Instantons

Nikita Nekrasov*
Simons Center for Geometry and Physics, Stony Brook University, NY 11794-3636 USA nnekrasov@scgp.stonybrook.edu

Introduction to instantons. Unnamed sections are the exercises.

Contents

1.1. Path integral as a period. Lefschetz thimbles. Complex critical points 1
1.2. Example of the anharmonic oscillator. Critical points as rational foliations. Generaliza-
tions to many degrees of freedom. Instanton-antiinstanton gas 2
1.3. Supersymmetric quantum mechanics. Instantons as the Q-fixed points. Morse theory . 4
1.4. Generalizations to infinite-dimensional systems: two dimensional sigma models and four
dimensional gauge theories . 5
1.5. Instantons in sigma models. Non-linear vs. gauged linear sigma models. Vortices,
freckles, bubbles. Worldsheet instantons in string theory. Stable maps 6
1.6. Instantons in gauge theory. ADHM construction, reciprocity 8
1.7. Nakajima-Gieseker compactification, noncommutative instantons 11
1.8. Supersymmetric localisation, fixed points, colored partitions, compactness theorem . . 12
1.9. Crossed instantons, qq-characters, non-perturbative Dyson-Schwinger equations. Seiberg-Witten geometry13
References 15

1.1. Path integral as a period. Lefschetz thimbles. Complex critical points

Let \mathcal{X} be dimension n complex manifold. Let $S: \mathcal{X} \longrightarrow \mathbb{C}$ be a holomorphic function, h a hermitian metric on $\mathcal{X}, \hbar \in \mathbb{C}$, and $\Omega_{\mathcal{X}}$ a holomorphic top degree form. Let $\mathcal{X}_{\infty} \subset \mathcal{X}$ be the region where $\operatorname{Re}(S / \hbar) \gg 0$, and $[\Gamma] \in H_{n}\left(\mathcal{X}, \mathcal{X}_{\infty}\right)$. We study

$$
\begin{equation*}
Z_{\Gamma}(\hbar)=\int_{\Gamma} \Omega_{\mathcal{X}} e^{-\frac{S}{\hbar}} \tag{1.1}
\end{equation*}
$$

*On leave from ITEP and IITP (Moscow)

1.1.1.

Consider

$$
\begin{equation*}
Z_{\Gamma}(x)=\int_{\Gamma} d t e^{\frac{i}{\hbar}\left(t x-\frac{1}{3} t^{3}\right)} \tag{1.2}
\end{equation*}
$$

Find the convergence cycles, and Lefschetz thimbles for real \hbar.
1.2. Example of the anharmonic oscillator. Critical points as rational foliations. Generalizations to many degrees of freedom. Instanton-antiinstanton gas

1.2.1. Definitions

Define

$$
\begin{equation*}
U(x)=\frac{\lambda}{4}\left(x^{2}-v^{2}\right)^{2}, \quad H(p, x)=\frac{1}{2} p^{2}+U(x)=E \tag{1.3}
\end{equation*}
$$

Pass to the dimensionless variables: $x=v \xi, E=U_{0} \epsilon, p=\sqrt{2 U_{0}} \rho$ with

$$
\begin{equation*}
U_{0}=\frac{\lambda}{4} v^{4} \tag{1.4}
\end{equation*}
$$

The complex energy level \mathcal{C}_{ϵ} is the curve:

$$
\begin{equation*}
\rho^{2}+\left(\xi^{2}-1\right)^{2}=\epsilon \tag{1.5}
\end{equation*}
$$

1.2.2.

Show it is isogenous to the elliptic curve

$$
\begin{equation*}
\mathrm{y}^{2}=4 \mathrm{x}^{3}-g_{2} \mathrm{x}-g_{3} \tag{1.6}
\end{equation*}
$$

with g_{2}, g_{3} functions of ϵ :

$$
\begin{equation*}
g_{2}=\frac{4}{3}(3 \epsilon+1), \quad g_{3}=\frac{8}{27}(9 \epsilon-1) \tag{1.7}
\end{equation*}
$$

and discriminant $\Delta=g_{2}^{3}-27 g_{3}^{2}=64 \epsilon(\epsilon-1)^{2}$.

$$
\mathrm{y}=2 \mathrm{i} \rho \xi, \mathrm{x}=\xi^{2}-\frac{2}{3}
$$

1.2.3. Useful differentials

Action differential

$$
\begin{equation*}
p d x=\frac{3 S_{0}}{4} \rho d \xi \tag{1.8}
\end{equation*}
$$

where

$$
\begin{equation*}
S_{0}=\frac{4 v}{3} \sqrt{2 U_{0}} \tag{1.9}
\end{equation*}
$$

Timing differential

$$
\begin{equation*}
\frac{d x}{p}=\frac{v}{\sqrt{2 U_{0}}} \frac{d \xi}{\rho}=\frac{\mathrm{i} v}{\sqrt{2 U_{0}}} \frac{d \mathrm{x}}{\mathrm{y}} \tag{1.10}
\end{equation*}
$$

1.2.4.

Classification of solutions, e.g. periodic trajectories with time period T : each trajectory corresponds to some ϵ, and represents a homology cycle $\gamma \leftrightarrow(n, m) \in$ $H_{1}\left(\mathcal{C}_{\epsilon}, \mathbb{Z}\right)$, such that

$$
\begin{equation*}
\oint_{\gamma} \frac{d x}{p}=T \tag{1.11}
\end{equation*}
$$

For large T expect $\epsilon \rightarrow 0$. Show, without doing any calculations ${ }^{\dagger}$, that (with some choice of the basis), when $\epsilon \rightarrow 0$,

$$
\begin{equation*}
\oint_{\gamma} \frac{d x}{p}=\left(n+m \frac{2}{2 \pi \mathrm{i}} \log \left(\epsilon / \epsilon_{0}\right)\right) \tau_{0}+O(\epsilon) \tag{1.12}
\end{equation*}
$$

where ϵ_{0} is of order 1 , and

$$
\begin{equation*}
\tau_{0}=\frac{\pi v}{\sqrt{2 U_{0}}} \tag{1.13}
\end{equation*}
$$

is the period of small oscillations near the classical minimum.

1.2.5.

Approximate the $\epsilon \rightarrow 0$ trajectory by the sequence of instantons and antiinstantons, i.e. solutions to the first-order equations:

$$
\begin{equation*}
\rho= \pm \mathrm{i}\left(1-\xi^{2}\right) \tag{1.14}
\end{equation*}
$$

1.2.6. Many-body systems

Canonical variables $\left(p_{a}, x^{a}\right)$, algebraic integrability $H_{a}(p, x),\left\{H_{a}, H_{b}\right\}=0$, fibers (after some partial compactification) $\vec{H}^{-1}(\vec{E})$ being the abelian varieties. Actionangle variables, $\left(\mathrm{a}_{a}, \varphi^{a}\right)$, period matrix $\tau_{a b}(\mathrm{a})$.

$$
\begin{equation*}
d \vec{p} \wedge d \vec{x}=\sum_{a} d \mathrm{a}_{a} \wedge d \varphi^{a} \tag{1.15}
\end{equation*}
$$

1.2.7.

