‖F+
A ‖

2 + 2πiτ
∫ TrFA ∧ FA

2(2πi)2 (36)

= ‖F−A ‖
2 + 2πiτ

∫ TrFA ∧ FA
2(2πi)2 (37)

up to factors of 2 and similar. Here F+
A = (FA+?FA)/2 and τ = θ/(2π)+4πi/g2.

Get instantons and antiinstantons in this way.

1.5.3 Combining

If we have an action of H on X we can make derivatives covariant in the sigma
model:

S = 1
2

∫
Σ
gmn∇Axm ∧ ?∇Axn + i

2

∫
Σ
x∗B (38)

where ∇Axm = dxm+AaV ma and Va ∈ Vect(X) is the vector field corresponding
to the H action. The moment map is dµa = iVaB.

The Bogolmony trick gives

(1− iJ)∇Ax = 0 (39)
FA + e2µ · volΣ = 0 (40)

As e2 → ∞, we find that µ = 0 almost everywhere on Σ. Solutions are then
basically

φ : Σ→ µ−1(0)
H

(41)

which coincides with instantons in X/H. The slight difference is responsible
for the difference between instantons in gauged linear sigma models and those
in nonlinear sigma models. In mirror symmetry this shows up as a nontrivial
mirror map.

2 Lecture 2
Today we’ll consider instantons in gauge theory. ConsiderM3×R1

t with compact
space M3. Ansätze for A = f(t)Θ where Θ is a flat connection on M3, namely

dΘ + Θ ∧Θ = 0. (42)

Then
FA = ḟdt ∧Θ + (−f + f2)Θ ∧Θ. (43)
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The Yang–Mills action is

SYM =
∫
R1

dt
[
c1ḟ

2 + c2f
2(f − 1)2

]
. (44)

Note that Θ may be pure gauge but have non-zero

c1 =
∫
M3

Tr(Θ ∧ ?Θ), (45)

c2 =
∫
M3

Tr
(
Θ ∧Θ ∧ ?(Θ ∧Θ)

)
, (46)

c3 =
∫
M3

Tr
(
Θ ∧Θ ∧Θ). (47)

We are thus considering a particle in a quartic double-well potential, just like
before. This is shifted slightly. The solution f = 0 corresponds to A = 0. The
solution f = 1 corresponds to A flat. The solution with ḟ ∼ f(f − 1) is an
instanton in the quantum mechanics sense.

For instance for M3 = S3, it is a BPST instanton in radial coordinates
(taking G = SU(2)). We mapped to R4 using

ds2
4 = dr2 + r2dΩ2

3 = r2
(

dr2

r2 + dΩ2
3

)
(48)

with r = et for −∞ < t <∞. Unfortunately this method is difficult to generalize
to higher instanton numbers.

2.1 All instanton solutions on R4

We embed R4 into its conformal compactification S4. Fix G = SU(N). The
instanton charge

k = − 1
8π2

∫
TrFA ∧ FA ∈ Z (49)

is a topological number. We focus on k ≥ 0. Solutions to F+
A = 0 are in

one-to-one correspondence with solutions to algebraic equations on matrices: the
ADHM construction. Their construction stemmed from the study of twistors.

2.1.1 Motivation

Fix a k-instanton configuration F+
A = 0 with finite action.

We can study the Dirac equation /DAψ = 0 with ψ ∈ L2(S± ⊗E), where E
is a rank N complex vector bundle (on which G = SU(N) acts) over R4 (we will
always think of R4 as being compactified to S4).

Identify R4 ' C2. Write the metric and symplectic form as

ds2 = dz1dz1 + dz2dz2, ω = 1
2
√
−1
(
dz1 ∧ dz1 + dz2 ∧ dz2

)
(50)
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Then the spin bundles are S− ' Ω0,1 (spanned by dz1 and dz2) and S+ '
Ω0,0 ⊕ Ω0,2 (spanned by 1 and dz1 ∧ dz2). Then the Dirac operator is identified
to /DA ' ∂A ⊕ ∂

∗
A where

∂A : Ω0,i → Ω0,i+1, ∂
∗
A : Ω0,i → Ω0,i−1. (51)

The equation F+
A = 0 is equivalent to F 0,2

A = 0 = F 1,1
A ω. The relation

F 0,2
A = 0 is equivalent to ∂

2
A = 0. The relation F 1,1

A ω = 0 is equivalent
to quotienting by complexified gauge transformations instead of real gauge
transformations.

