
Extended operators and localization
Lectures by Takuya Okuda notes by Bruno Le Floch

July 23–24, 2018

Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
We discuss how to perform supersymmetric localization in the presence

of boundaries and other extended operators. These are lecture notes for
the 2018 IHÉS summer school on Supersymmetric localization and exact
results.

These lecture notes assume familiarity with supersymmetry at the level of
the first few chapters of the book by Wess and Bagger.

1 Lecture 1, July 23 — supersymmetric local-
ization with boundaries in 2d

Extended operators in QFTs include:

• line operators such as Wilson, ’t Hooft, . . . ;

• surface operators;

• boundaries, interfaces (also known as domain walls);

• coupled systems of QFTs of different dimensionalities.

Supersymmetric localization can be performed with them. These objects also
play an important role in conformal bootstrap and holography. They were
initially introduced as order parameters: their expectation values as functions of
some parameters can be used to classify phases of QFTs.

Today we’ll talk about boundaries in 2d. This is closely related to what
Francesco Benini discussed last week. Tomorrow we’ll talk about line operators
in 4d. This is closely related to what Wolfger Peelaers discussed last week. The
general ideas will be emphasized.

References

• general: section 39 of “Mirror symmetry” by Hori etc. (from the Clay
Mathematical Institute);
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• 3 papers:

– Sugishita–Terashima https://arxiv.org/abs/1308.1973,
– Honda–Okuda https://arxiv.org/abs/1308.2217,
– Hori–Romo http://arxiv.org/abs/1308.2438.

We shall use notations most similar to Honda–Okuda, themselves similar
to Doroud–Gomis–Le Floch–Lee (the S2 case).

1.1 B-type boundary conditions
Set-up. We consider 2d N = (2, 2) theories on S2 or on the hemisphere.

1.1.1 Geometry and supersymmetry

Consider the supergravity background obtained from dimensional reduction of
the 4d N = 1 new minimal supergravity, namely the one that has R-symmetry.
We call this 2d background the U(1)V supergravity background because it
preserves a U(1) vector-like R-symmetry. The metric is

ds2 = f(θ)2dθ2 + `2 sin2 θdϕ2 (1)

with θ ∈ [0, π] and periodic ϕ ∈ [0, 2π). We sometimes use the vielbein (zweibein)

e1̂ = f(θ)dθ, e2̂ = ` sin θdϕ. (2)

The function f : [0, π] → R is such that near the pole θ = 0 we have
f(θ) ∼ `+O(θ2) (to avoid any singularity). For example,

• f = ` constant is the round metric;

• f =
√
`2 − cos2 θ + ˜̀2 sin2 θ gives the squashed sphere S2

b : {x2
0 + b2(x2

1 +
x2

2) = `2} (perhaps 1/b2?).

The U(1) R-symmetry background gauge field is

V R = 1
2

(
1− `

f(θ)

)
dϕ (3)

(in particular it goes to zero at the pole). Finally,

H = H = #
f

(4)

for some coefficient #.
Generalized Killing spinor equations are

(∇µ − iV Rµ )ε = 1
2f γµγ3ε (5)

(∇µ + iV Rµ )ε = − 1
2f γµγ3ε (6)
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Explicit solutions to the generalized Killing spinor equations are

ε = e−
i
2 θγ2̂

(
e
i
2ϕ

0

)
, ε = e

i
2 θγ2̂

(
0

e−
i
2ϕ

)
. (7)

Our convention for Gamma matrices is

γθ̂ = γ1̂ =
(

0 1
1 0

)
, γϕ̂ = γ2̂ =

(
0 −i
i 0

)
, γ3 =

(
1 0
0 −1

)
. (8)

On the round sphere we have su(2|1) symmetry, which gets broken by the
deformation f down to su(1|1). The square of the supercharge involves a rotation
in the ϕ direction. This allows for boundaries at constant θ. For simplicity we
put the boundary at θ = π/2. Then

ε ∼ 1√
2

(
1
1

)
, ε ∼ 1√

2

(
1
1

)
(9)

up to an R-symmetry gauge transformation.
In coordinates x1 = ˜̀(θ − π/2) and x2 = `ϕ, then

x1

x2

Near the boundary the supercharges are Q1 + Q2 (= Q+ + Q− in textbook
notations) and Q1 +Q2 (= Q− +Q+). This is known as B-type supersymmetry.

