
Curved-space supersymmetry
Lectures by Guido Festuccia notes by Bruno Le Floch

July 16–20, 2018

Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
We discuss aspects of supersymmetry on curved-space, with an empha-

sis on 4d N = 1 theories. Topics include supercurrents, rigid supergravity,
curved superspace (for S4 and S3 ×R), a classification of 4d N = 1 super-
symmetric backgrounds and the dependence of supersymmetric observables
on the background geometry. Some of these topics are also described for
3d N = 2 and 4d N = 2 supersymmetries. These are lecture notes for
the 2018 IHÉS summer school on Supersymmetric localization and exact
results.

These lecture notes assume familiarity with supersymmetry at the level of
the first few chapters of the book by Wess and Bagger.

1 Lecture 1, July 16 — supercurrents
Supersymmetric localization is a very powerful technique to compute exactly
observables in even very strongly coupled gauge theories. It is often important
to deform the theory from its flat-space definition, to define the theory on curved
spaces. In particular placing the theory on a compact manifold puts a IR cutoff.
Many applications. A few older ones.

• Put supersymmetric field theory on T 4, compute Witten index Tr(−1)F .

• Topologically twist 4d N = 2 theory so that it can live on any compact
manifold of our choosing.

• Omega background, very successfully used by Nekrasov to compute instan-
ton partition functions.

More recent ones

• 4d N = 2 theories on S4 (Pestun [?]) computed the partition function and
expectation value of Wilson lines. Note that the theory on S4 preserves
8 supercharges, much more than what was preserved by the topological
twist.

1



• 3d N = 2 theories with U(1)R symmetry on S3 (first Kapustin–Willett–
Yaakov, Hama–Hosomichi–Lee, Jafferis).

• 2d N = (2, 2) theories on S2 (Benini–Cremonesi, Doroud–Gomis–Le Floch–
Lee).

• 5d N = 1 on S5.

• 4d N = 1 with U(1)R on S3 × S1 (Romelsberger), namely Tr(−1)F e−βH
where the trace ranges over the Hilbert space of the theory on S3.

All of these geometries can be deformed. Some deformations do not change
supersymmetric observables; others do. What do observables depend on?

We are led to three questions.

• Given a supersymmetric field theory, on which geometries can it be placed,
preserving some supersymmetry?

• What is the structure of the resulting theory? (E.g., what couplings can
we write down on curved manifolds.)

• How do supersymmetric observables depend on the geometry?

1.1 Preliminaries
When placing a theory on curved space, namely changing the metric from the
flat metric ηµν to ηµν + hµν , the Lagrangian of the theory changes by hµνTµν ,
by definition of the stress-energy tensor.

In a supersymmetric field theory Tµν is part of a multiplet, called a supercur-
rent (see Komargodski–Seiberg https://arxiv.org/abs/1002.2228, Dumitrescu–
Seiberg https://arxiv.org/abs/1106.0031 and references therein).

In particular we will consider 4d N = 1

{Qα, Qα̇} = 2σµαα̇Pµ + · · · (1)
{Qα, Qβ} = 0 + · · · , {Qα, Qβ} = 0 + · · · (2)

where the dots are string and domain wall charges that we will see later (similar
to central charges of 4d N = 2).

In a local field theory, translation-invariance implies the existence of a
conserved real tensor Tµν ; Poincaré invariance implies that Tµν can be improved
to be symmetric. Its conserved charge is momentum Pµ =

∫
d3xT 0

µ . It is not
unique, for instance Tµν → Tµν + 1

2 (∂µ∂ν − ηµν∂2)u for any scalar u preserves
symmetry and conservation.

In the same multiplet as Tµν there is also Sαµ and Sα̇µ, conserved (∂µSµα =
∂µSµα̇ = 0) and such that Qα =

∫
d3xS0

α. Again, it is not unique: improvements
take the form Sαµ → Sαµ + 2(σµν)αβ∂νηβ .
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We will search for a supermultiplet containing (Tµν , Sµα, Sµα̇) and such that
no other operator in the multiplet has spin > 1. The largest-spin component of
a supermultiplet resides in its θσνθ component. Here we want it to be Tµν , so

Sµ = · · ·+ Tµνθσ
νθ + · · · (3)

We want operators to be well-defined. We would like to focus on indecomposable
multiplets, namely it cannot be written as a direct sum of multiplets. This is
different from irreducibility, namely we allow multiplets that contain smaller
multiplets. (In fact the supersymmetry algebra is not semi-simple, which means
there are representations that are not irreducible nor direct sums of irreducible
ones.)

1.2 S-multiplet
What does the S-multiplet consist of? This is a long calculation ( =⇒ Exercise).
There are 16 bosonic and 16 fermionic physical degrees of freedom. Bosons.

• Tµν (has 10 (by symmetry) minus 4 (by conservation) equals 6 physical
components)

• F[µν] closed 2-form namely ∂[µFνρ] = 0 (has 3 physical components1)

• Complex Yµ with ∂[µYν] = 0 (has 2 physical components)

• A real scalar A (has 1 physical component)

• A current that is generically not conserved jµ (has 4 physical components)

Fermions.