Altogether we are interested in solving ∂Aψ̃ = 0 for ψ̃ ∈ L2(Ω0,i ⊗ E) up to
ψ̃ ∼ ψ̃ + ∂Aχ.

For S+, (∂A ⊕ ∂
∗
A)(η ⊕ χ) = 0 ∈ Ω0,1 ⊗ E with η ∈ L2(Ω0,0 ⊗ E) and

χ ∈ L2(Ω0,2 ⊗ E).
We reach the equation

∂Aη + ∂
∗
Aχ = 0 (52)

Explilcitly

D1η +D2χ = 0 (53)
D2η −D1χ = 0. (54)

This impiles ({
D1, D1

}
+
{
D2, D2

})
η = 0 = �Aη. (55)

This implies η = 0. In other words there are no zero-modes of that chirality.
Here we used [D1, D2] = 0.

Then an index theorem (see Maxim Zabzine’s lectures)

dim kerL2(S−⊕E) /DA︸ ︷︷ ︸
call it K

− dim kerL2(S+⊕E) /DA = k. (56)

Then ψ ∈ K is equivalent to ψ ∈ L2(Ω0,1 ⊗E) such that ∂Aψ = 0 and ∂∗Aψ = 0.
Then multiply this by the coordinates. While the result is not a solution of the
Dirac equation, we can project it onto that space.

More precisely, one can decompose orthogonally

H = L2(Ω0,1 ⊗ E) = ker /DA ⊕H⊥ (57)

where /D
∗
A /DA = ∆A > 0 on H⊥. Then define a projector

Π = 1− /D
∗
A

1
∆A

/DA. (58)

Then we can define four complex operators on K by

B1ψ = Π(z1ψ) ∈ K, (59)
B2ψ = Π(z2ψ) ∈ K, (60)

B†1ψ = Π(z1ψ) ∈ K, (61)

B†2ψ = Π(z2ψ) ∈ K (62)

9



so we have an action of four matrices on K.
Now consider r2 →∞. There, A becomes pure gauge so ψ should approach

the solutions of the flat Dirac equation. In coordinates ψ = ψαdzα we write the
coordinates

D1ψ2 −D2ψ1 = 0 (63)
D1ψ1 +D2ψ2 = 0. (64)

Locally we can “solve” the first equation by ψα = Dαχ and the second equation
says that χ should be harmonic at r → ∞. The simplest nontrivial option is
1/r2 = 1/(|z1|2 + |z2|2). Then

ψα
∼

r →∞Dα

(
1
r2 I
†
)
− εαβg

γβDγ

(
1
r2 J

)
. (65)

This is parametrized by I : N → K and J : K → N , where N = CN is the fiber
of the vector bundle, while K is the space of solutions to the Dirac equation.

We thus have described ψ by the matrices I : N → K, J : K → N , B1, B2 : K →
K.

While multiplication by coordinates z1, z2, z1, z2 commutes, after the pro-
jection by Π there is a noncommutativity. A tedious calculation shows

[B1, B2] + IJ = 0, (66)

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = 0. (67)

Of course, I, J , B1, B2 are only defined up to a U(K) change of basis.
We have shown how to go from an instanton to a collection of matrices. The

ADHM construction consists of the opposite construction.

2.1.2 ADHM construction itself

Given (B1, B2, I, J), we want to construct A (and ψ).
Let D† : K ⊗ C2 ⊕N → K ⊗ C2 with

D† =
(
B1 − z1 B2 − z2 I

−B†2 + z2 B†1 − z1 −J†
)
, (68)

which depends on (z1, z2) ∈ C2. Then an explicit calculation shows D†D : K ⊗
C2 → K ⊗ C2 is

D†D =
(

∆ 0
0 ∆

)
, (69)

where ∆: K → K. For good (B1, B2, I, J) we have ∆ > 0.
Then let E = kerD† and span the kernel using Ξ, namely D†Ξ = 0 with

Ξ: N → K ⊗ C2 ⊕N , where Ξ = (ν+, ν−, ξ) with ν± : N → K and ξ : N → N .
Then A = Ξ†dΞ solves F+

A = 0, and ψ = (ν†+∆−1dz1 + ν†−∆−1dz2) obeys
/DAψ = 0.