Just by analysing the supersymmetry we see that at the poles A-type su-
persymmetry is preserved while at the boundary B-type supersymmetry is
preserved.1 We learn that

Zhemisphere ∼
〈
B-brane

∣∣ 1 in (a,c)-ring
〉

(10)

where the B-brane describes the choice of boundary condition, while 1 denotes
that we did not insert any operator at the pole, but we could have inserted any
operators in the twisted chiral ring (also known as the (a,c) ring).

Question from the audience (asked later): What does this equation mean; so
far we only have a gauge theory, not an SCFT. Answer: the gauge theory can
flow to an SCFT; then some recent work shows that the equality holds.

1By this we mean that a specific 2-supercharge subalgebra of 2d N = (2, 2) supersymmetry
is preserved.
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Question from Yale Fan maybe (I couldn’t see): why do we get an overlap
and not a state? Answer (rephrased from Takuya’s answer): the path integral
over a space with a boundary defines a state on the boundary, here it is what
we denoted as |1〉; then the partition function with a given boundary condition
computes the overlap of that wavefunction with the wavefunction associated to
the choice of boundary condition.

1.1.2 Supermultiplets

Vector multiplets for gauge group G: (Aµ, σ1, σ2, λ, λ,D).
Chiral multiplet in representation R of G: (φ, ψ, F ).
Some susy transformations are

δAµ = − i2
(
ε̄γµλ+ λ̄γµε

)
(11)

δφ = εψ (12)

δψ = iγµεDµφ+ iεσ1φ+ γ3εσ2φ+ iq

2r γ
3εφ+ ε̄F. (13)

Here εγµλ = εα(γµ)αβλβ and εα = Cαβεβ and components of Cαβ are C12 =
−C21 = 1 and C11 = C22 = 0.

Part of the 2d N = (2, 2) supersymmetry is broken by the boundary.

1.1.3 Boundary conditions at θ = π/2

For the vector multiplet,

σ1 = 0, D1σ2 = 0, A1 = 0, F12 = 0 (14)
ελ = ελ = 0, D1(εγ3λ) = D1(εγ3λ) = 0, D1̂(D − iD1̂σ1) = 0. (15)

As announced, this preserves half of the supersymmetry.
For the chiral multiplet the main boundary condition is Neumann boundary

condition
D1φ = 0, εγ3ψ = D1(εψ) = 0, F = 0. (16)

An other choice is Dirichlet boundary condition

φ = 0, εψ = D1(εγ3ψ) = 0, D1̂(e−iϕF + iD1̂φ) = 0. (17)

Question from Masahito Yamazaki: are those boundary conditions elliptic?
Answer: they are probably not, which is a problem for perturbation theory, but
for localization that is not a problem.

1.2 Matrix factorization
1.2.1 Warner term

On the sphere, the action is

Sphys = Svec + Schi + SW + Sϑ + SFI (18)
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where Svec is basically the Yang–Mills action, Schi has a kinetic term for the
chiral multiplet, Sϑ is a topological term

∫
F , SFI is basically

∫
d2xD, and

finally the superpotential term is

SW '
∫ (

F i∂iW (φ)− 1
2ψ

iψj∂i∂jW + conjugate
)
. (19)

We need to make these terms supersymmetric. From the calculations on the
sphere in Francesco Benini’s lecture we know that supersymmetry variations are
total derivatives, but then these must be compensated by the supersymmetry
variations of boundary terms that we add to the action. For most terms that’s
easy. The exception is

δSW ∼
∮

dϕ
(
εγµψi∂iW + conjugate

)
. (20)

This term is the Warner term, it is hard to get as a supersymmetric variation of
a boundary term.

1.2.2 Matrix factorization

The way we do that is to insert a Wilson loop in the path integral:

Z ∼
∫

boundary
condition

D(fields)e−Sphysical TrV Pexp i
∮
Aϕdϕ. (21)

The boundary interaction is

Aϕ ∼ Aϕ + iσ2 + (R-charge) + (twisted mass)
+
{
Q(φ), Q(φ)

}
+ #(ψ1 − ψ2)i∂iQ(φ) + conjugate.