• Sµα and Sµα̇ conserved 6 + 6 components

• ψα, ψα̇ has 2 + 2 components

Constraints

D
α̇Sαα̇ = χα + Yα (4)

Dα̇χα = 0 (5)
Dαχα = Dα̇χ

α̇ (6)

DαYβ +DβYα = 0, D
2
Yα = 0 (7)

1The two-form F has 6 components; the condition dF = 0 has 4 equations; but they are
related by the single equation d2F = 0, leading to 6− 4 + 1 = 3 components. Another way to
count is that the closed two-form F is locally dA where A has 4 components but one gauge
redundancy A→ A+ dΛ, giving 4− 1 = 3 components. See exercise 3.2.
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(sometimes in the literature the last line is written Yα = DαX and Dα̇X = 0,
but that is less general). In components

Sµ = jµ − iθ
(
Sµ −

i√
2
σµψ

)
+ iθ(Sµ + · · · ) + i

2θ
2Yµ −

i

2θ
2
Y µ

+ θσνθ

(
2Tµν − ηµνA−

1
8ενµρσF

ρσ − 1
2ενµρσ∂

ρjσ
)

+ . . .

(8)

Exercise: check that the constraints on the superfield Sαα̇ imply that Tµν is
conserved, Fµν is a closed 2-form etc.

1.3 Back to the superalgebra
Using the above superfield, acting with a supercharge, we find

{Qα̇, Sµα} = 2σναα̇(Tµν + C[µν]) + Schwinger terms. (9)

Schwinger terms are total derivative (topological) terms. Here Cµν = −1
16 εµνρλF

ρλ

is conserved (because F is closed). Such an antisymmetric conserved current is
a string current. Integrating the zeroth component we find

{Qα̇, Qα} = 2σναα̇(Pν + Zν) (10)

where Zν =
∫

d3xC0
ν is a string charge. The reason the algebra is never written

this way is that the charge is infinite for a straight (infinitely long) string.
However, the charge density that shows up in {Qα̇, Sµα} is finite.

Similarly,
{Qα, Sµβ} = σµναβC[µνρ] (11)

where C[µνρ] = εµνρλY
λ is conserved; it is a domain wall current. Again, the

charge would be infinite for any object charged under it. We find

{Qα, Qβ} = σµναβZµν (12)

Note that this is superficially similar to the central charge of 4d N = 2, but the
difference is that Zµν is a charge for extended objects.

Schwinger terms are total derivative terms that do not contribute to the
conserved charge, determined by the structure of the S-multiplet. They are given
in the paper by Dumitrescu–Seiberg cited above.

1.4 Improvements

In terms of a real superfield U with U = u+θη+θη+θ2N+θ2
N−(θσµθ)Vµ+ · · ·

(actually U is well-defined up to a constant)

Sαα̇ → Sαα̇ + [Dα, Dα̇]U (13)

χα → χα + 3
2D

2
DαU (14)

Yα → Yα + 1
2DαD

2
U (15)
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Note that U is only defined up to a constant shift. How does that improve-
ment transformation act on components? For Tµν and Sµα we reproduce the
improvements above (with the same notations). Other components transform as

Fµν → Fµν − 6(∂µVν − ∂νVµ) (16)
Yµ → Yµ − 2∂µN. (17)

In some theories, improvements allow setting some of the components to zero,
in other words shortening the S-multiplet even further.

1.5 Example: Wess–Zumino models
Wess-Zumino models are theories built from a chiral superfield Φi (and anti-chiral
field Φi). The Lagrangian is described

• by a Kähler potential K(Φi,Φi) defined up to Kähler transformation
K → K + Λ(Φi) + Λ(Φi) (which leaves gij̄ = ∂i∂j̄K invariant) and

• by a superpotential W (Φi) defined up to a constant.

The S-multiplet and its friends are

Sαα̇ = 2gij̄DαΦiDα̇Φj̄ (18)

χα = D
2
DαK (19)

Yα = 4DαW (20)

In components we find the expected Tµν and for instance

Fµν ∼ igij̄∂[µΦi∂ν]Φ
j̄ (21)

Note that this is the pull-back of the Kähler form Ω = igij̄dΦi ∧ dΦj̄ . Locally,
Ω = dA with A = − i

2∂iKdΦi+ i
2∂j̄KdΦj̄ . Importantly, A is not invariant under

Kähler transformations. When the Kähler potential is not globally well-defined,
Fµν is closed but not exact.

Example: CP1 model has K = f2 log(1 + ΦΦ), not globally well-defined, so
we find that Fµν is closed but not exact, so it cannot be improved away.

In components we also find

Yµ = ∂iW∂µΦi (22)

so this is closed but not exact when W is not globally well-defined. Again, it
cannot be improved away. Example: Φ ∼ Φ + 1 and W = Φ.
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2 Lecture 2, July 17 — coupling to supergravity
Recall that the S-multiplet contains

• Tµν (conserved symmetric stress-energy tensor),

• Cµν = −1
16 εµνρλF

ρλ (conserved string current),

• Cµνρ = −εµνρλY λ (conserved domain wall current),

• jµ (generically non-conserved R-current),

• A (real scalar),

• Sµα, Sµα̇ (conserved supersymmetry currents),

• ψα, ψα̇ fermions.

The supersymmetry algebra contains string and brane charges Zµ and Zµν as

{Qα, Qα̇} = 2σµαα̇(Pµ + Zµ), {Qα, Qβ} = σµναβZµν . (23)

2.1 Shortened S-multiplets
In some theories some components of the S-multiplet can be set to zero by an
improvement transformation.

• Ferrara–Zumino multiplet: if Fµν is exact (not just closed) then it can be
set to zero we can set χα = 0 by an improvement.

• Assume that χα = −3
2 D

2
DαU . Then we can set χα = 0 by an improvement.

Thus Fµν = 0 (the string current is trivial), so before the improvement,
F had to be exact, and we also find A = 4Tµµ and ψα ∼ (σµS)α. This
multiplet is called the Ferrara–Zumino multiplet. It has 12 bosonic and 12
fermionic degrees of freedom.