The two constructions are inverses of each other.
By the way, the moduli space of instantons has real dimension 4Nk.
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2.2 Computing 4d N = 2 super Yang–Mills theory on R4

The field content is (Am, σ, σ) and the fermions (ψm, η, χ+
mn) are a one-form,

scalar and self-dual two-form. We twisted the theory (since we are in flat space
this is“just using a more mathematical language”). Supersymmetry is

δAm = ψm, δψm = Dmσ, δσ = 0, (70)
δσ = η, δη = [σ, σ], (71)

δχ+
mn = H+

mn, δH+
mn = [σ, χ+

mn]. (72)

The usual super Yang–Mills action is

SSYM = τ

∫
TrFA∧FA+δ

∫
Tr
(
χ+(F+−g2H+)+ψ∧?DAσ+η∧?[σ, σ]

)
(73)

with the usual τ = θ
2π + 4πi

g2 .
Now expand the theory around a generic point in the Coulomb branch. The

vev 〈σ〉 = diag(a1, . . . , aN ) breaks G = SU(N) to U(1)N−1. The effective action,
by supersymmetry, looks like (where i, j are indices of the unbroken U(1) factors)

Seff =
∫
τij(a)F (i)∧F (j)+ 1

3(∂akτij)ψ(k)∧ψ(i)∧F (j)+ 1
4∂akalτijψ

(i)ψ(j)ψ(k)ψ(l)

(74)
and supersymmetry also forces τij = ∂2F/∂ai∂aj . Our goal is to find out F .

We can split σ = a+ σ(0) where σ(0) vanishes at infinity. Likewise we split
gauge transformations into constant ones and those that vanish at infinity.

We use both these constant gauge transformations, and the Spin(4) =
SU(2)× SU(2) rotations of R4 to deform δ to

δεA = ψ, δεψ = DAσ + iVεFA, δεσ = iVεψ. (75)

Here
Vε = iε1

(
z1

∂

∂z1
− z1

∂

∂z1

)
+ iε2

(
z2

∂

∂z2
− z2

∂

∂z2

)
(76)

(Even though for actual rotations of space-time ε1, ε2 ∈ R, the algebra allows
complex ε1 and ε2.) Another comment is that rotations of R4 act on ADHM
data by

(B1, B2, I, J)→ (eiε1B1, e
iε2B2, I, e

i(ε1+ε2)J). (77)

One checks that δ2
ε = 0 up to rotations and gauge and global symmetries.

Note that the nonzero δεσ means that we can no longer insert f(σ) everywhere
in R4 so it seems the cohomology has shrunk. However, the position of insertion
did not affect the cohomology classes so we could bring any insertion to the
origin anyways. Now they are simply stuck there.

Beyond just writing the supersymmetry algebra, we would need to write
down how the action should be modified to be δε-invariant. The details are not
so interesting for us now. In the limit ε1, ε2 → 0 the deformation goes to zero.
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Now we integrate out everything. Vε is a Killing vector field onM+
k (the

moduli space of k-instantons). The manifoldM+
k is hyper-Kähler. Its metric g

descends from the L2 metric
∫
R4 Tr ∂A2

m.
We shall keep ε fixed and send ε to infinity.
From this data we get a one-form g(Vε, ) on M+

k . Then the contribution
from k-instantons to the path integral is

Zk =
∫
M+

k

exp
[
−δε

(
g(Vε, )

)]
=

∑
fixed points p

of SO(4)

1
detA(ε) . (78)

The first equality can be traced to the original Ω-deformed 4d N = 2 action. In
the last expression, A(ε)ij = ∂iV

j
ε (p), namely we consider how rotations act near

the fixed point p ∈M+
k .