(22)

Here Q(φ) : V → V is a linear map on some auxiliary vector space V . The point
is to cancel the Warner term:

δSUSY

(
e−SW TrV Pexp i

∮
Aϕdϕ

)
= 0. (23)

This holds if
Q(φ)2 = W (φ)× idV . (24)

This operator Q(φ) is called a matrix factorization of the superpotential W ,
or tachyon profile. For details see Herbst–Hori–Page ∼2008.

Gauge-invariance requires g−1Q(gφ)g = Q(φ) where on the left-hand side, g
implicily acts on V .

R-symmetry requires eir∗χQ(eiRχφ)e−ir∗χ = eiχQ(φ).
Why is it called matrix factorization? Assume that V = V even ⊕ V odd and

Q is odd, namely Q =
(

0 a
c 0
)
. Then Q2 = W requires ab = ba = W idV .
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1.3 Hemisphere partition function
We use the same localization action as Francesco Benini did on S2. For simplicity
we work with G = U(N), with complexified FI parameter t = 2πξ − iϑ where ϑ
is the topological angle.

The localization equations set the field strength to be constant, but F12 = 0
at the boundary because of boundary conditions, so we find

σ1 = Fµν = 0, σ2 = constant, φ = 0, F = 0. (25)

The classical action is e−Sphysical = etTrσ where σ = −i`σ2 (this includes twisted
masses where appropriate).

The pedestrian way to get the one-loop determinants is by listing the eigen-
modes and keeping those that are consistent with the boundary condition.

1.3.1 One-loop determinants

Chiral multiplets with Neumann boundary conditions are

ZNeumann
1-loop =

∏
w∈weights(R)

1∏reg.
j≥0(j − i(wσ2 + iq/2))

=
∏

w∈weights(R)

Γ(wσ + q/2)

(26)
where we used zeta-function regularization. With Dirichlet boundary conditions,

ZDirichlet
1-loop =

∏
w∈weights(R)

reg.∏
j≥0

(
j + 1 + i(wσ2 + iq/2)

)
, (27)

which zeta-function regularization suggests should be
∏
w 1/Γ(1− wσ − q/2).

Claim: zeta function regularization is not always correct (in fact, why should
it be? its validity needs to be checked on a case-by-case basis). Specifically, the
correct answer is

ZDirichlet
1-loop =

∏
w∈weights(R)

−2πieπi(w·σ−q/2)

Γ(1− wσ − q/2) . (28)

(In fact a more precise analysis shows that each factor in the infinite product
comes with a phase eiπ; zeta regularization then produces a power of eiπ that gives
the numerator above. The factor 2π likewise comes from a careful zeta-function
regularization.) Why?

• There is a duality between Dirichlet boundary condition and Neumann
boundary condition plus boundary interaction (related to Atiyah–Bott–
Shapiro construction of D0 branes). This imposes the extra factors.

• First principles derivation (unpublished): Pauli–Villars regularization
shows that

ZDirichlet
1-loop

/
ZNeumann

1-loop = 1− e2πi(w·σ−iq/2). (29)
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This ratio is unambiguous if we impose supersymmetry and gauge-invariance.2

The vector multiplet one-loop determinant is

Zvector
1-loop =

∏
α>0

reg.∏
j≥0

[
j2 + (ασ2)2] =

∏
α>0

∏
α>0

(ασ) sin(πα · σ). (30)

using zeta-function regularization. The July 24 lec-
ture starts hereAltogether

Z1-loop =
(∏
α>0

α · σ sin πα · σ
)

∏
a∈Neu

∏
w∈weights(Ra)

Γ(w · σ + q/2)

∏
a∈Dir

∏
w∈weights(Ra)

−2πieπi(w·σ+q/2)

Γ(1− w · σ − q/2) ,

(31)

where the products range over chiral multiplets with Neumann and with Dirichlet
boundary condition respectively, and where σ = −i`σ2 and where twisted masses
are introduced by shifting w · σ → w · σ +ma.

We call B = (Neu,Dir, (V, ρ, r∗), Q) the boundary data. Boundary data is in
one to one correspondence with B-branes.

For a gauge group G we find the hemisphere partition function as a function
of t = 2πξ − iϑ:

Zhem(B; t) = 1
|Weyl(G)|

∫
(iR)rankG

drankGσ

(2πi)rankG etren·σ StrV e−2πiσZ1-loop(σ).