• Assume that Yα = −1
2 DαD

2
U so that we can improve to Yα = 0. Then

A = 0, Yµ = 0 (the domain wall current is zero), ψα = 0, ∂µjµ = 0. This
last current, now conserved, is actually a conserved R-symmetry current.
Reversing the logic, if a theory has a conserved U(1)R current then it has
that R-symmetry multiplet.

• Both reduction can happen at the same time. Then we find Tµµ = A = 0,
hence the theory must be a SCFT, and we also find ∂µjµ = 0, Fµν = 0,
Yν = 0, ψα = 0, σµSµ = 0. This multiplet has 8 + 8 components.
Any mass-deformation, such as a superpotential mass term, will break
superconformal invariance hence forbids the existence of such a short
multiplet.
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Example: in a WZ model where the Kähler potential cannot be globally
well-defined (e.g., when the target is compact), F cannot be exact so the theory
cannot have a Ferrara–Zumino multiplet.

Example: in a U(1) gauge theory with FI term
(
namely L = 1

4e2

∫
d2θWαWα+

c.c. + ξ
∫

d4θV
)
, we have Fµν = ξ(da)µν . Since in some configurations the gauge

potential aµ is not globally well-defined, we learn that there cannot be a Ferrara–
Zumino multiplet. In SQED we had an exercise where it was shown that there
can be string configurations with non-zero string charge.

Example: a WZ model with Φ ∼ Φ + 1 with non-globally well-defined W = Φ
cannot admit R-symmetry hence cannot have an R-multiplet.

A more interesting case is that conservation of the R-symmetry current can
happen classically but be violated by anomalies, hence preventing the existence
of an R-multiplet.

Example: a U(1) gauge theory with FI terms and generic superpotential only
has an S-multiplet, no FZ-multiplet nor R-multiplet.

Example: SU(N) super Yang–Mills has N vacua and admits domain walls
between regions sitting in different vacua, so there cannot be an R-multiplet.

If there exists a shortening condition somewhere on the RG flow then it must
be preserved along the RG flow. More precisely, in the extreme IR the multiplet
may reduce further because some of the operators in it become redundant2.

2.2 Coupling theories to backgrounds
References Seiberg–Festuccia https://arxiv.org/abs/1105.0689, Dumitrescu
(review) https://arxiv.org/abs/1608.02957.

Some of this can be done in curved superspace, see Buchbinder–Kuzenko
http://inspirehep.net/record/485478.

Let’s say we want to put a non-supersymmetric theory on curved space. A
convenient way is to couple to gravity (introducing diffeomorphism invariance),
then to fix the metric to the desired one, and then send the Planck mass to
infinity to decouple fluctuations of the metric. The resulting curved-space theory
will be invariant under isometries of the manifold.

Nikita Nekrasov asks: the metric is now a coupling; is it renormalized? We’ll
come back to it.

Example: consider a theory with U(1) symmetry namely ∂µJµ = 0. To
couple to a gauge field one adds aµJµ +O(a2) to the action, where the O(a2)
terms are seagull terms. Exercise: check how improvements of J change the
Lagrangian.

Example: coupling the theory to gravity is done by L → L+ 1
2h

µνTµν+O(h2)
where the metric is g = δ + h (close to the flat metric δ). Improving the stress-
energy tensor Tµν → Tµν + (∂µ∂ν − ηµν∂2)u adds to the Lagrangian a term
R(h)u, where R(h) is the linearized Ricci scalar.

Example: consider a theory with U(1) flavour symmetry hence ∂µjµ = 0.
2A redundant operator has trivial correlators at separated points.
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This current belongs to a supermultiplet D2J = D
2
J = 0 with components

J = J + iθj + iθj + θσµθjµ + · · · (24)

This can couple to a gauge multiplet (aµ, D, λα, λα̇ by

L → L+ Jµaµ + JD + fermions + seagull terms. (25)

We want to treat the gauge multiplet as a background, in other words set it to
some value and don’t make it dynamical. This will break supersymmetry unless
δ(aµ, D, λ, λ) = 0. The first two are trivial because δaµ and δD depend on the
gaugino, which cannot be set to non-zero value (they are Grassmann parameters).
The only non-trivial relation are δλ = 0, namely iζD+ σµνζFµν = 0 and δλ = 0,
which is similar. Note that we do not need this equation to hold for all spinors ζ
if we only want to preserve some of the supersymmetry but not all.

Given the above examples, the strategy to place a supersymmetric theory
on curved space is as follows. Couple the theory to some supergravity, then
choose background values for the supergravity multiplet (including the metric)
that preserve some supersymmetry. There are several versions of 4d N = 1
supergravity.
• Old minimal supergravity has 12 + 12 components, can be coupled to the
FZ multiplet.

• New minimal supergravity has 12 + 12 components, can be coupled to the
R-multiplet, so it can be coupled to any 4d N = 1 theory with U(1)R
symmetry.

• 16/16 supergravity has 16 + 16 components, can be coupled to any S-
multiplet.

On-shell, the old minimal and new minimal supergravities are equivalent. The
16/16 supergravity is basically obtained by adding a chiral multiplet to new
minimal supergravity.

The coupling to supergravity goes as follows (i labels various U(1) symmetries)

L → L+ 1
2h

µνTµν +BiJi + ψµαSµα + ψ
µα̇
Sµα̇ + F iji + · · ·+ seagull (26)

Note that we do not need the supersymmetric theory to actually have a La-
grangian description: even without a Lagrangian it makes sense to talk about
the operators in the S-multiplet, and to couple these operators to supergravity.