The spaceM+
k has conical singularities. We resolve it by adding an FI term ζ

in the ADHM equations:

[B1, B2] + IJ = 0, (79)

[B1, B
†
1] + [B2, B

†
2] + II† − J†J = ζ1k. (80)

This blows up the conical singularities into smooth regions, on which rotations
act with isolated fixed points.

To understand a bit better, let us consider ζ > 0. It turns out that the
ADHM equations are equivalent to [B1, B2] + IJ = 0 plus a stability condition
C[B1, B2]I(N) = K (this is a mild genericity condition on (B1, B2, I, J)), taken
modulo GL(K) instead of just U(K). Here GL(K) acts by h · (B1, B2, I, J) =
(h−1B1h, h

−1B2h, h
−1I, Jh).

Consider now the fixed points.
Denoting t1 = eiε1 , t2 = eiε2 , b = diag(eia1 , . . . , eiaN ), we have the action

(t1, t2, b) · (B1, B2, I, J) = (t1B1, t2B2, Ib
−1, t1t2bJ). (81)

We want this to be GL(K)-equivalent to the original (B1, B2, I, J), so we want
some h(t1,t2,b) ∈ GL(K) such that

t1B1 = h−1B1h, (82)
t2B2 = h−1B2h, (83)
Ib−1 = h−1I, (84)

t1t2bJ = Jh. (85)

Write N = ⊕Nα=1Cα where Cα = ker(b− eiaα). We have the vector Iα = I(1 ∈
Cα) ∈ K and the vectors

|i, j;α〉 = Bi−1
1 Bj−1

2 Iα ∈ K. (86)

We can easily work out

h|i, j;α〉 = bαt
i−1
1 tj−1

2 |i, j;α〉. (87)
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Using the constraints we find that the states |i, j;α〉 are non-zero for (i, j) in
some Young diagram Yα (that depends on the fixed point. It is also possible to
prove that J |i, j;α〉 = 0, so J vanishes on all of K.

Altogether, fixed points are labeled by N -tuples of Young diagrmas of total
size K.

Then there is an algebraic calculation to find the contribution from each
Young diagram. We need to know what happens when varying (B1, B2, I, J).
Under the symmetry and the compensator h, we find

(δB1, δB2, δI, δJ)→ (ht1δB1h
−1, ht2δB2h

−1, hδIb−1, t1t2bδJh
−1). (88)

The eigenvalues can be worked out and reduce to the well-known product formula
involving arm length and leg length of each box in the Young diagram.

Comment on rational ε1/ε2. When ε1/ε2 = p/q ∈ Q, the fixed points are no
longer isolated. The denominators in the localization formula end up vanishing
so each contribution blow up. However, we can show that the set of fixed points
is still compact, so the limit remains finite.

3 Lecture 3, July 25
Welcome to lecture 3 of a series of 2.

Yesterday we saw the ADHM equations, describing the moduli space of framed
U(N) instantons. Framed means we only identify instanton configurations up to
gauge transformations that approach 1 at infinity.

The moduli spaceM+
k,N has an SU(N) symmetry coming from the possibility

of performing a constant gauge transformation. We also have a Spin(4) symmetry
acting by rotations of R4. Remember however that we deformed the moduli
space by adding an FI parameter ζ. In order to single out one equation out of
three, we have to break part of the symmetry: this deformation uses a specific
complex structure R4 ' C2, so the Spin(4) rotation symmetry is broken to U(2).
Under this symmetry, (B1, B2) transforms in a doublet, I is invariant and J
is in the determiant representation, namely t ∈ U(2) maps J 7→ det(t)J . In
applications we only use its maximal torus U(1)× U(1) = Trotationos.

In cases we considered yesterday (generic equivariant parameters) the fixed-
points of Trotation×Tgauge ⊂ U(2)×SU(N) were isolated, and labeled byN -tuples
of partitions (λ(1), . . . , λ(N)) with total number of boxes

∑N
α=1|λ(α)| = k. A box

in position (i, j) of λ(α) corresponds to a vector Bi−1
1 Bj−1

2 I(Nα) in K.

Compacness theorem Yesterday we claimed that there is a compactness
theorem, useful to study singularities (or lack thereof) of the instanton partition
function.