(32)
To be more precise, the contour (iR)rankG comes from the boundary condition
of the vector multiplet, which for convergence may need to be tilted compared to
this real axis, but for supersymmetry needs to remain a Lagrangian submanifold.
The supertrace factor StrV e−2πiσ is also called the brane factor, as this is what
depends on the choice of matrix factorization (V, ρ, r∗, Q).

1.4 D-brane central charge
What is the meaning for CFT? Namely, for the case where the gauge theory
flows in the IR to a CFT. Conjecture by Honda–Okuda and Hori–Romo: the
hemisphere partition function is an unnormalized version of the central charge
of the D-brane. The conjecture was proven by Bachas and Plencner.

In compactifications of II string theory on a Calabi–Yau3 down to 4d for
instance, particles in 4d come from D-branes whose spatial directions are along
the Calabi–Yau manifold. In the 4d N = 2 superalgebra there are central

2Recall that different regularizations are related by counterterms. Different choices of
counterterms preserve different symmetries.
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charges, and this is the central charge we are talking about. A more intrinsic
definition is that the central charge is obtained from the partition function in an
infinitely long cigar geometry with an A-twist. This constructs the RR ground
state. Then the partition function computes 〈B|0〉RR.

Note that the fact that it is unnormalized is not a big problem: we are
interested in comparing central charges of different D-branes to determine which
combination of particles is more stable.

For the non-conformal case, conjecture by Cecotti and Vafa.

Example Calabi–Yau hypersurface in CPN−1. For N = 3 this is the torus, for
N = 4 this is the K3 surface, for N = 5 this is the quintic threefold.

Gauge group U(1), N chirals φi of gauge charge +1, one chiral P of gauge
charge −N . The gauge charges sum up to zero so this model is Calabi–Yau. The
superpotential is W = PGN (φ) where GN (φ) is a generic degree N polynomial.

Let us work out a matrix factorization for the D(2N − 4) brane, namely
choose all coordinates to have Neumann boundary condition, none with Dirichlet
boundary condition. Introduce fermionic oscillators {η, η} = 1 and a state |0〉
with η|0〉 = 0. This gives a two-dimensional space V spanned by |0〉 and η|0〉.
Then

Q(φ, P ) = GN (φ)η + Pη (33)

is such that Q2 = W . One can assign gauge and R-charges on V such that the
remaining conditions are obeyed: gauge charge of |0〉 is n + N/2 with n ∈ Z,
R-charge of |0〉 is 0.

Claim (discussed in Herbst–Hori–Page): the matrix factorization Q describes
OM (n) over the Calabi–Yau manifold M , which is obtained as a restriction of
the standard line bundle O(n) on CPN−1.

Then

Zhem
[
OM (n)

]
=
∫
iR

dσ
2πie

−2πinσ(e−Nπiσ − eNπiσ)etσΓ(σ)NΓ(1−Nσ). (34)

After some calculations, in the large volume limit <(t) = 2πξ � 0, this goes like

Zhem
[
OM (n)

]
∼
∫
M

ch(OM (n))eB+iωΓ̂(TM) (35)

whereM is our target space, where B+iω = −t
2πie in terms of a generator e = i∗h

of H2(M,Z) where h is the hyperplane class in CPN−1. Here the Gamma hat
class is

Γ̂(E) :=
∏
j

Γ
(

1 + ixj
2π

)
(36)

in terms of Chern roots, themselves such that ch(E) =
∑
j e
xj .

Thus the localization calculation explains the appearance of the Gamma
class, which was previously found through more ad-hoc calculations.
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Question from the audience: what happens when we change the bound-
ary condition from Neumann to Dirichlet? Well, that changes the one-loop
determinant to

ZDirichlet
1-loop = ZNeumann

1-loop (1− e2πi(w·σ−iq/2)) (37)

in other words it is equivalent to changing the brane factors by a factor (1 −
e2πi(w·σ−iq/2)).