Again, the choice of background gµν etc must be such that the variation of
fermions (gravitinos) vanishes. We find

∇µζα =M(g,Bi)αβζβ + M̃(g,Bi)αβ̇ζβ (27)

whereM and M̃ are matrices that only depend on the supergravity multiplet,
not on the multiplets in the supersymmetric theory. So we just have to repeat
the work for old minimal, new minimal and 16/16 supergravity, not for each
supersymmetric theory that comes about.
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2.3 FZ multiplet and old minimal supergravity
Consider an FZ multiplet, namely Yα = DαX so Dα̇X = 0. The coupling is3

1
2h

µνTµν −
1
2b
µjµ −

1
4MX − 1

4MX + · · · (28)

and the supersymmetry equations are

∇µζ = i

6Mσµζ + i

3bµζ + i

3b
νσµνζ (29)

∇µζ = i

6Mσµζ −
i

3bµζ −
i

3b
νσµνζ (30)

As promised, these equations only depend By dimension analysis M , M , b scale
like 1/r, so, in the UV, the theory approaches the original supersymmetry theory
in flat space. This is good because we are trying to put that theory on curved
space. It is not so good because that means we are missing some deformations
of the theory that preserve supersymmetry but are non-trivial in flat space.

3 Lecture 3, July 18
Last time we explained how to put the theory on a curved space by coupling to
supergravity, setting supergravity fields to background values and freezing the
supergravity fluctuations by sending MP →∞. Supersymmetry is preserved if
and only if the variation of the gravitini vanishes. This is the generalized Killing
spinor equation.

For the old minimal supergravity on S4 with radius r, the equation (29)
turns out to imply bµ = 0 and we have to solve

∇µζ = i

6Mσµζ (31)

∇µζ = i

6Mσµζ (32)

The solution turns out to be M = M = 3i/r, which spoils reflection positivity.
In the Lagrangian, M couples to X (that we saw earlier), which is in general non-
zero. However, in a superconformal field theory we know that the FZ multiplet
reduces to the superconformal multiplet, namely X = 0 (after improvement).
This restores reflection positivity.

For a non-conformal field theory we find a superalgebra osp(1|4) on S4. For
a conformal field theory it is su∗(4|1), the same as flat space

(
we typically hear

more often about the Lorentzian superconformal algebra su(2, 2|1)
)
.

Note: there exist theories, for instance a free chiral field with mass, in which
the S-multiplet can be improved to be an FZ multiplet or an R multiplet, but
the improvements are different.

Slogan: the more special a theory is, the more backgrounds it can be put on.
3In this section only (because Guido realized how inconvenient using multiple colors is)

supergravity multiplets are in a different color.
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Theories with specializations of S-multiplets

S

FZ RSCFT

Manifolds on which such theories can be put

SCFT

FZ RS

In particular, even though it looks like 16/16 supergravity contains more
fields to play with, we know from these general considerations that it must have
fewer solutions than new minimal or old minimal supergravity, which themselves
have fewer solutions than conformal supergravity.

3.1 Supergravity backgrounds in general
Actually we use conventions of https://arxiv.org/abs/1407.2598 (Closset–
Dumitrescu–Festuccia–Komargodski), not of references mentioned earlier.

We focus on the case of 4d N = 1 theories with a U(1)R symmetry, namely
which admit R-symmetry multiplets hence must be coupled to new minimal
supergravity. The multiplets are

R-multiplet : (Tµν , Sµα, Sα̇µ, jµ, Fµν) (33)
new minimal supergravity multiplet : (gµν , ψµα, ψµα̇, Aµ, Bµν) (34)

Instead of the 2-form gauge field Bµν (whose gauge transformations are Bµν →
Bµν + ∂µων − ∂νωµ), we use the dual of the field strength, so

Vµ = 1
2εµ

νρσ∂νBρλ. (35)

This is trivially conserved: ∂µVµ = 0.
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The generalized Killing spinor equations are4

(∇µ − iAµ)ζ = −i2 V νσµσ̃νζ (36)

(∇µ + iAµ)ζ̃ = i

2V
ν σ̃µσν ζ̃ (37)

Note the presence of R-symmetry: Aµ is a R-symmetry gauge field, and ζ and ζ̃
are left-handed and right-handed spinors with charge +1 and −1 respectively
under R-symmetry. A consequence of the R-symmetry, and of the fact that
scalars in the supergravity multiplet have no R-charge, is that ζ and ζ̃ do not
appear in each other’s equations since they have different R-charges. In fact, V µ
and Aµ do not need to satisfy the supergravity equations.

Assume that we have a solution. (We will come back later to building
solutions.)

The supersymmetry transformations that are preserved have the following
algebra: {δζ , δζ′} = 0,

{δζ , δζ̃}Φ = 2iL′κΦ (38)

where κµ = ζσµσ̃ and

L′κΦ = LκΦ− irKµ(Aµ + (3/2)Vµ)Φ (39)

where r is the R-charge of the field Φ.
The Lagrangian is

L0 + L1 + L2 + · · · (40)

where L0 is the minimal coupling, L1 is the linear coupling−jµAµ+ 1
4BµνC

µν and
L2 and higher consist of seagull terms, for instance couplings to V 2, curvature R
etc, which scale like 1/`2 in terms of the typical size ` of the manifold.