When ε1/ε2 is rational, the one-parameter subgroup generated by diag(eiε1 , eiε2) ∈
U(2) is not dense inside the two-torus U(1)2 ⊂ U(2); instead it is a one-
dimensional subgroup. The set of fixed points of this U(1) ⊂ U(1)× U(1) can
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thus be bigger than fixed points of the full U(1)× U(1).

M+
k,N

•

•
• •

•

•

(89)

where each • is a fixed point of U(1)2 and the shaded regions are fixed manifolds
of the U(1) subgroup. If the a’s are also non-generic then the fixed point set can
become non-compact, which is bad: the partition function can really blow up, it
means that we are integrating over a flat direction. To avoid this we assume that

aα − aβ 6∈ ε1Z>0 + ε2Z>0 for α 6= β. (90)

Let ε1 = p and ε2 = q, both integer, not both zero. Let φ : K → K be the
compensating transformation, namely φ ∈ gl(K). Then we want to solve the
stability condition C[B1, B2]I(N) = K and the constraints

εiBi = [φ,Bi], Ia = φI, (ε1 + ε2)J − aJ = −Jφ (91)

modulo GL(K). This defines the set of fixed points we want to study. Since
C[B1, B2]I(N) = K, we easily find that

Spectrum(φ) =
{
aα + ε1(i− 1) + ε2(j − 1) | for some α, i, j

}
. (92)

For p, q > 0 (or equivalently p, q < 0) we find that J must vanish because
none of the aα − ε1 − ε2 appear in the spectrum. (For other signs of p and q we
need to work harder.)

Given that the aα are generic we can split

K =
N⊕
α=1

Kα, Kα = C[B1, B2]I(Nα). (93)

Then
Spec

(
φ|Kα

)
⊂ aα + pZ≥0 + qZ≥0 ⊂ aα + Z≥0. (94)

To prove compactness we want to find a bound on the norm squared |B1|2 +
|B2|2 + |I|2 + |J |2 (note that we showed J = 0 so we can erase that term). We
can split further to

Kα =
⊕
n≥0

Kα,n, Kα,n = ker
(
φ|Kα − aα − n

)
. (95)

There are finitely many non-zero summands of course; the danger is that matrix
elements could become large.
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Now let
δα,n = 1

ζ
TrKα,n

(
B1B

†
1 +B2B

†
2 + II†

)
. (96)

We want to bound the sum over n of this. Note that

B1(Kα,n) ⊂ Kα,n+p, B2(Kα,n) ⊂ Kα,n+q, (97)

and the daggers act with the opposite sign. Rewrite the D-term equation as

[B1, B
†
1]+[B2, B

†
2]+II† = ζ1K ⇐⇒ B1B

†
1 +B2B

†
2 +II† = ζ1K +B†1B1 +B†2B2.

(98)
We learn that

δα,n = 1
ζ

TrKα,n
(
ζ1K +B†1B1 +B†2B2

)
(99)

= dimKα,n + 1
ζ

TrKα,n+p

(
B1B

†
1

)
+ 1
ζ

TrKα,n+q

(
B2B

†
2

)
(100)

≤ dimKα,n + δα,n+p + δα,n+q. (101)

Of course this is a very conservative estimate. Now what makes it interesting
is that we know that δα,n vanishes for n ≥ k (again quite conservative when
N ≥ 1).

We can introduce generalized Fibonacci numbers

F<0 = 0, F1 = 1, Fn = Fn−p + Fn−q. (102)

This can be solved explicitly in terms of solutions to λ−p + λ−q = 1. Then one
can in principle write a closed form formula as a sum over solutions to that
equation:

Fn =
∑
λ

fλλ
n, so Fn < ec1n (103)

for some constant c1. From our inequality (we write kn = dimKα,n and drop
the subscript α)

δn ≤ kn + δn+p + δn+q (104)

it follows that

δn ≤
∞∑
n′=0

kn+n′Fn′+1 (105)

then
∞∑
n=0

δn ≤ kec2k (106)

has at most exponential growth.
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For p < 0 and q > 0 (or equivalently the opposite signs) We first
note that J = 0 nevertheless. Assume first N = 1. Then JI = Tr(IJ) =
Tr(IJ + [B1, B2]) = 0 by the F-term equation.

