
2 Exercise session 2, July 17
2.1 Exercises about Guido Festuccia’s course
Exercise 2.1. Solve the old-minimal generalized Killing spinor equations on S4.

∇µζα = i

6Mσµζ + i

3bµζ + i

3b
νσµνζ (1)

∇µζα̇ = i

6Mσµζ −
i

3bµζ −
i

3b
νσµνζ (2)

Hint: you’ll find bµ = 0.

Answer. (Provided by Pieter Bomans.) We have

1
6Rµνζ = [∇µ,∇ν ]ζ =

(
− 1

27(bµbν − gµνbρbρ) + 1
18gµνMM̄

)
ζ (3)

For the sphere we have
Rµν = − 3

r2 gµν (4)

and thus we find that bµ indeed has to be zero. If we then put

M = M̄ = −3i
r

(5)

we find the conformal killing spinor equation on the four-sphere

∇µζ = 1
2rσµζ̄ (6)

∇µζ̄ = 1
2rσµζ (7)

which has been calculated in excercise 1.11.

2.2 Exercises about Francesco Benini’s course
Exercise 2.2. Check that the Wilson line WR in some representation R of some gauge group G
is gauge-invariant. Show that this operator is equivalent to a 1d defect operator with: a 1d gauge
field Ã, the pull-back Aτ of the bulk gauge field, some 1d fermions ψ in representation R of the bulk
gauge group G and charge 1 under Ã, namely the 1d Lagrangian is LD = ψ(∂τ−iAτ−iÃτ )ψ+iÃτ .

Answer. (Provided by Francesco Benini.) Wilson loop operators are defined by

WR[γ] = TrR Pexp
∮
γ

A . (8)

We would like to find a defect theory description of these operators.
First, consider a 1d theory along γ, given by a free complex spinor ψ in representation R of

the bulk gauge group G, minimally coupled to the bulk. Its Lagrangian is

LD = ψ /Dψ = ψ(∂τ − iAτ )ψ =
∑
ρ∈R

ψρ
(
∂τ − iρ(Aτ )

)
ψρ . (9)

Here τ is a coordinate along γ, A is the bulk connection pulled back to γ, ρ are the weights of R,
and the 1d gamma matrix γτ = 1 in einbein basis. For simplicity, we will take τ such that the
pulled back metric is 1. Let γ be a circle of length β and let us choose antiperiodic (thermal)
boundary conditions for the fermions. Then the path-integral is easily evaluated, since ψ is free.
Let us choose a gauge where Aτ is constant. Then

ZD =
∫
DψDψ e−

∫
dτ ψ(∂τ−iAτ )ψ =

∏
ρ∈R

∏
k∈Z

(
2πi
β

(
k + 1

2
)
− iρ(Aτ )

)
. (10)
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That is because the modes of ψ are e
2πi
(
k+ 1

2

)
τ/β

. The regularization has some ambiguity, as the
function should have zeros at βρ(Aτ ) = 2π

(
k + 1

2
)
, but we can choose

ZD =
∏
ρ∈R

(
1 + eiβρ(Aτ )) ≡ ∏

ρ∈R
(1 + xρ) . (11)

This is just the partition function of the fermionic Fock space, where the excited levels have
energies −iρ(Aτ ). Notice that xρ are the eigenvalues of the holonomy Pexp

∮
γ
A in representation

R, therefore the gauge-invariant expression for ZD is

ZD = detR
(

1 + Pexp
∮
γ

A
)
. (12)

This is not yet the Wilson line operator in representation R. However notice that if we
decompose

∏
ρ(1 + xρ) into characters, we find all antisymmetric products of R, which can be

further decomposed into irreducible representations:

∏
ρ

(1 + xρ) ∼
dimR∑
`=0
R⊗A` .

Each level ` is the partition function restricted to fermion number `. To select a specific fermion
number, we gauge it – which corresponds to imposing Gauss law – and include a Chern-Simons
coupling which includes −` units of electric charge so that gauge-invariant states have fermion
number `. Thus, we consider the action

L̃D = ψ
(
∂τ − iAτ − iÃτ

)
ψ + i`Ãτ , (13)

where Ã is a 1d gauge field. The path-integral over Ã gives a delta function on ψψ = `, which
projects the partition function to the sector with fermion number `. Alternatively, we perform
the path-integral over ψ first and introduce a fugacity y = eiβÃτ for the 1d U(1) symmetry; then
the CS term gives a classical contribution y−` and finally the path-integral over Ã – imposing
Gauss law – reduces to a contour integral along |y| = 1:

Z̃D =
∮
|y|=1

dy

2πi y y
−`
∏
ρ∈R

(
1 + xρy

)
=

∑
ρ1<...<ρ`

xρ , (14)

where, with some abuse of notation, we have assumed an ordering of the weights.
If now we consider the special case ` = 1, we precisely produce the trace of the holonomy in

representation R:
Z̃D(` = 1) =

∑
ρ

xρ = TrR Pexp
∮
γ

A . (15)

RepresentationsR which are the antisymmetric product of some representationR′ can be obtained
either by choosing higher `, or by choosing R directly.

2.3 Exercises about Wolfger Peelaers’ course
Exercise 2.3.

Exercise 2.4.

Exercise 2.5.