Consider a chiral multiplet (φ, ψ, F ) (where φ is a complex scalar and F an
auxiliary field) with R-charge r. We have supersymmetry variations

δζφ =
√

2ζψ like in flat space (41)

δζψ =
√

2ζF +
√

2iσµζ̃Dµφ (42)

δζF =
√

2iDµ(ζ̃σ̃µψ) (43)

where the derivative is covariantized with respect to R-symmetry, namely Dµφ
contains a term −ir(Aµ + (3/2)Vµ)φ, and importantly Dµζ̃ 6= 0.

The Lagrangian is

L = (Dµ + iVµ)φ̃(Dµ + iVµ)φ+ iψ̃σ̃µ
(
Dµ −

i

2Vµ
)
ψ − FF̃ − r

4Rφ̃φ+
(

3
2r − 1

)
V µVµφ̃φ.

(44)
Note that the structure is as announced, with 1/` and 1/`2 terms. Note that
the R-charge r appears explicitly.

4As usual in Euclidean signature ζ and ζ̃ are not related by complex conjugation.
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Consider a free chiral multiplet with R-charge equal to 2/3, so that one can
turn on a superpotential. That theory is an SCFT (at least classically) so we
expect to be able to couple the theory to conformal supergravity. We can see
that r

4Rφ̃φ gives the conformal coupling Rφ̃φ/6, and see that Vµ drops out,
leaving Aµ as the only gauge field.

3.2 Example: S3 × R
This cylinder is locally conformally flat, so we can put superconformal theories
easily on it. In other words it is a solution of conformal supergravity. Is it also
a solution of new minimal supergravity, namely can we put 4d N = 1 theories
with U(1)R symmetry on this?

Isometries are SU(2)L×SU(2)R×R. Careful, these two SU(2) have nothing
to do with the ones for which we usually introduce dotted and undotted indices.
We parametrize R by τ . We take the Ansatz V = vdτ and A = adτ . The Killing
vector equations become(

∂τ − ia−
i

2v
)
ζ = 0,

(
∂τ + ia+ i

2v
)
ζ̃ = 0, (45)

~∇ζ = −v2~σζ,
~∇ζ̃ = −v2~σζ̃. (46)

Exercise: find solutions. This gives v = ∓i/`. The v = −i/` case leads to ζ and
ζ̃ that are invariant under SU(2)R. If we choose a = 0 then [H,Qζ ] = 1

2Q. To
avoid this dependence of Qζ on time we use a = i/2`, which leads to [H,Qζ ] = 0.
In particular compactifying the time direction preserves supersymmetry in that
case.

In contrast, if we had worked with old minimal supergravity we would have
found a supersymmetric background on S3 × R, but not on S3 × S1.

The Romelsberger index (partition function on S3 × S1) can thus only be
defined for theories with U(1) R-symmetry.

We can compute {Qa, Qb} = {Qa, Qb} = 0 and

{Qa, Qb} =
(
H + R

`

)
δab + 2

`
Jab (47)

where J(ab) are generators of SU(2)L. In addition, supercharges have R-charges
±1, namely [R,Qa] = −Qa and [R,Qa] = Qa. We also have [H,Qa] = 0,
[H,Qa] = 0. Denoting J3 = J12 and J+ = iJ11 and J− = iJ22, we find the
usual [J3, J±1] = ±J± and [J+, J−] = 2J3 and [J+, Q2] = −iQ1, [J3, Q1] = Q1,
[J+, Q1] = 0 etc.

This algebra is su(2|1)× u(1)× su(2)R where su(2|1) is generated by J3, J±,
Q, Q, R + `H, and u(1) is generated by H, and su(2)R does not act on any
supercharge.

Let us now set ` = 1.
Let us understand which representation of the superalgebra are unitary (with

Q
a = (Qa)†). We can decompose into representations of su(2)×u(1). Start from
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a state annihilated by Q1,2 and J+. Of course su(2) generates a tower of states.
Denoting by (j)r that tower of state with highest spin j ∈ 1

2Z and R-charge r.
Acting with a supercharge gives

(j)hr

(j + 1/2)hr−1

(j − 1/2)hr−1

(j)hr−2

(48)

where the multiplet (j − 1/2)hr−1 is only present for j ≥ 1/2. The unitarity
condition is that norms of all these states are positive:

•
∥∥∥Q1|j, r〉

∥∥∥2
≥ 0 implies TODO

•
∥∥∥Q2|j, r〉+ (i/

√
2j)Q1|j− 1, r〉

∥∥∥2
≥ 0 (the state is chosen to be annihilated

by J+) implies TODO when j ≥ 1/2;

•
∥∥∥Q1Q2|j, r〉

∥∥∥2
≥ 0 implies TODO so we don’t learn anything except for

j = 0.

Long multiplets have h ≥ 2j + 2− r

• for j ≥ 1/2 they are called Lj and contain (j)hr + (j ± 1/2)hr−1 + (j)hr−2;

• for j = 0 they contain (0)hr + (1/2)hr−1 + (0)hr−2.

Short multiplets (namely saturating the bound so some states have zero norm
and the representation should be quotiented by these states) are

• for h = 2j+2−r; they are called Sj and contain (j)2j+2−r
r +(j+1/2)2j+2−r

r−1 ;

• singleton j = 0, h = −r contains (0)−rr only and is called Ŝ.

When varying parameters in the theory, long multiplets can split into short
multiplets when the bound becomes saturated. In detail,

Lj
h→2j+2−r−−−−−−−→ Sj + Sj−1/2, j ≥ 1/2 (49)

L0
h→2−r−−−−−→ S0 + Ŝ, j = 0. (50)

Exercise: check there is no typo.
Let us try to define the most general index that is invariant under recombi-

nations. Here, n[Shj ] denotes the number of short multiplets of type Shj and so
on.