For (α, β) 6= (0, 0) we have [B1, B2] = [αB1 +βB2, γB1 + δB2] for some (γ, δ)
(the choice doesn’t matter) such that αδ − βγ = 1, from which we find that

J(αB1 + βB2)nI = Tr
(
(αB1 + βB2)nIJ

)
(107)

= −Tr
(
(αB1 + βB2)n[B1, B2]

)
(108)

= −Tr
(
(αB1 + βB2)n[αB1 + βB2, γB1 + δB2]

)
= 0. (109)

By varying α and β we learn that J vanishes on C[B1, B2]I = K.
Next we claim that for pq < 0, fixed points (B1, B2, I, J = 0) are fixed by

any ε1 and ε2. Consider N = Bq1B
−p
2 . Then N is a nilpotent operator which

commutes with the U(1) generated by φ. Then decomposing into eigenspaces
Kn of φ inside K, it follows from some theorem that there exists operators H
and N ∗ such that we have an su(2) algebra:

[H,N ] = N , [H,N ∗] = −N ∗, [N ,N ∗] = 2(?)H. (110)

Then H provides a second grading, we have a U(1)× U(1) action, and we are
back in business.

3.1 Adding matter
So far we only discussed pure 4d N = 2 SYM. Let us add matter, but preserve
asymptotic freedom (or conformality). This limits our choices. We can only
work with quivers whose shape is of ADE type (either affine or non-affine). This
in turn means that the theories can be obtained by certain orbifold truncations
of 4d N = 4 super Yang–Mills theory with bigger gauge group, or its mass
deformation 4d N = 2∗. So we can explain how to go from 4d N = 2 SYM to
4d N = 4 SYM, everything else being obtained by an orbifold.

Unfortunately there is no analogue of the reciprocity theorem relating ADHM
data and configurations. We will have to proceed by analogy. More precisely, at
a set-theoretic level everything reduces to usual instantons; the question is to
work at a deeper level, keeping track of the measure etc.

In 4d N = 4 theory we have the gauge field A and six scalar, which we collect
into a self-dual two-form B+ and a scalar C and σ and σ̄ (alternatively just
label fields using the flavour indices). We will single out one of the supercharges,
and this relabelling (topological twist) is convenient. The B+ splits further as

B+ = B2,0 ⊕B1,1
w ⊕B0,2 (111)

and that gives what we later denote B4 = B1,1
w + iC and what we call B3.

The supersymmetric vacua are characterized by the equations DAσ = 0 and
[σ, σ] = 0 and

F+
A + [B+, C] + [B ×B]+ = 0 ∈ Ω2,+ ⊗ g (112)

D∗AB
+ +DAC = 0 ∈ Ω1 ⊗ g. (113)
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These equations imply that B,C = 0 from which we deduce the instanton
equations. However the measure of integration is different from the 4d N = 2
case: instead of 1 we get the Euler class.

In contrast to 4d N = 2 where we had a one-form Ω1 and equations in
Ω2,+ ⊕ Ω0, seemingly differnt, now our equations are in the same bundles as our
fields. This is a “balanced” topological quantum field theory.

Now W =
∫

TrB+ ∧
(
F+
A + 1

3 [B × B]+
)
. Then δW/δA and δW/δB+ are

gauge transformations of A and B+ generated by C respectively.

3.1.1 ADHM equations for 4d N = 4

The ADHM construction will have

[B1, B2] + IJ + [B3, B4]† = 0 (114)
[B1, B3] + [B4, B2]† = 0 (115)
[B1, B4] + [B2, B3]† = 0 (116)

4∑
a=1

[Ba, B†a] + II† − J†J = ζ · 1K (117)

B3I + (JB4)† = 0, B4I − (JB3)† = 0. (118)

Some of these come from a superpotential W = TrB3
(
[B1, B2] + IJ

)
such that

the equations read (δW/δX)† = δgaugeB4
X.