Classification of solutions, e.g. periodic trajectories with time periods T^{a} : each trajectory corresponds to \vec{E}, with $\vec{H}=\vec{E}, \mathcal{C}_{\vec{E}}=\vec{H}^{-1}(\vec{E})$, it represents a homology cycle $\gamma \leftrightarrow(\vec{n}, \vec{m}) \in H_{1}\left(\mathcal{C}_{\vec{E}}, \mathbb{Z}\right)$, such that

$$
\begin{equation*}
\frac{\partial}{\partial E_{a}} \oint_{\gamma} \vec{p} d \vec{x}=T^{a} \tag{1.16}
\end{equation*}
$$

[^0]
1.3. Supersymmetric quantum mechanics. Instantons as the Q fixed points. Morse theory

One dimensional quantum mechanics. Fields $(x, p ; \psi, \bar{\psi})$, supersymmetry:

$$
\begin{equation*}
\delta x=\psi, \delta \bar{\psi}=p \tag{1.17}
\end{equation*}
$$

The Lagrangian

$$
\begin{equation*}
L=\delta\left(\bar{\psi}\left(\dot{x}+\frac{\mathrm{i}}{2} p-V^{\prime}(x)\right)\right) \tag{1.18}
\end{equation*}
$$

Critical points:

$$
\begin{align*}
& \dot{x}+\mathrm{i} p-V^{\prime}(x)=0 \\
& -\dot{p}+V^{\prime \prime \prime}(x) \bar{\psi} \psi-V^{\prime \prime}(x) p=0 \\
& \dot{\psi}-V^{\prime \prime}(x) \psi=0 \tag{1.19}\\
& -\dot{\bar{\psi}}-V^{\prime \prime}(x) \bar{\psi}=0
\end{align*}
$$

Show that

$$
\begin{align*}
& b=\bar{\psi} \psi \\
& E=\frac{1}{2}\left(p+\mathrm{i} V^{\prime}\right)^{2}+U(x) \tag{1.20}\\
& U(x)=\frac{1}{2}\left(V^{\prime}(x)\right)^{2}-\mathrm{i} b V^{\prime \prime}(x)
\end{align*}
$$

are conserved quantities $\dot{b}=\dot{E}=0$. Solve the equations of motion for $V(x)$ given by a cubic polynomial in x.

Several degrees of freedom:

$$
\begin{align*}
& \delta x^{a}=\psi^{a}, \quad \delta \bar{\psi}_{a}=p_{a}, \\
& \delta \psi^{a}=0, \quad \delta p_{a}=0 \tag{1.21}\\
& \mathcal{L}=\delta\left(\bar{\psi}_{a}\left(\dot{x}^{a}+\frac{\mathrm{i}}{2} g^{a b}\left(p_{b}-\gamma_{b d}^{c} \psi^{d} \bar{\psi}_{c}\right)-g^{a b} \partial_{b} V\right)\right)
\end{align*}
$$

Localisation: take the limit $g^{a b} \rightarrow 0, V \rightarrow \infty$, so that $\mathcal{V}^{a}=g^{a b} \partial_{b} V$ stays finite. Describe the space of states in this limit. Note one gets a priori different spaces of in- and out- states, why?

The evolution operator, in the limit. Relation to Morse theory.
Lagrangian approach: localisation locus in the space of fields: solutions to

$$
\begin{equation*}
\dot{x}^{a}=\mathcal{V}^{a} \tag{1.22}
\end{equation*}
$$

i.e. gradient trajectories, connecting critical points p, where $\mathcal{V}^{a}(p)=0$. Careful analysis for quadratic V shows, that the limiting states are differential forms on a patch $\mathcal{U}_{p} \ni p$, which have the following structure:

$$
\begin{equation*}
\mathcal{U}_{p} \backslash\{p\} \approx X_{p}^{n-m_{p}} \times Y_{p}^{m_{p}} \tag{1.23}
\end{equation*}
$$

where

$$
\begin{equation*}
V-V(p) \approx \sum_{i=1}^{n-m_{p}} x_{i}^{2}-\sum_{j=1}^{m_{p}} y_{j}^{2} \tag{1.24}
\end{equation*}
$$

So,

$$
\begin{equation*}
\mathcal{H}^{\text {in }}=\bigoplus_{p} A^{\bullet}\left(Y_{p}^{m_{p}}\right) \otimes A^{\bullet}\left(\left(X_{p}^{n-m_{p}}\right)^{\vee}\right) \delta_{Y_{p}^{m_{p}}} \tag{1.25}
\end{equation*}
$$

1.4. Generalizations to infinite-dimensional systems: two dimensional sigma models and four dimensional gauge theories

1.4.1. Sigma model action

governs the maps $X: \Sigma \rightarrow \mathcal{X}$, for the target space \mathcal{X} equipped with the metric G and a two-form (a connection on a gerbe) B :

$$
\begin{equation*}
S=\frac{1}{2} \int_{\Sigma} G_{M N} d X^{M} \wedge \star d X^{N}+\frac{\mathrm{i}}{2} \int_{\Sigma} B_{M N} d X^{M} \wedge d X^{N} \tag{1.26}
\end{equation*}
$$

Define

$$
\begin{equation*}
E_{M N}=G_{M N}+\mathrm{i} B_{M N} \tag{1.27}
\end{equation*}
$$

In two dimensions, for Euclidean $\Sigma, \star^{2}=-1$ when acting on 1-forms. Assume an almost complex structure $J: T \mathcal{X} \rightarrow T \mathcal{X}, J^{2}=-1$, such that G and B are related via:

$$
\begin{equation*}
B_{M N}=J_{M}^{M^{\prime}} J_{N}^{N^{\prime}} B_{M^{\prime} N^{\prime}}, \quad G_{M N}=B_{M K} J_{N}^{K} \tag{1.28}
\end{equation*}
$$

so that

$$
\begin{gather*}
S=\frac{\mathrm{i}}{2} \int_{\Sigma} B_{M N} d X^{M} \wedge\left(\star\left(-\mathrm{i} J_{K}^{N} d X^{K}\right)+d X^{N}\right) \tag{1.29}\\
d X^{M}=\partial X^{M}+\bar{\partial} X^{M}, \quad \star d X^{M}=\mathrm{i}\left(\partial X^{M}-\bar{\partial} X^{M}\right) \tag{1.30}
\end{gather*}
$$

1.4.2.