I =
∑
h

e−βh
(∑
j,h

(
αjn[Shj ] + γn[Ŝh]

))
(51)

13



Invariance under recombination implies that αj = −αj−1/2 and α1/2 = −γ so
we find

I = Tr e−βH(−1)2J3 = Tr
(
e−βH(−1)F

)
. (52)

In fact we can introduce fugacities similar to β for any other conserved charge
that commutes with the superalgebra, for instance the J3 generator of su(2)right.

A nice way to write the index with all fugacities turned on, roughly changing
variables e−β → pq and add fugacity p/q for J right3 , is

TrHon S3

(
(−1)F pJ

left
3 +Jright3 −R/2+1qJ

left
3 −Jright3 −R/2+1uQflavour

)
. (53)

This reduces to the previous expression when p = q = e−β/` and u is a flavour
fugacity and Qflavour is a flavour charge.

We can convert this index to a partition function on S3 × S1, where u is a
holonomy around S1 of a background gauge field for the given flavour symmetry.
Since the background gauge field is dynamical there is nothing wrong with taking
u to be complex.

Note that h is fixed by j and r, and in particular it does not depend on the
scale. This means that we can compute the index in the free theory and that
tells us something about the infrared.

In addition, the supersymmetry algebra is a subalgebra of the superconformal
algebra: su(2|1)left × u(1)× su(2)right ⊂ su∗(4|1).

See https://arxiv.org/abs/hep-th/0510060 and https://arxiv.org/
abs/hep-th/0707.3702 by Romelsberger (the second paper is more readable).

The index of a free chiral multiplet of charge r is

I =
∏

m,n≥0

1− (pq)−r/2pm+1qm+1

1− (pq)r/2pmqn
. (54)

In the exercises you find a few special cases.
From a 4d N = 1 theory on S3 × S1, we can reduce along

• the Hopf fiber, which leads to a 3d N = 2 theory on S2 × S1;

• the S1 time direction, which leads to a 3d N = 2 theory of S3;

• other reductions are possible, where we glue the cylinder after a su(2)right
rotation. This leads to pretty general squashed S3 partition functions that
preserve 4 supercharges.

3.3 Back to classifying backgrounds for 4d N = 1 with U(1)
R-symmetry

Given the U(1) R-symmetry the theory is coupled to new minimal supergravity
so the generalized Killing spinor equations are

(∇µ − iAµ)ζ = −i2 V νσµσνζ. (55)
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In Euclidean space-time we define (ζα)∗ = (ζ†)α such that ζ†ζ = |ζ1|2 + |ζ2|2
and (ζα)∗ = −(ζ†)α

While there are manifolds that do not admit spinors (non-spin manifolds), all
4d orientable manifolds are SpinC namely admits charged spinors. The spinors
will be in a L ⊗ su(2)+ bundle. If ζ = 0 at some point then the generalized
Killing spinor equations set ζ = 0 everywhere. We deduce that ζ 6= 0 everywhere
for solutions. In fact, the set of all solutions must be linearly independent at
every point (hence there can be at most two solutions because the bundle is
two-dimensional).

This non-vanishing seems in contradiction with the fact that for 4d N = 2
theories we find spinors that vanish at one pole. However, remember that the
generalized Killing spinor equations in that case (or in old minimal supergravity)
mix the spinors ζ and ζ̃ so the analogous non-vanishing statement is that the
two spinors cannot both vanish at the same point.

Suppose we have a solution. Then

Jµν = −2i
|ζ|2

ζ†σµνζ (56)

is a good tensor: it is invariant under SpinC acting on ζ and ζ†. We can compute

JµνJ
ν
ρ = −δµρ , gµνJ

µ
ρJ

ν
λ = gρλ (57)

which means there is an almost5 complex structure J , and that it is compatible
with the metric. This already rules out S4 because that manifold is not almost
complex.

The almost complex structure is in fact a complex structure, namely the
Nijenhuis tensor vanishes; this is a tedious calculation

Nµ
νρ = Jλν∇λJµρ − Jλρ∇λJµν − Jµλ∇νJλρ + Jµλ∇ρJλν = 0. (58)

Ther is a shortcut: check that the Lie bracket of holomorphic vectors is holo-
morphic. A holmorphic vector is X such that Xµσ̃µζ = 0.

We learn that any supercharge ζ leads to a complex structure on the mani-
fold M with a metric compatible with holmorphy. Namely we can cover M in
patches with complex coordinates zI and holomorphic transition functions and
where the metric is ds2 = giidzidzi.

What about the converse: given a nice complex manifold M with
a complex metric, build generalized Killing spinors?

Consider the simplified form (∇µ − iAµ)ζ = 0 (namely V = 0); it is (only)
possible to cancel the holonomy of the Levi–Civita connection ∇µ using a U(1)
gauge field if the holonomy of ∇µ is in u(1)left × su(2)− ⊂ su(2)+ × su(2)−,
namely the manifold is Kähler.

From the vanishing of Nµ
νρ we can deduce ∇µJµν =

(
Vν + V ν

)
+ i
(
Vµ −

V ν
)
Jµν , which can be inverted to Vµ = 1

2∇νJ
ν
µ+Uµ for an arbitrary conserved

5This means that the structure might not integrate to complex coordinates even locally.
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Uµ to ensure ∇µUµ = 0 and in fact Ui = 0. Note that Vµ only needs to be zero
for a manifold that is not Kähler (but is Hermitian).