The equations have more symmetry: the maximal torus U(1)3 ⊂ SU(4) plus
some discrete symmetries. Namely we can multiply Ba → taBa by any phases
with

∏4
a=1 ta = 1. That’s one more ε parameter than in the 4d N = 2 case,

namely we have (ε1, ε2, ε3, ε4) with
∑
i εi = 0. Here ε1 and ε2 have to do with

rotations of space-time while ε3 is the mass of the adjoint hypermultiplet (there
is a symmetry sending the mass of the adjoint to −ε1 − ε2 − ε3 = ε4).

After some work, the partition function ends up again being a sum over
N -tuples of partitions:

ZK =
∑

λ=(λ(1),... )

∏
(λ+ ε3)∏(

λ = (aα − aβ + ε1( ) + ε2( ))
) (119)

where λ are eigenvalues of φ acting on TM+
k,N . There is a symmetry under

ε3 ↔ ε4, which is not obvious in this sum expression.
Another symmetry the equations have is SU(2)1,2 × U(1)× SU(2)3,4 where

SU(2)1,2 rotates (B1, B2) and U(1) scales (B1, B2, B3, B4) by (t, t, t−1, t−1) and
SU(2)3,4 rotates (B3, B4).

From quotienting by discrete subgroups Γ1 ⊂ SU(2)1,2 and Γ2 ⊂ SU(2)3,4
we get quiver gauge theories on R4/Γ1.

Note now that the equations are not symmetric in exchanging (B1, B2) with
(B3, B4), so it is tempting to add Ĩ : Ñ → K and J̃ : K → Ñ . Then change a
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few equations:

[B1, B2] + IJ +
(
[B3, B4] + Ĩ J̃

)† = 0 (120)
[B1, B3] + [B4, B2]† = 0 (121)
[B1, B4] + [B2, B3]† = 0 (122)

4∑
a=1

[Ba, B†a] + II† − J†J + Ĩ Ĩ† − J̃†J̃ = ζ · 1K (123)

B3I + (JB4)† = 0, B4I − (JB3)† = 0 (124)

B1Ĩ + (J̃B2)† = 0, B2Ĩ − (J̃B1)† = 0 (125)

J̃I −
(
JĨ
)† = 0. (126)

What do these equations describe? Two C2 intersecting at a point. Let
K12 = C[B1, B2]I(N) and K34 = C[B3, B4]Ĩ(Ñ) and K12 + K34 = K. There
are dimK12 instantons on one plane, dimK34 instantons on the other, and
dim(K12 ∩K34) instantons trapped at the intersection.

•

(127)

There are compactness theorems, which imply regularity of correlation func-
tions. It is possible to use this to show that the partition function obeys some
differential equation; then mapping the partition function to 2d CFT correlation
functions we find some Ward identities of 2d CFT.

Nobody knows how to construct explicit gauge field configurations for cases
where all Bi are non-zero.

To the observer who lives in one four-dimensional plane, it looks like an
instanton can disappear. Of course it just goes off in the other four-dimensional
plane.
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3.1.2 One instanton

Let us take n = ñ = k = 1. Then all commutators vanish, everything is a
number. We immediately find J = J̃ = 0, and

0 = B3I = B4I = B1Ĩ = B2Ĩ , and |I|2 + |Ĩ|2 = ζ (128)

so we find

• a branch C2
3,4 parametrized by B3 and B4, which force I = 0 hence Ĩ =

√
ζ

(up to gauge transformations);

• a branch C2
1,2 parametrized by B1 and B2, which force Ĩ = 0 hence I =

√
ζ

(up to gauge transformations);

• a branch CP1 parametrized by I and Ĩ, touching the other two branches
at their origin.

• C2
3,4

• C2
1,2

CP1

(129)

Basically the instanton can probe one or the other C2, and at the intersection it
has a whole moduli space where it hesitates whether to go to one or the other
theory. The U(1) symmetry has two fixd points, marked by • in the picture.

This has a II brane construction, basically

N D5 0 1 2 3 4 5
Ñ D5’ 0 1 6 7 8 9
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