For $\Sigma=S^{1} \times \mathbb{R}^{1}$ map the sigma model to the bosonic sector of a supersymmetric quantum mechanical system. What is the target space and what is the prepotential V ?

1.4.3. Yang-Mills action

governs connections A on a principal G-bundle over the four dimensional Euclidean spacetime M^{4} :

$$
\begin{equation*}
S_{Y M}=\frac{1}{4 g_{Y M}^{2}} \int_{M} \operatorname{Tr} F_{A} \wedge \star F_{A}+\frac{\mathrm{i} \vartheta}{8 \pi^{2}} \int_{M} \operatorname{Tr} F_{A} \wedge F_{A} \tag{1.31}
\end{equation*}
$$

In four dimensions $\star^{2}=1$ when acting on 2 -forms.

1.4.4.

Take $M^{4}=N^{3} \times \mathbb{R}^{1}$. Map the gauge theory to the bosonic sector of a supersymmetric quantum mechanical system. What is the target space and what is the prepotential V ?
1.5. Instantons in sigma models. Non-linear vs. gauged linear sigma models. Vortices, freckles, bubbles. Worldsheet instantons in string theory. Stable maps

1.5.1.

Bogomolny trick: define $\Pi=\frac{1}{2}(1-\mathrm{i} J), \bar{\Pi}=\frac{1}{2}(1+\mathrm{i} J)$, and rewrite S as:

$$
\begin{equation*}
S=\|\Pi \bar{\partial} X\|^{2}+\frac{\mathrm{i}}{2} \int X^{*} \omega \tag{1.32}
\end{equation*}
$$

where

$$
\begin{equation*}
\omega_{M N}=B_{M N}+\mathrm{i}\left(G_{M N^{\prime}} J_{N}^{N^{\prime}}-G_{N M^{\prime}} J_{M}^{M^{\prime}}\right) \tag{1.33}
\end{equation*}
$$

Show that, for closed $B, d B=0$, the absolute minimum of the real part of the action in a given topological sector is achieved by the pseudoholomorphic maps $\Pi_{M}^{N} \bar{\partial} X^{M}=0$.

1.5.2.

This is wrong. Correct this statement.

1.5.3. Gauged linear sigma model

Assume the target space Y has a group H of isometries, and at the same time symmetries of B. Couple the sigma model to H-gauge fields:

$$
\begin{equation*}
S=\frac{1}{2} \int_{\Sigma} G_{M N} \nabla X^{M} \wedge \star \nabla X^{N}+\frac{\mathrm{i}}{2} \int_{\Sigma} B_{M N} \nabla X^{M} \wedge \nabla X^{N}+\frac{1}{4 e^{2}} \int_{\Sigma} \operatorname{Tr} F_{A} \wedge \star F_{A}+e^{2} \int_{\Sigma}\|\mu\|^{2} \tag{1.34}
\end{equation*}
$$

where

$$
\begin{equation*}
\nabla X^{M}=d X^{M}+A^{a} V_{a}^{M}, \nabla=\nabla^{\prime}+\nabla^{\prime \prime} \tag{1.35}
\end{equation*}
$$

with

$$
\begin{equation*}
\nabla^{\prime \prime}=\bar{\partial}+\bar{A} \tag{1.36}
\end{equation*}
$$

$V_{a} \in V e c t(Y)$ generate the H-action, $V_{a}^{M} \partial_{M} V_{b}^{N}-V_{b}^{M} \partial_{M} V_{a}^{N}=f_{a b}^{c} V_{c}^{N}$, and μ is the moment map:

$$
\begin{equation*}
d \mu^{a}=\iota_{V_{a}} B \tag{1.37}
\end{equation*}
$$

1.5.4.

Assume there exists an H-invariant $J, J^{2}=-1$, such that $B=G J$, assume $d B=0$ (Kähler manifold) and perform the gauged Bogomolny trick:

$$
\begin{equation*}
S=\left\|\Pi \nabla^{\prime \prime} X\right\|^{2}+\frac{1}{4 e^{2}}\left\|F_{A}+2 e^{2} \mu\right\|^{2}+\mathrm{i} \int X^{*} \omega \tag{1.38}
\end{equation*}
$$

1.5.5. Gauged instantons $=$ vortex equations

$$
\begin{equation*}
\nabla^{\prime \prime} Z=0, F_{A}+2 e^{2} \mu=0 \tag{1.39}
\end{equation*}
$$

comparing solutions to those of nonlinear sigma model $e^{2}=\infty$.
Example of $\mathbb{C P}^{N-1}$.
Nonlinear/gauged linear sigma model instantons of degree d

$$
\begin{equation*}
\left(Z_{1}\left(\xi_{0}, \xi_{1}\right): \ldots: Z_{N}\left(\xi_{0}, \xi_{1}\right)\right) \tag{1.40}
\end{equation*}
$$

where

$$
\begin{equation*}
Z_{a}\left(\xi_{0}, \xi_{1}\right)=\sum_{j=0}^{d} Z_{a, d} \xi_{0}^{j} \xi_{1}^{d-a} \tag{1.41}
\end{equation*}
$$

the coefficients $Z_{a, d}$ are defined up to an overall multiplier $\in \mathbb{C}^{\times}$, and are required to obey:

NLSM) For any point $\left(\xi_{0}: \xi_{1}\right) \in \mathbb{C P}^{1}$ there exists at least one $a=1, \ldots, N$, such that $Z_{a}\left(\xi_{0}, \xi_{1}\right) \neq 0$;

GLSM) There exists at least one point $\left(\xi_{0}: \xi_{1}\right) \in \mathbb{C P}^{1}$ and there exists at least one $a=1, \ldots, N$, such that $Z_{a}\left(\xi_{0}, \xi_{1}\right) \neq 0$;

Given the set of polynomials $Z_{a}\left(\xi_{0}, \xi_{1}\right)$ the solution to the vortex equations is found by finding the Hermitian metric $e^{-2 \chi}$ on the line bundle L :

$$
\begin{equation*}
A=-\partial \chi, \bar{A}=\bar{\partial} \chi \tag{1.42}
\end{equation*}
$$

where

$$
\begin{equation*}
\Delta \chi+2 e^{2}\left(e^{-2 \chi} \sum_{a=1}^{N}\left|Z_{a}(\xi)\right|^{2}-r\right)=0 \tag{1.43}
\end{equation*}
$$

When $e^{2} \rightarrow \infty$ the solution chooses χ so that

$$
\begin{equation*}
\frac{1}{r} \sum_{a=1}^{N}\left|Z_{a}(\xi)\right|^{2} \approx e^{2 \chi} \tag{1.44}
\end{equation*}
$$

However, near the common zero of all Z_{a} 's, e.g. near $\xi=0$, the equation looks as follows

$$
\begin{equation*}
\partial_{\xi} \bar{\partial}_{\bar{\xi}} \chi+2 e^{2}\left(c_{1}|\xi|^{2} e^{-2 \chi}-r\right)=0 \tag{1.45}
\end{equation*}
$$

which has a solution: $\chi(\xi, \bar{\xi}) \approx 2 e^{2} r|\xi|^{2}-\frac{c_{1}}{2} e^{2}|\xi|^{4}+\ldots$,

1.6. Instantons in gauge theory. ADHM construction, reciprocity

1.6.1.