1.5 Interfaces
Consider a sphere with theory T1 on one hemisphere and T2 on the other
hemisphere. We can fold this into T1 × T 2 on the hemisphere. Then an interface
preserving B-type supersymmetry is equivalent to a B-brane for the T1 × T 2
theory. In the exercises from yesterday we gave a way to write the trivial interface
as a matrix factorization for the product theory. This means that the hemisphere
partition function with that boundary condition reproduces the sphere partition
function.

2 Lecture 2, July 24 — supersymmetric local-
ization with line operators in 4d

https://arxiv.org/abs/1412.7126 (review)
https://arxiv.org/abs/1111.4221 Ito–Okuda–Taki
https://arxiv.org/abs/1801.01986 Brennan–Dey–Moore
Consider a theory with gauge group G. Denote the Cartan algebra by t and

t∗ its dual. We have the root and weight lattices Λr ⊂ Λw ⊂ t∗, and their duals
Λcw ⊃ Λcr inside t. Namely the weight lattice is dual to the coroot lattice and
conversely.

In 4d N = 2, one can have 1
2 -BPS Wilson line operators

WR = TrR Pexp
∮

Straight line
(iA+ <φds). (38)

The possible curves on which the Wilson loop can be put and preserve half of
the supersymmetry have been classified for the case of 4d N = 4. For N = 2 this
may be an open problem. Here R is an irrep of G, characterized by its highest
weight w ∈ Λw, which is a dominant weight.

A ’t Hooft line operator T (B) in 4d N = 2 is defined by a singular boundary
condition

F ∼ B

2 εijk
xi

r
dxk ∧ dxl = −B2 sin θdθ ∧ dϕ, (39)

φ ∼ iB

2r , (40)
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where xi and (r, θ, ϕ) are local coordinates describing transverse directions to
the loop (namely the normal bundle). More precisely this is for ϑtopological = 0;
otherwise details change to be consistent with the Witten effect.

The Dirac quantization condition for B is found by considering a gauge where
A ∼ −B2 (1− cos θ)dϕ, namely put the Dirac string along θ = π. The condition
for the Dirac string to be unobservable by an electric charge is that 1

2π
∫
S2 F

should have integer eigenvalues on arbitrary representations of G. We conclude
that B ∈ Λ∗w = Λcr (also called magnetic charge lattice). Note that this does
not depend on the matter content, but only on the global structure of the gauge
group.

One can combine the two. This gives a dyonic loop operator, characterized
by (B,w) with B ∈ Λcr and w in Λw of the part of the gauge group unbroken
by B, modulo the Weyl group.

A more refined classification comes from considering two line operator with
labels (B1, w1) and (B2, w2). Just like an electrically charged particle picks up
a phase when going around a Dirac string, and we need to set that phase to 1,
loops pick up a phase

exp(2πi
(
〈B2, w1〉 − 〈B1, w2〉

)
. (41)

When this is equal to 1, we say the operators are mutually local.
Aharony, Seiberg, Tachikawa understood that to specify a theory completely

we need to choose a maximal set of mutually local line operators. This is equivalent
to a choice of theta angles, or to a choice of maximal isotropic subgroup of
Z(G)× Z(G)∗ where Z(G) is the center of G. This paper is essential reading.

2.1 A1 theories of class S
Class S theories are built from two M5 branes on Cg,n (g is the genus and n the
number of punctures).

There is a correspondence by Drukker–Morrison–Okuda between

• homotopy classies of closed curves on Cg,n;

• line operators charges

Tachikawa worked out that the more refined classification of line operator charges
is in one to one correspondence with isotropic subgroups of H1(Cg,n=0,Z3g−3

2 ).

2.2 Localization with line operators
Line operators can be placed on two possible circles on S4

b , or along the time
circle on S1 × R3.

For Wilson lines, the localization calculation has been done by Pestun for
b = 1, by Hama–Hosomichi for other b. For ’t Hooft loops and dyonic loops,
the localization calculation was done by Gomis–Okuda–Pestun for b = 1, not
done yet for general b. On the other hand, the AGT correspondence provides a
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prediction for the answer in general so it may not be so interesting to actually
do the localization calculation.

Consider a ’t Hooft loop on S1
b inside S4

b . Only the loca neighborhood will
matter, so S1 ×λ R3, where λ is a twist parameter describing how R3 is rotated
when we go around S1 once. Then the ’t Hooft loop expectation value is

〈TB〉S4
b
⊃ Zmono. (42)

2.3 Kronheimer’s correspondence
We should all thank Okuda and Pestun for having bugged Kronheimer until he
finally posted his master thesis on his webpage.