The next step is to build the so-called Chern connection compatible with
gµν and Jµν . Start from the Levi–Civita connection ωµνρ and shift it by a
(con?)torsion tensor:

ωChernµνρ = ωµνρ −
1
2Jµ

λ
(
∇λJνρ +∇νJρλ +∇ρJλν

)
. (59)

The key is that this Chern connection has holonomy in u(1) × su(2) and we
rewrite the generalized spinor equation in terms of that connection and using
the explicit V µ (up to the ambiguity U)(

∇Chern
µ − iAChern

µ

)
ζ = 0 (60)

where AChern
µ = Aµ + 1

4 (2δνµ − iJνµ)∇ρJρν . Now we are left with cancelling a
u(1)× su(2) connection by a u(1) gauge field. Thankfully ζ is not charged under
the su(2).

3.3.1 More explicitly

We define Pµν = ζσµνζ is antisymmetric and holomorphic in each index and
lives in the line bundle L2 × Λ(2,0) where Λ(2,0) is the canonical line bundle (we
are on a 2 complex dimensional manifold). On the other hand, L ∼ K−1/2 where
K is the canonical line bundle (so L is not defined but L2 is). We can then let
p := P12 and consider s = pg−1/4 where g = det(metric). Under a holomorphic
coordinate change we get

s′(z′) = s(z)
(

det
(
∂z′/∂z

)
det
(
∂z′/∂z

))1/2

. (61)

This can be undone by a U(1) R-symmetry transformation. Under holomorphic
coordinate changes plus U(1) R-symmetry, s is a scalar.

Very explicitly,

e1 =
√

2g11dz1 +
√

2
g11

g21dz2 (62)

e2 =
√

2
g11

g1/4dz2 (63)

ds2 = e1e1 + e2e2 (64)

ζ =
√
s

2
(
1 0

)
(65)
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and

AChern
i = −i8 ∂i log g − i

2∂i log s (66)

AChern
i

= i

8∂i log g − i

2∂i log s. (67)

Conclusion: in a manifold with a self-dual complex structure we can build at
least one supercharge.

3.3.2 Ask for two ζ

3.3.3 Ask for ζ and ζ̃

Then Kµ = ζσµζ̃ is a complex Killing vector with KµKµ = 0 but K everywhere
nonzero and K is holomorphic with respect to the two complex forms J and J̃
built from ζ and ζ̃.

We decompose
Jµν = Qµν + 1

2εµνρλψ
ρλ (68)

with Qµν = i
|K|2 (KµKν −KνKµ). Two cases:

• [Kµ,K
ν ] 6= 0 then we get a non-trivial isometry algebra and can work out

the only solutions S3 × R or S3 × S1 which we already know about.

• [Kµ,K
ν ] = 0 then we have a nowhere vanishing torus fibration with

ds2 = Ω(z, z)2

((
dw + h(z, z)dz

)(
dw + h(z, z)dz

)
+ c(z, z)dzdz

)
(69)

with Ω2(z, z) = 2|K|2 and K = ∂w.

4 Lecture 5, July 20
• One supercharge Q corresponding to a ζ =⇒ M is complex (actually,
Hermitian?).

• Two supercharges of the same chirality =⇒ flat T 4, round S3 × S1 or
quotients thereof, K3 surface.

• Two supercharges of opposite chirality =⇒ two complex structures, and
ζσµζ̃ is holomorphic with respect to both complex structures.

Now let us find out what background gauge fields (aµ, D, . . . ) preserve this
supercharge. The condition (for one supercharge) is

iζD + σµνζfµν = 0 (70)

which implies that fij = 0 and D = −Jµνfµν .
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4.1 Hopf surfaces
Hopf surfaces are complex surfaces (real dimension 4) diffeomorphic to S3 × S1

that can be constructed as quotients of C2 \ {(0, 0)} by Z.

• Primary Hopf surfacesMp,q are defined by identifying (w, z) ∼ (pw, qz)
for some fixed 0 < |p| ≤ |q| < 1; the complex parameters p and q are
complex structure moduli.

• Other Hopf surfaces are defined by identifying (w, z) ∼ (qnw + λzn, qz)
for some n ∈ Z and 0 < |q| < 1 and λ ∈ C \ {(0, 0)}; the λ can be rescaled
away but q is a genuine complex structure modulus.

In the first case, let p = exp(−βp + iθp) and q = exp(−βq + iθq) (where we
choose representatives θp and θq modulo 2π arbitrarily) and parametrize

w = e(−βp+iθp)x cos θ2e
iϕ, z = e(−βq+iθq)x cos θ2e

iχ. (71)

The identification is x ∼ x + 1 so x parametrizes a circle. The geometry at
fixed x is a squashed sphere

e2βpx|w|2 + e2βqx|z|2 = 1. (72)

One possible metric consistent with the holomorphic structure is

ds2 = `2
(√

βq
βp
e2βpxdwdw +

√
βp
βq
e2βqxdzdz

)
(73)

On a primary Hopf surfaceMp,q we can preserve two supercharges. It turns
out that the partition function

Z(Mp,q) ∼ I(q, p) (74)

is essentially equal to the index that we defined earlier. Flavour fugacities
correspond to turning on background gauge fields. In particular, the partition
function depends holomorphically on p and q.

As we will see, the partition function depends holomorphically on the complex
structure and does not depend on the metric.

4.2 Dependence on parameters
See Klare–Tomasiello–Zaffaroni https://arxiv.org/abs/1203.1062 and Dumitrescu–
Festuccia–Seiberg https://arxiv.org/abs/1205.1115.

In principle the partition function could depend on

• the choice of metric;

• the choice of complex structure Jµν ;
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• the other supergravity backgrounds Vµ = ∇νJνµ + Uµ;

• the background gauge fields.