Bogomolny trick:

$$
\begin{equation*}
S_{Y M}=\frac{1}{4 g_{Y M}^{2}}\left\|F_{A}^{+}\right\|^{2}+\frac{2 \pi \mathrm{i} \tau}{8 \pi^{2}} \int_{M} \operatorname{Tr} F_{A} \wedge F_{A} \tag{1.46}
\end{equation*}
$$

Instantons, i.e. the solutions to

$$
\begin{equation*}
F_{A}^{+} \equiv \frac{1}{2}(1+\star) F_{A}=0 \tag{1.47}
\end{equation*}
$$

1.6.2.

Prove conformal invariance of the Yang-Mills action.

1.6.3.

Prove that the round metric on S^{4},

$$
\begin{equation*}
d s^{2}=R_{0}^{2}\left(d \theta_{1}^{2}+\sin ^{2}\left(\theta_{1}\right)\left(d \theta_{2}^{2}+\sin ^{2}\left(\theta_{2}\right)\left(d \theta_{3}^{2}+\sin ^{2}\left(\theta_{3}\right) d \theta_{4}^{2}\right)\right)\right) \tag{1.48}
\end{equation*}
$$

restricted onto $S^{4} \backslash \infty \approx \mathbb{R}^{4}$ is conformally equivalent to flat metric on \mathbb{R}^{4}.

1.6.4. S^{4} vs \mathbb{R}^{4}

The finite action instanton solution on \mathbb{R}^{4} extend to S^{4}. $A \rightarrow g^{-1} d g+g^{-1} \alpha g$, as $|x| \rightarrow \infty$, where $g: S^{3} \rightarrow G$, and $|d \alpha+\alpha \wedge \alpha| \sim O\left(\frac{1}{|x|^{2+\epsilon}}\right) \Longrightarrow|\alpha| \sim O\left(\frac{1}{|x|^{1+\epsilon}}\right)$.
1.6.5. Explicit solutions on $M^{3} \times \mathbb{R}^{1}$

Ansatz: $A=\Theta f(t)$, where Θ-flat connection on M^{3},

$$
\begin{gather*}
F_{A}=\dot{f} d t \wedge \Theta+f d \Theta+f^{2} \Theta^{2}=\dot{f} d t \wedge \Theta+f(f-1) \Theta^{2} \tag{1.49}\\
S_{Y M}=\frac{g_{\Theta}}{2} \dot{f}^{2}+\frac{h_{\Theta}}{4} f^{2}(f-1)^{2} \tag{1.50}
\end{gather*}
$$

1.6.6. Dirac operator on \mathbb{R}^{4}

Let E denote a rank N complex vector bundle over S^{4}. We restrict it on \mathbb{R}^{4}.

$$
\begin{align*}
& \not D_{A}=\sigma^{m}\left(\partial_{m}+A_{m}\right): \Gamma\left(S_{+} \otimes E\right) \rightarrow \Gamma\left(S_{-} \otimes E\right) \\
& \not D_{A}^{*}=\bar{\sigma}^{m}\left(\partial_{m}+A_{m}\right): \Gamma\left(S_{-} \otimes E\right) \rightarrow \Gamma\left(S_{+} \otimes E\right) \tag{1.51}
\end{align*}
$$

Let $M=\mathbb{R}^{4} \approx \mathbb{C}^{2}$. Identify, by twisting with $K_{M}^{\frac{1}{2}}$:

$$
\begin{equation*}
S_{+}=\Omega^{0,0} \oplus \Omega^{0,2} \quad S_{-}=\Omega^{0,1} \tag{1.52}
\end{equation*}
$$

then

$$
\begin{equation*}
\not D_{A}=\bar{\partial}_{A}+\bar{\partial}_{A}^{\dagger} \tag{1.53}
\end{equation*}
$$

1.6.7.

Show that, $F_{A}^{+}=0 \Leftrightarrow F_{A}^{0,2}=0, F_{A}^{1,1} \wedge \varpi=0$, where

$$
\begin{equation*}
2 \mathrm{i} \varpi=d z_{1} \wedge d \bar{z}_{1}+d z_{2} \wedge d \bar{z}_{2} \tag{1.54}
\end{equation*}
$$

1.6.8.

Show that, for $G=S U(N)$,

$$
\begin{equation*}
k=-\frac{1}{8 \pi^{2}} \int_{M} \operatorname{Tr} F_{A} \wedge F_{A}>0 \tag{1.55}
\end{equation*}
$$

one has the index theorem:

$$
\begin{equation*}
\operatorname{dim}^{2} e r_{L^{2}} \not D_{A}^{*}-{\operatorname{dim} k e r_{L^{2}} \not D_{A}=k} \tag{1.56}
\end{equation*}
$$

1.6.9.

and that

$$
\begin{equation*}
\not D_{A}(\eta \oplus \chi)=0 \Longrightarrow \eta=\chi=0 \tag{1.57}
\end{equation*}
$$

Hint: The equations read, in components: $D_{\bar{\alpha}} \eta+\varepsilon_{\bar{\alpha} \bar{\beta}} g^{\beta \bar{\beta}} D_{\beta} \chi=0$. Derive from this $\Delta_{A} \eta=0, \Delta_{A} \chi=0$.