Exercise 2.6. The goal is to derive the ADHM constraints as describing the Higgs branch
of the worldvolume theory of instantons in 4d N = 4 SYM. A reference is Tong’s lectures
http://www.damtp.cam.ac.uk/user/tong/tasi/instanton.pdf around equation (1.37).
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1. Instantons preserve half of the supersymmetry, namely their world-volume theory is a 0d
theory (matrix model) with 8 supercharges. From the brane picture described by a stack
of N D3 branes in the presence of a stack of k D(−1) branes argue that the worldvolume
theory on the D(−1) branes is the dimensional reduction to 0d of a 4d N = 2 theory
with gauge group U(k) with an adjoint hypermultiplet and a collection of N fundamental
hypermultiplets, described by the following quiver. Write down its bosonic action explicitly.

SU(N) U(K)

2. Perform the Gaussian integral over the auxiliary fields DIJ .

3. Write down the vacuum equations.

4. These equations admit in particular a Higgs branch of solutions where scalar fields originating
from the N = 2 vector multiplet vanish. Recover in this way the ADHM equations of
https://en.wikipedia.org/wiki/ADHM_construction

5. Compute the one-instanton partition function for SU(N) instantons explicitly using the
integral representation provided in the lecture.

Answer. (Provided by Tom Bourton.)

1. Quantisation of open D(−1)–D(−1) strings gives rise to the reduction to zero dimensions
of 10d N = 1 SYM with gauge group U(k). D(−1)–D3 strings gives rise to the dimensional
reduction of 4d N = 2 hypermultiplets in the K×N representation of U(K)⊗ (S)U(N). The
coupling of these bifundamental hypers to the maximally supersymmetric U(k) theory is fixed by
demanding N = 2 supersymmetry. The number of supercharges is 32/(2 · 2) = 8 as required for
1/2-BPS instantons of N = 4 SYM. The superpotential is

W = qφq̃ + trk[φ, z]z̃ + trkWαW
α . (16)

The bosonic part of the action reduced to zero dimensions is

Lbos =1
2trk

(
[Xµ, Xν ]2 + |[Xµ, φ]|2 + |[Xµ, z]|2 + |[Xµ, z̃]|2

)
+ q†XµXµq

+ q̃†XµXµq̃ +

 ∑
f∈{q,q̃,z,z̃,φ}

trk
(
∂W

∂f
Ff + F 2

f

)
+ h.c.


+ 1

2trkD2 + trkD
(
[φ, φ†] + [z̃, z̃†] + [z, z†] + qq† − q̃†q̃ + ζ

)
,

(17)

where µ = 1, 2, 3, 4.

2. Since D appears only up to quadratic order it can be integrated out, this is equivalent to
solving its equations of motion (20)

Lbos =1
2trk

(
[Xµ, Xν ]2 + |[Xµ, φ]|2 + |[Xµ, z]|2 + |[Xµ, z̃]|2

)
+ q†XµXµq

+ q̃†XµXµq̃ +

 ∑
f∈{q,q̃,z,z̃,φ}

trk
(
∂W

∂f
Ff + F 2

f

)
+ h.c.


− 1

2trk
(
[φ, φ†] + [z̃, z̃†] + [z, z†] + qq† − q̃†q̃ + ζ

)2

(18)

3. The F terms are

− Fφ = qq̃ + [z, z̃] , −Fq = φq̃ , −F
q̃

= qφ , −Fz = [z̃, φ] , −F
z̃

= [z, φ] (19)

and the D-term is

−D = qq† − q̃†q̃ + [z, z†] + [z̃, z̃†] + [φ, φ†] + ζIk = 0 . (20)
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4. The Higgs branch is reached by setting φ = 0. In this limit, we have

EC := qq̃ + [z, z̃] = 0 , ER := qq† − q̃†q̃ + [z, z†] + [z̃, z̃†] + ζIk = 0 (21)

These are precisely the ADHM equations with z = B1, z̃ = B2, q = I and q̃ = J . The Higgs
branch is

MD(−1)
Higgs = {q, q̃, z, z̃|EC = ER = 0 , φ = Xµ = 0} /U(k) (22)

and we have
MD(−1)

Higgs
∼=MN = 4 SYM

ADHM . (23)

5. The k instanton partition function for 4d G = U(N) N = 2∗ has a contour integral expression

Zk = 1
k!

∫
JK

k∏
I=1

dφI
2πi

k∏
I,J=1

φ′IJ(φIJ − 2ε+)
(φIJ − ε1)(φIJ − ε2)

(φIJ +m+ ε−)(φIJ +m− ε−)
(φIJ +m+ ε+)(φIJ +m− ε+)

×
k∏
I=1

N∏
i=1

(φI − ai +m)(φI − ai −m)
(φI − ai − ε+)(φI − ai + ε+)

(24)

where m is the adjoint hypermultiplet mass, 2ε± = ε1 ± ε2 are the Ω-background parameters,
φIJ = φI − φJ and the prime means that the I = J terms should be omitted from the product.
The k = 1 instanton result can be easily computed

Z1 = (−2ε+)(m+ ε−)(m− ε−)
ε1ε2(m+ ε+)(m− ε+)

∫
dφ

2πi

N∏
i=1

(φ− ai +m)(φ− ai −m)
(φ− ai − ε+)(φ− ai + ε+) (25)

We can close the contour to pick up the poles at, say, φ = ai + ε+

Z1 = (m+ ε−)(m− ε−)
ε1ε2

N∑
j=1

N∏
i=1
i6=j

(aj − ai + ε+ +m)(aj − ai + ε+ −m)
(aj − ai)(aj − ai + 2ε+) . (26)
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