
5 Exercise session 5, July 23
5.1 Exercises for Maxim Zabzine’s lecture
Exercise 5.1. Redo all calculations in Maxim Zabzine’s lecture in the manifold setting, in
particular the determinant
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Exercise 5.2. Redo all calculations in Maxim Zabzine’s lecture in the Grassmann odd vector
bundle setting, in particular check
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One strategy is as follows. First note that R2
1 and DD† commute and can be co-diagonalized

(similarly for R2
0 and D†D). Note that (−R2
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4DD

†) and (−R2
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†D) act on different spaces.

Using D, map eigenvectors of DD† in one space to eigenvectors of D†D in the other space, with
the same eigenvalue. Do this in reverse to get back from the kernels to the whole spaces.

5.2 Exercises for Nikita Nekrasov’s lecture
Exercise 5.3. Exercise: study the Airy function

A~(x) =
∫

dte(i/~)(tx−t3/3), (3)

find its two critical points and its Lefschetz thimbles. The Airy function obeys a second-order
differential equation.

5.3 Exercises for Takuya Okuda’s lectures
Exercise 5.4. Show that the space of field configurations obeying the following boundary
conditions (Neumann boundary condition) at x1 = 0 is invariant under B-type supersymmetry

transformations generated by ε ∝ ε̄ ∝
(

1
1

)
in flat space:

∂1φ = 0 , ψ1 + ψ2 = 0 ,

∂1(ψ1 − ψ2) = 0 , F = 0 .

For SUSY transformations see Appendix A of 1308.2217.

Exercise 5.5. Show that the space of field configurations obeying the following boundary
conditions (Dirichlet boundary condition) at x1 = 0 is invariant under the same transformations:

φ = const. , ψ1 − ψ2 = 0 ,

∂1(ψ1 + ψ2) = 0 , ∂1(F + i∂1φ) = 0 .

Exercise 5.6. Let G denote the homogeneous polonomial

G(x) = xd1 + . . . xdN ,

where x = (x1, . . . , xN ). We can write

G(x)−G(y) =
N∑
j=1

(xj − yj)Aj(x,y) ,

1



for some Aj . (Actually this is true for any homogeneous G.) Let p and q be complex variables,
and assume that “operators” α and β satisfy the relations

αd = p , βd = q .

Let us introduce fermionic oscillators

{ηj , η̄k} = δjk , {ηj , ηk} = {η̄j , η̄k} = 0 .

with the Clifford vacuum defined by ηj |0〉 = 0. Show that

Q0(p,x, q,y) :=
N∑
j=1

(
(αxj − βyj)πj +Aj(αx, βy)πj

)
preserves the space V spanned by

ηi1 . . . ηisα
aβb|0〉

with 1 ≤ i1 < . . . < is ≤ N , 0 ≤ s ≤ N , 0 ≤ a < d, 0 ≤ b < d, a+ b ≡ s mod d. Also show that
the restriction to V

Q(p,x, q,y) := Q0|V
is a matrix factorization of W = pG(x)− q G(y):

Q(p,x, q,y)2 = (pG(x)− q G(y))idV .

If you are bored, compute the hemisphere partition function for Q (with appropriate gauge
and R-charge assignments) and check that it coincides with the sphere partition function for a
Calabi-Yau hypersurface (for d = N). (See 0806.4734 by Brunner, Jockers, and Roggenkamp.)

Exercise 5.7. Show that the SQED hemisphere partition function can be expanded in vortex
partition functions. (See Problem set 3 for the sphere case.)
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