1.6.10. ADHM data

Let $K \approx \mathbb{C}^{k}=k e r_{L^{2}} D_{A}^{*}$. Define

$$
\begin{equation*}
B_{\alpha}: K \rightarrow K, B_{\alpha}^{\dagger}: K \rightarrow K \tag{1.58}
\end{equation*}
$$

by

$$
\begin{equation*}
B_{\alpha}=P z_{\alpha^{\cdot}}, B_{\alpha}^{\dagger}=P \bar{z}_{\alpha} . \tag{1.59}
\end{equation*}
$$

where $P: \Gamma_{L^{2}}\left(S_{-} \otimes E\right) \longrightarrow K$ is the orthogonal projection. Let $\psi \in K$, represented by an L^{2}-normalizable (0,1)-form ψ, valued in E. It obeys:

$$
\begin{equation*}
\bar{\partial}_{A} \psi=0, \bar{\partial}_{A}^{\dagger} \psi=0 \tag{1.60}
\end{equation*}
$$

In components:

$$
\begin{equation*}
\psi=\psi_{\overline{1}} d \bar{z}_{1}+\psi_{\overline{2}} d \bar{z}_{2} \tag{1.61}
\end{equation*}
$$

the Dirac equation reads:

$$
\begin{align*}
& D_{\overline{1}} \psi_{\overline{2}}-D_{\overline{2}} \psi_{\overline{1}}=0, \tag{1.62}\\
& D_{1} \psi_{\overline{1}}+D_{2} \psi_{\overline{2}}=0,
\end{align*}
$$

For large $r^{2}=|z|^{2} \rightarrow \infty$

$$
\begin{equation*}
\psi_{\bar{\alpha}} \sim-D_{\bar{\alpha}}\left(\frac{\xi_{0}^{\dagger} I^{\dagger}}{|z|^{2}}\right)-\varepsilon_{\bar{\alpha} \bar{\beta}} g^{\beta \bar{\beta}} D_{\beta}\left(\frac{\xi_{0}^{\dagger} J}{|z|^{2}}\right) \tag{1.63}
\end{equation*}
$$

1.6.11. ADHM equations

$$
\begin{gather*}
{\left[B_{1}, B_{2}\right]+I J=0} \tag{1.64}\\
{\left[B_{1}, B_{1}^{\dagger}\right]+\left[B_{2}, B_{2}^{\dagger}\right]+I I^{\dagger}-J^{\dagger} J=0} \tag{1.65}
\end{gather*}
$$

Hyperkahler moment maps. Hyperkahler structure. $\varpi_{I}, \varpi_{J}, \varpi_{K}$

1.6.12. ADHM construction

Define

$$
\mathcal{D}^{\dagger}=\left(\begin{array}{ccc}
B_{1}-z_{1} & B_{2}-z_{2} & I \tag{1.66}\\
-B_{2}^{\dagger}+\bar{z}_{2} & B_{1}^{\dagger}-\bar{z}_{1} & -J^{\dagger}
\end{array}\right)
$$

Then

$$
\begin{equation*}
\mathcal{D}^{\dagger} \mathcal{D}=\Delta \otimes 1_{\mathbb{C}^{2}} \tag{1.67}
\end{equation*}
$$

Let $\boldsymbol{\Xi}^{\dagger}=\left(\nu_{+}^{\dagger} \nu_{-}^{\dagger} \xi^{\dagger}\right)$, with $\nu_{ \pm}: N \rightarrow K, \xi: N \rightarrow N$, solve:

$$
\begin{equation*}
\mathcal{D}^{\dagger} \boldsymbol{\Xi}=0 \tag{1.68}
\end{equation*}
$$

and be normalized

$$
\begin{equation*}
\boldsymbol{\Xi}^{\dagger} \boldsymbol{\Xi}=1_{N} \tag{1.69}
\end{equation*}
$$

Then A defined by:

$$
\begin{equation*}
A=\boldsymbol{\Xi}^{\dagger} d \boldsymbol{\Xi} \tag{1.70}
\end{equation*}
$$

is antiselfdual. Indeed,

$$
\begin{align*}
& F_{A}=d \boldsymbol{\Xi}^{\dagger} d \boldsymbol{\Xi}+\boldsymbol{\Xi}^{\dagger} d \boldsymbol{\Xi} \boldsymbol{\Xi}^{\dagger} d \boldsymbol{\Xi}=d \boldsymbol{\Xi}^{\dagger}\left(1-\boldsymbol{\Xi}^{\dagger}\right) d \boldsymbol{\Xi}= \\
& d \boldsymbol{\Xi}^{\dagger} \mathcal{D} \frac{1}{\Delta} \mathcal{D}^{\dagger} d \boldsymbol{\Xi}=\boldsymbol{\Xi}^{\dagger}\left(d \mathcal{D} \frac{1}{\Delta} d \mathcal{D}^{\dagger}\right) \boldsymbol{\Xi} \tag{1.71}
\end{align*}
$$

1.6.13. Reciprocity

$$
\begin{equation*}
\psi=\left(\nu_{+}^{\dagger} d \bar{z}_{1}+\nu_{-}^{\dagger} d \bar{z}_{2}\right) \Delta^{-1} \tag{1.72}
\end{equation*}
$$

solves Dirac equation.

1.6.14.

Check that, i.e. compute:

$$
\begin{align*}
& D_{\overline{1}} \psi_{\overline{2}}-D_{\overline{2}} \psi_{\overline{1}}=\Xi^{\dagger}\left(\bar{\partial}_{\overline{1}}\left(\Xi \nu_{-}^{\dagger} \Delta^{-1}\right)-\bar{\partial}_{\overline{2}}\left(\Xi \nu_{+}^{\dagger} \Delta^{-1}\right)\right) \\
& D_{1} \psi_{\overline{1}}+D_{2} \psi_{\overline{2}}=\Xi^{\dagger}\left(\partial_{1}\left(\Xi \nu_{+}^{\dagger} \Delta^{-1}\right)+\partial_{2}\left(\Xi \nu_{-}^{\dagger} \Delta^{-1}\right)\right) \tag{1.73}
\end{align*}
$$

Hints: Use

$$
\begin{equation*}
\Xi \Xi^{\dagger}=1_{K \otimes \mathbb{C}^{2} \oplus N}-\mathcal{D} \frac{1_{\mathbb{C}^{2}}}{\Delta} \mathcal{D}^{\dagger} \tag{1.74}
\end{equation*}
$$

to compute,

$$
\begin{array}{cc}
\nu_{+} \nu_{+}^{\dagger} \Delta^{-1}=\Delta^{-1}+\partial_{1} \Delta \bar{\partial}_{\overline{1}} \Delta^{-1}+\bar{\partial}_{\overline{2}} \Delta \partial_{2} \Delta^{-1}, & \nu_{+} \nu_{-}^{\dagger} \Delta^{-1}=\partial_{1} \Delta \bar{\partial}_{\overline{2}} \Delta^{-1}-\bar{\partial}_{\overline{2}} \Delta \partial_{1} \Delta^{-1} \\
\nu_{-} \nu_{+}^{\dagger} \Delta^{-1}=\partial_{2} \Delta \bar{\partial}_{\overline{1}} \Delta^{-1}-\bar{\partial}_{\overline{1}} \Delta \partial_{2} \Delta^{-1}, & \nu_{-} \nu_{-}^{\dagger} \Delta^{-1}=\Delta^{-1}+\bar{\partial}_{\overline{1}} \Delta \partial_{1} \Delta^{-1}+\partial_{2} \Delta \bar{\partial}_{\overline{2}} \Delta^{-1} \\
\xi \nu_{+}^{\dagger} \Delta^{-1}=-I^{\dagger} \bar{\partial}_{\overline{1}} \Delta^{-1}-J \partial_{2} \Delta^{-1}, & \xi \nu_{-}^{\dagger} \Delta^{-1}=-I^{\dagger} \bar{\partial}_{\overline{2}} \Delta^{-1}+J \partial_{1} \Delta^{-1} \tag{1.75}
\end{array}
$$