The partition function does not depend on many of these parameters. The
proper way to prove this is to compute variations with respect to the complex
structure etc and check that some of these are Q-exact. Instead, we will analyse
the problem only near flat space, in linearized supergravity.

We consider theories with U(1) R-symmetry, that couple to new minimal
supergravity. The variation of the Lagrangian away from flat space and zero
background currents is

δL = −1
2 δgµνTµν + δARµ j

µ
R + δV µAµ +

(
δaµjflavourµ + δDJflavour

)
(75)

where the terms in parentheses come from background currents (and we omitted
fermionic terms?). Then

fij = 0, D = −2i
(
fww + fzz

)
(76)

which implies ai = ∂iλ and ∂[iδaj] = 0.
The flavour current (we drop the superscript) has components J , jα, jα̇, jµ

and obeys ∂µjµ = 0. The variations are

{Qζ , J} = iζj, {Qζ , jα̇} = −i(σ̃µζ)α̇
(
jµ − i∂µJ

)
(77)

{Qζ , jα} = 0, {Q, jµ} = −2ζσµν∂νj. (78)

Using the complex structure we can check that ji − i∂iJ are Q-exact, and that
they are the only Q-closed bosonic operators we can write. Then focussing on
the variation of the Lagrangian due to background gauge fields we compute

δL = δaµjµ + δDJ (79)
= 2δaw

(
jw − i∂wJ

)
+ 2δaz

(
jz − i∂zJ

)
+ 2δaw

(
jw − i∂wJ

)
+ 2δaz

(
jz − i∂zJ

)
+ total derivatives

(80)

where we used D = −2i
(
fww + fzz

)
and integrated by parts to put everything

in terms of δa. Now the first two terms are Q-exact so the partition function
cannot depend on aw and az. On the other hand the other two

(
jw − i∂wJ

)
and(

jz − i∂zJ
)
are not Q-closed, so how can QδL vanish? Well,

QδL = 2∂[iδaj]ζσ
ijj + total derivatives. (81)

What about gauge-invariance? The Lagrangian is not invariant under background
gauge transformations, but the partition function is. We already know that
δaw and δaz do not affect the partition function, so we just have to check that
δai = ∂iε does not change the partition function. Exercise: by using current
conservation check that the Lagrangian varies by

2ε∂w
(
jw − i∂wJ

)
+ 2ε∂z

(
jz − i∂zJ

)
+ total derivative. (82)
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Back to the geometry. Varying the equation JµνJνρ = −δµρ gives

δJµνJ
ν
ρ + JµνδJ

ν
ρ = 0 (83)

from which we learn that δJ ij = 0 and δJ i
j
is unconstrained. Varying the

vanishing of the Nijenhuis tensor gives that θi = δJ ijdz
j obeys ∂θi = 0 (here ∂

is “half” of the exterior derivative d) so θi = ∂εi locally (because ∂2 = 0, just
like d2 = 0). We are thus interested in how the Lagrangian varies under changes
by εµ.

How must the metric vary in order to remain holomorphic? Vary gµνJµρJνλ =
gρλ. We learn that δgij is unconstrained while

δgij = i

2
(
gikδJ

k
j + gjkδJ

k
i

)
(84)

Then we can use formulas given in previous lectures to compute δARµ and δV µ
and plug this back into (75) and integrate by parts. Altogether we find that

δL = Qζ
(
· · ·
)

+ δJ iiθ
i
i. (85)

We learn that

• the partition function does not depend on δgij , hence does not depend on
the hermitian metric;

• it depends on complex structure moduli, locally holomorphically (there
could be singularities).

All that we said so far is disregarding anomalies!

4.3 3d N = 2
We now dimensionally reduce to 3d N = 2 supersymmetric theories with U(1)
R-symmetry. Now the R-multiplet contains: j(R)

µ (R-symmetry current), j(Z)
µ

(central charge current), Tµν (stress tensor), J from which we can build the string
current εµνρ∂ρJ , and fermionic Sµα and Sµα̇. This couples to supergravity fields

supergravity multiplet : A(R)
µ , Cµ, gµν , H, ψµα, ψµα̇. (86)

Alternatively we can use the conserved current V µ = #εµνρ∂νCρ (where # is
some coefficient I couldn’t read). We find a similar structure to 4d: instead of
complex manifolds we get manifolds with a transverse holomorphic fibration.
The partition function only depends on that fibration. Mathematicians have
classified such fibrations.

There are many ways of defining a squashed S3, either squashing the metric,
or keeping the metric round but tuning other supergravity fields, etc. It turns
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out that the partition function only depends on a single parameter b. Consider
now starting from b = 1 (round sphere) and varying b. Then

δL
δb2

∣∣∣∣
b=1

=
(
Aµ − 3

2V
µ

)
j(R)
µ + Cµj(Z)

µ . (87)

Then

δZ

δb2

∣∣∣∣
b=1

=
∫

d3x
√
g

∫
d3y
√
g vµvν〈j(R)

µ (x)j(R)
ν (y)〉+ contact terms (88)

It can be shown that the contact terms can only affect the imaginary part of the
partition function. For a general superconformal field theory we can write

〈j(R)
µ (x)j(R)

ν (y)〉 = τRR
16π2 (δµν∂2 − ∂µ∂ν) 1

|x|2
(89)

The single parameter τRR also controls the stress-tensor two-point function. By
a conformal transformation we can map such two-point functions to the plane,
so through the localization calculation we learn the flat-space two-point function
of the stress tensor.
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