5 Exercise session 5, July 23

5.1 Exercises for Maxim Zabzine's lecture

Exercise 5.1. Redo all calculations in Maxim Zabzine's lecture in the manifold setting, in particular the determinant

$$
\begin{equation*}
\alpha_{0}(0) \frac{\operatorname{Pf}(S)}{\sqrt{\operatorname{det} H}}=\alpha_{0}(0) \frac{1}{\sqrt{\operatorname{det} \partial_{\mu} V^{\rho}(0)}} \tag{1}
\end{equation*}
$$

Exercise 5.2. Redo all calculations in Maxim Zabzine's lecture in the Grassmann odd vector bundle setting, in particular check

$$
\begin{equation*}
\frac{\operatorname{det}^{1 / 4}\left(-R_{1}^{2}+\frac{1}{4} D D^{\dagger}\right)}{\operatorname{det}^{1 / 4}\left(-R_{0}^{2}+\frac{1}{4} D^{\dagger} D\right)}=\frac{\operatorname{det}_{\text {ker } D D^{\dagger}}^{1 / 4}\left(-R_{1}^{2}\right)}{\operatorname{det}_{\operatorname{ker} D^{\dagger} D}^{1 / 4}\left(-R_{0}^{2}\right)}=\frac{\operatorname{det}^{1 / 2} R_{1}}{\operatorname{det}^{1 / 2} R_{0}} \quad \text { up to phases. } \tag{2}
\end{equation*}
$$

One strategy is as follows. First note that R_{1}^{2} and $D D^{\dagger}$ commute and can be co-diagonalized (similarly for R_{0}^{2} and $\left.D^{\dagger} D\right)$. Note that $\left(-R_{1}^{2}+\frac{1}{4} D D^{\dagger}\right)$ and $\left(-R_{0}^{2}+\frac{1}{4} D^{\dagger} D\right)$ act on different spaces. Using D, map eigenvectors of $D D^{\dagger}$ in one space to eigenvectors of $D^{\dagger} D$ in the other space, with the same eigenvalue. Do this in reverse to get back from the kernels to the whole spaces.

5.2 Exercises for Nikita Nekrasov's lecture

Exercise 5.3. Exercise: study the Airy function

$$
\begin{equation*}
A_{\hbar}(x)=\int \mathrm{d} t e^{(i / \hbar)\left(t x-t^{3} / 3\right)} \tag{3}
\end{equation*}
$$

find its two critical points and its Lefschetz thimbles. The Airy function obeys a second-order differential equation.

5.3 Exercises for Takuya Okuda's lectures

Exercise 5.4. Show that the space of field configurations obeying the following boundary conditions (Neumann boundary condition) at $x^{1}=0$ is invariant under B-type supersymmetry transformations generated by $\epsilon \propto \bar{\epsilon} \propto\binom{1}{1}$ in flat space:

$$
\begin{gathered}
\partial_{1} \phi=0, \quad \psi_{1}+\psi_{2}=0 \\
\partial_{1}\left(\psi_{1}-\psi_{2}\right)=0, \quad \mathrm{~F}=0 .
\end{gathered}
$$

For SUSY transformations see Appendix A of 1308.2217.
Exercise 5.5. Show that the space of field configurations obeying the following boundary conditions (Dirichlet boundary condition) at $x^{1}=0$ is invariant under the same transformations:

$$
\begin{gathered}
\phi=\text { const. }, \quad \psi_{1}-\psi_{2}=0 \\
\partial_{1}\left(\psi_{1}+\psi_{2}\right)=0, \quad \partial_{1}\left(\mathrm{~F}+i \partial_{1} \phi\right)=0 .
\end{gathered}
$$

Exercise 5.6. Let G denote the homogeneous polonomial

$$
G(\boldsymbol{x})=x_{1}^{d}+\ldots x_{N}^{d}
$$

where $\boldsymbol{x}=\left(x_{1}, \ldots, x_{N}\right)$. We can write

$$
G(\boldsymbol{x})-G(\boldsymbol{y})=\sum_{j=1}^{N}\left(x_{j}-y_{j}\right) A_{j}(\boldsymbol{x}, \boldsymbol{y}),
$$

for some A_{j}. (Actually this is true for any homogeneous G.) Let p and q be complex variables, and assume that "operators" α and β satisfy the relations

$$
\alpha^{d}=p, \quad \beta^{d}=q .
$$

Let us introduce fermionic oscillators

$$
\left\{\eta_{j}, \bar{\eta}_{k}\right\}=\delta_{j k}, \quad\left\{\eta_{j}, \eta_{k}\right\}=\left\{\bar{\eta}_{j}, \bar{\eta}_{k}\right\}=0 .
$$

with the Clifford vacuum defined by $\eta_{j}|0\rangle=0$. Show that

$$
Q_{0}(p, \boldsymbol{x}, q, \boldsymbol{y}):=\sum_{j=1}^{N}\left(\left(\alpha x_{j}-\beta y_{j}\right) \bar{\pi}_{j}+A_{j}(\alpha \boldsymbol{x}, \beta \boldsymbol{y}) \pi_{j}\right)
$$

preserves the space V spanned by

$$
\bar{\eta}_{i_{1}} \ldots \bar{\eta}_{i_{s}} \alpha^{a} \beta^{b}|0\rangle
$$

with $1 \leq i_{1}<\ldots<i_{s} \leq N, 0 \leq s \leq N, 0 \leq a<d, 0 \leq b<d, a+b \equiv s \bmod d$. Also show that the restriction to V

$$
Q(p, \boldsymbol{x}, q, \boldsymbol{y}):=\left.Q_{0}\right|_{V}
$$

is a matrix factorization of $W=p G(\boldsymbol{x})-q G(\boldsymbol{y})$:

$$
Q(p, \boldsymbol{x}, q, \boldsymbol{y})^{2}=(p G(\boldsymbol{x})-q G(\boldsymbol{y})) \operatorname{id}_{V} .
$$

If you are bored, compute the hemisphere partition function for Q (with appropriate gauge and R-charge assignments) and check that it coincides with the sphere partition function for a Calabi-Yau hypersurface (for $d=N$). (See 0806.4734 by Brunner, Jockers, and Roggenkamp.)

Exercise 5.7. Show that the SQED hemisphere partition function can be expanded in vortex partition functions. (See Problem set 3 for the sphere case.)