Thus, cf. (1.73)

$$
\begin{align*}
& D_{\overline{1}} \psi_{\overline{2}}-D_{\overline{2}} \psi_{\overline{1}}=\nu_{+}^{\dagger} \gamma_{+}+\nu_{-}^{\dagger} \gamma_{-}+\xi^{\dagger} \gamma_{0}=0 \tag{1.76}\\
& D_{1} \psi_{\overline{1}}+D_{2} \psi_{\overline{2}}=\nu_{+}^{\dagger} \tilde{\gamma}_{+}+\nu_{-}^{\dagger} \tilde{\gamma}_{-}+\xi^{\dagger} \tilde{\gamma}_{0}=0
\end{align*}
$$

with

$$
\begin{align*}
& \gamma_{+}=\bar{\partial}_{\overline{1}}\left(\nu_{+} \nu_{-}^{\dagger} \Delta^{-1}\right)-\bar{\partial}_{\overline{2}}\left(\nu_{+} \nu_{+}^{\dagger} \Delta^{-1}\right)=\left(B_{2}-z_{2}\right) \square \Delta^{-1}, \\
& \gamma_{-}=\bar{\partial}_{\overline{1}}\left(\nu_{-} \nu_{-}^{\dagger} \Delta^{-1}\right)-\bar{\partial}_{\overline{2}}\left(\nu_{-} \nu_{+}^{\dagger} \Delta^{-1}\right)=-\left(B_{1}-z_{1}\right) \square \Delta^{-1}, \\
& \gamma_{0}=\bar{\partial}_{\overline{1}}\left(\xi \nu_{-}^{\dagger} \Delta^{-1}\right)-\bar{\partial}_{\overline{2}}\left(\xi \nu_{+}^{\dagger} \Delta^{-1}\right)=J \square \Delta^{-1}, \\
& \tilde{\gamma}_{+}=\partial_{2}\left(\nu_{+} \nu_{-}^{\dagger} \Delta^{-1}\right)+\partial_{1}\left(\nu_{+} \nu_{+}^{\dagger} \Delta^{-1}\right)=-\left(B_{1}^{\dagger}-\bar{z}_{1}\right) \square \Delta^{-1}, \tag{1.77}\\
& \tilde{\gamma}_{-}=\partial_{2}\left(\nu_{-} \nu_{-}^{\dagger} \Delta^{-1}\right)+\partial_{1}\left(\nu_{-} \nu_{+}^{\dagger} \Delta^{-1}\right)=-\left(B_{2}^{\dagger}-\bar{z}_{2}\right) \square \Delta^{-1}, \\
& \tilde{\gamma}_{0}=\partial_{2}\left(\xi \nu_{-}^{\dagger} \Delta^{-1}\right)+\partial_{1}\left(\xi \nu_{+}^{\dagger} \Delta^{-1}\right)=-I^{\dagger} \square \Delta^{-1},
\end{align*}
$$

where

$$
\begin{equation*}
\square=\partial_{1} \bar{\partial}_{\overline{1}}+\partial_{2} \bar{\partial}_{\overline{2}} \tag{1.78}
\end{equation*}
$$

and use (1.68)
1.7. Nakajima-Gieseker compactification, noncommutative instantons

Deform the ADHM equations to

$$
\begin{equation*}
\left[B_{1}, B_{1}^{\dagger}\right]+\left[B_{2}, B_{2}^{\dagger}\right]+I I^{\dagger}-J^{\dagger} J=\zeta \cdot 1_{K} \tag{1.79}
\end{equation*}
$$

1.7.1.

Prove stability theorem: ADHM equations with $\zeta>0$ modulo $U(K)$ are equivalent to t the complex equation plus stability $\mathbb{C}\left[B_{1}, B_{2}\right] I(N)=K$ modulo $G L(K)$.

1.8. Supersymmetric localisation, fixed points, colored partitions, compactness theorem

$\mathcal{N}=2 d=4$ twisted theory: $(A, \psi, \sigma ; \chi, \eta, \bar{\sigma}) . \mathcal{Q}$-supercharge.
ADHM version of the $\mathcal{N}=2$ multiplet
Ω-deformation. $\varepsilon_{1}, \varepsilon_{2}$-parameters.
Fixed points in the ADHM description:

$$
\begin{array}{r}
\varepsilon_{\alpha} B_{\alpha}=\left[\phi, B_{\alpha}\right] \\
0=\phi I-I \mathrm{a} \tag{1.80}\\
\left(\varepsilon_{1}+\varepsilon_{2}\right) J=\mathrm{a} J-J \phi
\end{array}
$$

Define $N_{\alpha}=\operatorname{ker}\left(\mathrm{a}-a_{\alpha}\right), K_{\alpha}=\mathbb{C}\left[B_{1}, B_{2}\right] I\left(N_{\alpha}\right)$. Since $\left.\phi\right|_{K_{\alpha}} \subset a_{\alpha}+\varepsilon_{1} \mathbb{Z}_{\geq 0}+\varepsilon_{2} \mathbb{Z}_{\geq 0}$, for generic a, $K_{\alpha} \cap K_{\beta}=\emptyset$, for $\alpha \neq \beta$, and $J=0$. Define $\lambda^{(\alpha)}$ by: $1 \leq j \leq \lambda_{i}^{(\alpha)} \Leftrightarrow$ $B_{1}^{i-1} B_{2}^{j-1} I\left(N_{\alpha}\right) \neq 0$. For generic $\varepsilon_{1}, \varepsilon_{2}$ these vectors are linearly independent (different ϕ eigenvalues) hence form a basis of K.

For non-generic $\varepsilon_{1}, \varepsilon_{2}$, as long as both $\varepsilon_{1} \neq 0$ and $\varepsilon_{2} \neq 0$, and $a_{\alpha}-a_{\beta} \notin$ $\varepsilon_{1} \mathbb{Z}_{>0}+\varepsilon_{2} \mathbb{Z}_{>0}$ we claim the set of fixed points is compact.

It suffices to prove it for $\varepsilon_{1}=p, \varepsilon_{2}=q$, with $p, q \in \mathbb{Z}_{>0}$. We still prove $J=0$ using that a's are generic. It suffices to consider the case $N=1$ (again, for generic a). Let $K_{n}=\operatorname{ker}(\phi-n)$. Then $B_{1}\left(K_{n}\right) \subset K_{n+p}, B_{2}\left(K_{n}\right) \subset K_{n+q}$.