The Bogolmony equations are ?3F = Dφ.
The antiselfduality equation is F + ?F = 0.
Kronheimer showed that

• instantons on Taub–NUT space invariant under some U(1) rotation;

• singular monopoles

are in one-to-one correspondence. See exercises for details.
The multi-Taub–NUT space is

ds2 = V d~x2 + V −1(dψ + ω)2, ψ ∼ ψ + 2π, (43)

V = `+
∑
j

1
2|~x− ~xj |

, dω + ?3dV = 0. (44)

Just like in Nekrasov’s instanton partition function, small instantons con-
tribute. On top of the ’t Hooft singularity we can have ’t Hooft–Polyakov
monopoles that come close to the singularity. This can change B to a smaller
weight v. This is called monopole screening or bubbling. Through Kronheimer’s
correspondence we can map these to small instantons.

The relevant instanton moduli space turns out to be the same as in flat space,
so we can use the ADHM construction, and the same localization techniques
apply. Follow-up on

July 25
2.4 Interlude on ’t Hooft
In 1978 in Nuclear Physics B, ’t Hooft introduced an algebra of loop operators
in an su(N) gauge theory. Let W be a Wilson loop on a curve CW and T a ’t
Hooft loop on a curve CT . Consider the configuration where CW and CT are
Hopf-linked (simplest linking) on a constant time-slice R3. Now we can move
CW and CT slightly in time; it makes sense to compare the two orderings. One
finds

WT = e
2πi
N TW (45)

namely the fundamental Wilson loop and fundamental ’t Hooft loop are not
mutually local.
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What is the modern point of view on this?
The two loop operators cannot both be genuine loop operators at the same

time. At least one of the two loops must be the boundary of some topological
surface operator.

Let us be more precise about the global structure of the group.

• Consider a gauge theory with gauge group G = SU(N). Then the funda-
mental Wilson loop is well-defined. However, the ’t Hooft loop must be the
boundary of a topological surface operator, a Dirac string on Rt>0 × CT
(the usual Dirac string people are used to when there is a monopole
configuration).

• Consider a gauge theory with gauge group G = SU(N)/ZN and with zero
discrete theta angle. Then naively Tr� Pexp i

∮
A is not defined because the

fundamental representation is not a representation of the group SU(N)/ZN .
But the expression is written in terms of the connection A, so it actually
seems to make sense to take the trace in any representation. Gauge-
invariance fails only when we consider some gauge transformations that
are only defined on patches. If we realize CW as the boundary of some
surface, then the Wilson loop is well-defined and gauge-invariant (but it
depends on the surface): the idea is to define it using a gauge field that is
defined in one patch containing the whole surface.

The take-home message is that some line operators are not genuine and arise as
boundaries of surface operators.

2.5 Kronheimer correspondence
ds2 = V d~x2 + V −1(dψ + ω)2 (46)

with coordinate ψ ∼ ψ + 2π, and where the potential is V = `+
∑
j

1
2|~x−~xj | and

where ω is defined by dω + ?3dV = 0.
The partition function in the presence of a ’t Hooft loop operator is (for b 6= 1

it is a guess)

〈TB〉S4
b

=
∫
t

da
∑
v

ZS
1×R3

1-loop ZmonopoleZ
S4
b

1-loop

∣∣∣Zinstanton

∣∣∣2 (47)

The sum over v comes from screening/bubbling monopoles that weaken the
singularity. The Zmonopole is an analogue of the instanton partition function.

The similar calculation on S1 ×λ R3, namely the following trace, is expressed
in terms of the same one-loop determinant and monopole contribution. Note
that the ’t Hooft loop operator changes the Hilbert space:

〈TB〉S1×λR3 = TrH(TB)

(
(−1)F e−2πRHe2πiλ(J3+I3)e−2πimfFf

)
(48)

=
∑
v

e2πivbZS
1×R3

1-loop (a,mf , b, v)Zmonopole(a,mf , b;B, v) (49)
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where a depends on one vector multiplet real scalar and the holonomy around
the circle, while b depends on other vector multiplet real scalar and on the
graviphoton.
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