Since $\operatorname{Tr} I I^{\dagger}=\zeta k, \operatorname{Tr}_{K_{n}} I I^{\dagger} \leq \zeta k$. Let $k_{n}=\operatorname{dim} K_{n}$.
Define

$$
\begin{equation*}
\delta_{n}=\frac{1}{\zeta} \operatorname{Tr}_{K_{n}}\left(B_{1} B_{1}^{\dagger}+B_{2} B_{2}^{\dagger}+I I^{\dagger}\right) \leq k_{n}+\delta_{n+p}+\delta_{n+q} \tag{1.81}
\end{equation*}
$$

1.8.1.

Define generalized Fibonacci numbers: for $p>q>0$,

$$
\begin{align*}
& F_{n}=0, \quad 1-p \leq n \leq 0 \\
& F_{1}=1 \tag{1.82}\\
& F_{n}=F_{n-p}+F_{n-q}, \quad n>0
\end{align*}
$$

Find a formula for F_{n}. Hint: use the solutions to the equation

$$
\begin{equation*}
x^{p}=x^{p-q}+1 \tag{1.83}
\end{equation*}
$$

1.8.2. Proof of compactness theorem

By induction:

$$
\begin{equation*}
\delta_{n} \leq \sum_{n^{\prime} \geq 0} k_{n+n^{\prime}} F_{n^{\prime}+1} \tag{1.84}
\end{equation*}
$$

Indeed, $\delta_{n^{\prime}}=0$ for $n^{\prime} \gg 0$, and, assuming the above for all $n^{\prime} \geq n$,

$$
\begin{array}{r}
\delta_{n-1} \leq k_{n-1}+\delta_{n-1+p}+\delta_{n-1+q} \leq k_{n-1}+\sum_{n^{\prime} \geq 0}\left(k_{n-1+p+n^{\prime}}+k_{n-1+q+n^{\prime}}\right) F_{n^{\prime}+1} \leq \\
k_{n-1}+\sum_{n^{\prime \prime} \geq q} k_{n-1+n^{\prime \prime}} F_{n^{\prime \prime}+1}=\sum_{n^{\prime \prime} \geq 0} k_{n-1+n^{\prime \prime}} F_{n^{\prime \prime}+1} \tag{1.85}
\end{array}
$$

Therefore

$$
\begin{equation*}
\sum_{n \geq 0} \delta_{n} \leq k \sum_{n^{\prime}=0}^{k} F_{n^{\prime}+1}=O\left(k e^{c_{1} k}\right) \tag{1.86}
\end{equation*}
$$

For $q>0>p$ define an operator $H=B_{1}^{q} B_{2}^{-p}$ and use Jacobsen-Morozov.
1.9. Crossed instantons, qq-characters, non-perturbative DysonSchwinger equations. Seiberg-Witten geometry

1.9.1. $\mathcal{N}=4$ theory

Additional fields. The bosons: $\left(A, B^{+}, C ; \sigma, \bar{\sigma}\right)$
Modified instanton equations:

$$
\begin{align*}
& F_{A}^{+}+\left[C, B^{+}\right]+[B, B]^{+}=0 \tag{1.87}\\
& D_{A}^{*} B+D_{A} C=0
\end{align*}
$$

Modified ADHM data: $\left(B_{a}, I, J\right), a=1,2,3,4$.
Modified ADHM equations:

$$
\begin{align*}
& {\left[B_{1}, B_{3}\right]+\left[B_{4}, B_{2}\right]^{\dagger}=0} \\
& {\left[B_{1}, B_{4}\right]+\left[B_{2}, B_{3}\right]^{\dagger}=0} \\
& {\left[B_{1}, B_{2}\right]+I J+\left[B_{3}, B_{4}\right]^{\dagger}=0} \\
& \sum_{a=1}^{4}\left[B_{a}, B_{a}^{\dagger}\right]+I I^{\dagger}-J^{\dagger} J=\zeta \cdot 1_{K} \tag{1.88}\\
& B_{3} I+B_{4}^{\dagger} J^{\dagger}=0 \\
& B_{4} I-B_{3}^{\dagger} J^{\dagger}=0
\end{align*}
$$

1.9.2.

Prove the algebraic stability condition: for $\zeta>0$ these equations are equivalent to: $\left[B_{a}, B_{c}\right]=0, a=1,2, c=3,4,\left[B_{1}, B_{2}\right]+I J=0,\left[B_{3}, B_{4}\right]=0, B_{3} I=B_{4} I=0$, $J B_{3}=J B_{4}=0, \mathbb{C}\left[B_{1}, B_{2}, B_{3}, B_{4}\right] I(N)=K$.

1.9.3.

Prove the vanishing theorem: $B_{3}, B_{4}=0$ on the solutions to the equations above.

1.9.4. Crossed instantons

$\left(B_{a}, I, J, \tilde{I}, \tilde{J}\right), a=1,2,3,4$.

$$
\begin{equation*}
I: N \rightarrow K, J: K \rightarrow N, \tilde{I}: \tilde{N} \rightarrow K, \tilde{J}: K \rightarrow \tilde{N} \tag{1.89}
\end{equation*}
$$

Crossed ADHM equations:

$$
\begin{align*}
& {\left[B_{1}, B_{3}\right]+\left[B_{4}, B_{2}\right]^{\dagger}=0} \\
& {\left[B_{1}, B_{4}\right]+\left[B_{2}, B_{3}\right]^{\dagger}=0} \\
& {\left[B_{1}, B_{2}\right]+I J+\left(\left[B_{3}, B_{4}\right]+\tilde{I} \tilde{J}\right)^{\dagger}=0} \\
& \sum_{a=1}^{4}\left[B_{a}, B_{a}^{\dagger}\right]+I I^{\dagger}+\tilde{I} \tilde{I}^{\dagger}-J^{\dagger} J-\tilde{J}^{\dagger} \tilde{J}=\zeta \cdot 1_{K} \tag{1.90}\\
& B_{3} I+B_{4}^{\dagger} J^{\dagger}=0 \\
& B_{4} I-B_{3}^{\dagger} J^{\dagger}=0 \\
& B_{1} \tilde{I}+B_{2}^{\dagger} \tilde{J}^{\dagger}=0 \\
& B_{2} \tilde{I}-B_{1}^{\dagger} \tilde{J}^{\dagger}=0
\end{align*}
$$

1.9.5.

Prove the stability theorem: the crossed ADHM equations modulo $U(K)$ are equivalent to the complex equations,

$$
\begin{gather*}
{\left[B_{1}, B_{3}\right]=\left[B_{2}, B_{3}\right]=\left[B_{1}, B_{4}\right]=\left[B_{2}, B_{4}\right]=0} \tag{1.91}\\
{\left[B_{1}, B_{2}\right]+I J=0, \quad\left[B_{3}, B_{4}\right]+\tilde{I} \tilde{J}=0} \tag{1.92}
\end{gather*}
$$

with $K_{12}=\mathbb{C}\left[B_{1}, B_{2}\right] I(N), K_{34}=\mathbb{C}\left[B_{3}, B_{4}\right] \tilde{I}(\tilde{N})$ with $K_{12}+K_{34}=K$, and $B_{1}\left(K_{34}\right)=B_{2}\left(K_{34}\right)=0, B_{3}\left(K_{12}\right)=B_{4}\left(K_{12}\right)=0$.

Compactness theorem: for any subtorus $T \subset U(1)^{3} \subset S U(4)$, such that $\varepsilon_{a} \neq 0$ for any $a=1,2,3,4$, and generic a, ã, the set of fixed points is compact.

1.9.6. \widehat{A}_{0}-type qq-characters

Integration over the Hilbert scheme of points on \mathbb{C}^{2} using localisation. Fixed points as Young diagrams. Tangent space at the fixed point λ. Weight decomposition: arms-legs formula.

Crossed instantons of rank $(1, n)$. Integrating out the phantom part \Longrightarrow the fundamental qq-character. Explicit formula.

Here we give the expression for the fundamental character $\mathcal{X}_{1}(x) \equiv \mathcal{X}_{1,0}(x)$:

$$
\begin{align*}
& \mathcal{X}_{1}(x)=\sum_{\lambda} \mathfrak{q}^{|\lambda|} \prod_{\square \in \lambda} \mathbb{S}\left(\mathrm{m} h_{\square}+\varepsilon a_{\square}\right) \cdot \frac{\prod_{\square \in \partial_{+} \lambda} \mathcal{Y}\left(x+\sigma_{\square}+\varepsilon\right)}{\prod_{\square \in \partial_{-} \mathcal{~}} \mathcal{Y}\left(x+\sigma_{\square}\right)}= \\
& =\mathcal{Y}(x+\varepsilon) \sum_{\lambda} \mathfrak{q}^{|\lambda|} \prod_{\square \in \lambda} \mathbb{S}\left(\mathrm{m} h_{\square}+\varepsilon a_{\square}\right) \cdot \prod_{\square \in \lambda} \frac{\mathcal{Y}\left(x+\sigma_{\square}-\mathrm{m}\right) \mathcal{Y}\left(x+\sigma_{\square}+\mathrm{m}+\varepsilon\right)}{\mathcal{Y}\left(x+\sigma_{\square}\right) \mathcal{Y}\left(x+\sigma_{\square}+\varepsilon\right)}= \\
& \quad=\mathcal{Y}(x+\varepsilon)+\mathfrak{q} \mathbb{S}(\mathrm{m}) \frac{\mathcal{Y}(x-\mathrm{m}) \mathcal{Y}(x+\varepsilon+\mathrm{m})}{\mathcal{Y}(x)}+\ldots \quad \tag{1.93}
\end{align*}
$$

Here

$$
\begin{equation*}
\sigma_{\square}=\mathrm{m}(i-j)+\varepsilon(1-j) \tag{1.94}
\end{equation*}
$$

is the content ofdefined relative to the pair of weights ($m,-m-\varepsilon$), and

$$
\begin{equation*}
\mathbb{S}(x)=1+\frac{\varepsilon_{1} \varepsilon_{2}}{x(x+\varepsilon)} \tag{1.95}
\end{equation*}
$$

1.9.7. Quiver theories from Orbifolds

$\Gamma \subset S U(2)$ a finite subgroup. Imposing orbifold projection to produce quiver theory or an ALE theory. Crossed instantons on $\mathbb{C}^{2} / \Gamma \times \mathbb{C}^{2}$ and qq-characters of quiver gauge theories. Limit to finite quivers.

1.9.8. Regularity from compactness

Non-perturbative Dyson-Schwinger equations.

References

1. V. I. Arnold, S. M. Gusein-Zade, A. N. Varchenko, Singularities of Differentiable Maps, Volume I: The Classification of Critical Points Caustics and Wave Fronts, Volume II Monodromy and Asymptotic Integrals, Springer, 1988
2. A. A. Belavin, A. M. Polyakov, A. S. Schwartz and Y. S. Tyupkin, Pseudoparticle Solutions of the Yang-Mills Equations, Phys. Lett. B 59, 85 (1975) [Phys. Lett. 59B, 85 (1975)]. doi:10.1016/0370-2693(75)90163-X
3. C. M. Hull, U. Lindstrom, L. Melo dos Santos, R. von Unge and M. Zabzine, Geometry of the N=2 supersymmetric sigma model with Euclidean worldsheet, JHEP 0907, 078 (2009) doi:10.1088/1126-6708/2009/07/078 [arXiv:0906.2741 [hep-th]].
4. A. Losev, N. Nekrasov and S. L. Shatashvili, The Freckled instantons, In *Shifman, M.A. (ed.): The many faces of the superworld* 453-475 doi:10.1142/9789812793850_0026 [hep-th/9908204].
5. N. A. Nekrasov, Seiberg-Witten prepotential from instanton counting, Adv. Theor. Math. Phys. 7, no. 5, 831 (2003) doi:10.4310/ATMP.2003.v7.n5.a4 [hepth/0206161].
6. N. Nekrasov, BPS/CFT correspondence: non-perturbative Dyson-Schwinger equations and qq-characters, JHEP 1603, 181 (2016) [arXiv:1512.05388 [hepth]].
7. N. Nekrasov, Tying up instantons with anti-instantons, arXiv:1802.04202 [hepth].
8. A. M. Polyakov, Quark Confinement and Topology of Gauge Groups, Nucl. Phys. B 120, 429 (1977). doi:10.1016/0550-3213(77)90086-4
9. A. M. Polyakov, Gauge Fields and Strings, Contemp. Concepts Phys. 3, 1 (1987).
10. J. L. Richard and A. Rouet, Complex Saddle Points in the Double Well Oscillator, Nucl. Phys. B 183, 251 (1981). doi:10.1016/0550-3213(81)90555-1
11. J. L. Richard and A. Rouet, The Saddle Point Method for the Double Well Anharmonic Oscillator, Phys. Lett. 98B, 305 (1981). doi:10.1016/0370-2693(81)90021-6
12. J. L. Richard and A. Rouet, Complex Saddle Points Versus Dilute Gas Approximation in the Double Well Anharmonic Oscillator, Nucl. Phys. B 185, 47 (1981). doi:10.1016/0550-3213(81)90363-1

[^0]: ${ }^{\dagger}$ Computing an arc length does not count

