
4d N = 2 localization
Lectures by Wolfger Peelaers notes by Bruno Le Floch

July 16–20, 2018

Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
4d N = 2 supersymmetries. These are lecture notes for the 2018 IHÉS

summer school on Supersymmetric localization and exact results.

These lecture notes assume familiarity with supersymmetry at the level of
the first few chapters of the book by Wess and Bagger.

1 Lecture 1, July 16
We work in Euclidean signature. A 4d N = 2 supersymmetric theory is a
QFT invariant under N = 2 super-Poincaré symmetry. The generators of the
supersymmetry algebra are Pm (m = 1, . . . , 4) translations, Mmn (antisym-
metric) rotations, supercharges QIα and Q̃Iα̇ for I = 1, 2 labelling the two
supersymmetries, and finally two central charges Z and Z̃. (Anti)commutators
are

{QJα, Q̃Iα̇} = δIJ(σm)αα̇Pm (1)
{QIα, QJβ} = εIJεαβZ (2)

[Z, anything] = 0. (3)

The super-Poincaré algebra has SU(2)R×U(1)r symmetry when Z = Z̃ = 0 but
a non-zero (Z, Z̃) breaks U(1)r.

Massless matter multiplets:

• Vector multiplet (Am, φ, φ̃, λIα, λ̃Iα̇, DIJ ) where all of the components are
in the adjoint representation of the gauge group. In terms of 4d N = 1
multiplets this decomposes into a vector multiplet and an adjoint chiral
multiplet.

• Hypermultiplet (qIA, ψAα, ψ̃α̇A) where A is a flavour index. For n flavours
this has USp(2n) flavour symmetry.
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Consider a single hypermultiplet and call its scalars Q and Q̃. The four real
scalars have so(4) = su(2)R × su(2)flavour symmetry

Q Q̃

−Q̃∗ Q∗
(4)

where SU(2)R mixes the rows while USp(2)flavour mixes the columns.
Flavour symmetry of N hypermultiplets transforming in representation R of

the gauge group G:

• If R is a complex representation then the flavour symmetry is U(N).

• If R is a real representation then the flavour symmetry is USp(2N).

• If R is pseudoreal then the flavour symmetry is SO(2N).

Consider a (constant) supercharge δ = ξIαQIα + ξ̃Iα̇Q̃
Iα̇. For instance

δAm = iξIσmλ̃I − iξ̃I σ̃mλI . The commuting spinor parameters ξI are just there
to keep track of what supercharge we are looking at.

The Yang–Mills action is

LYang–Mills = 1
2FmnF

mn − 4Dmφ̃D
mφ− 1

2DIJD
IJ + 4[φ, φ̃]2 + · · · (5)

and we could write the hypermultiplet action too. Supersymmetry invariance im-
plies the existence of a conserved current: when applying the Noether procedure
(namely considering a position-dependent supersymmetry variation),

δL = ∂mk
m + ∂mξIJ

Im + ∂µξ̃I J̃
Im (6)

where J and J̃ are conserved currents (the Sµα of Guido Festuccia’s talk). By
adding a few terms of the form σmDmξ̃Iφ to the supersymmetry transformations
we can ensure that J obeys a further nice property that σ̃mJIm = 0 = σmJ̃Im.

So we find an invariance of the action under δ provided that

∂mξI = −iσmξ̃′I (7)

∂mξ̃I = −iσ̃mξ′I (8)

where ξ′ and ξ̃′ are whatever they need to be. Solving this we find

ξI = ξ̂
(s)
I + (−i)xmσm

ˆ̃
ξ

(c)

I (9)

ξ̃I = ˆ̃
ξ

(s)

I + (−i)xmσ̃mξ̂(c)
I (10)

where hatted spinors are constants and (s) and (c) stand for “supersymmetry”
and “superconformal”.
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What is now the algebra of these generalized supersymmetry variations?
Namely, what is

(
δξ,ξ̃
)2? (For Poincaré supersymmetry only the first term below

would remain.)(
δξ,ξ̃
)2 = iLv+Scale(w)+U(1)r(θ)+SU(2)R(θIJ)+gauge transformation (11)

where v = 2ξ̃I σ̃mξI . Interestingly, ∂mvn + ∂nvm = 1
2δmn∂

kvk, which is the
conformal Killing vector equation, namely v generates conformal transformation,
namely Lvg ∼ g (it rescales the metric). Plugging in v = 2ξ̃I σ̃mξI the explicit
spinors we found earlier (that depend linearly on the position x), we find an
expression quadratic in position:

vm = am︸︷︷︸

tr
an

sl
at
io
n

+λmnx
n︸ ︷︷ ︸

ro
ta
ti
on

+ λD︸︷︷︸
di
la
ti
on

xm + kl︸︷︷︸

sp
ec
ia
l
co
nf
or
m
al

(x2δml − 2xmxl) (12)

Exercise: work out the whole superconformal algebra

[D,Pm] = Pm (13)
[D,Km] = −Km (14)

[Km, Pn] = δmn D +Mm
n (15)

{QαI , Q̃α̇J} = δJI Pα
α̇ (16)

{SαI , S̃α̇J} = δJIKα
α̇ (17)

{Q,S} = D +M +R+ r (schematically) (18)

We have learned that the 4d N = 2 theory is supercoformal invariant, classically.
Quantumly we need to make sure that the beta function vanishes, which happens
for instance in 4d N = 4, or in 4d N = 2 theories with appropriate matter
content.

1.1 Weyl vs conformal transformations
Weyl transformations are just local rescalings of the metric and fields gµν(x)→
Ω(x)2gµν(x) and ϕ(x)→ Ω(x)−∆ϕϕ(x).

Conformal transformations are more restrictive: they are diffeomorphisms
g′µν(x′) = ∂xρ

∂x′µ
∂xσ

∂x′ν gρσ(x) such that g′ = Ω2g can be brought back to the original
metric by a Weyl transformation.

In fact a conformally-invariant unitary theory turns out to be Weyl-invariant
(see a paper by Luti etc).

We are interested in Weyl-covariant objects.

• The conformal Killing spinor equations ∇mξI = −iσmξ̃′I (where ∂mξI +
1
4ωm

rsσrsξI are invariant under ξ → Ω1/2ξ and g → Ω2g.
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• The covariantized supersymmetry transformation rules (with extra terms
such as σmDmξ̃Iφ) are Weyl covariant.

• Another covariant object is the Laplacian �−R/6, where R is the Ricci
scalar.

To put the theory on S4 of radius r, notice that this manifold is locally
conformally flat:

ds2
S4
r

= 1(
1 + x2/(4r2)

)2 (dx2
1 + dx2

2 + dx2
3 + dx2

4) (19)

where x2 =
∑
i(xi)2. By a conformal transformation from flat space we can put

the 4d N = 2 supersymmetric theory on S4.
The superconformal algebra in signature (+,+,+,−) is su(2, 2|N ), with

bosonic components su(2, 2) ' so(4, 2) and su(N )×u(1). In Euclidean signature
the correct superalgebra is su∗(4|2).

In flat space it is useful to consider the algebra under which massive (namely
non-conformal) theories are invariant, namely the super-Poincaré algebra. This
is half of all supercharges in the superconformal algebra. Doing the same exercise
on S4 we find the supersymmetry algebra osp(2|4), containing the sp(4) = so(5)
isometries of S4. This subalgebra can be described in the language of conformal
Killing spinors by the equation

∇mξI = −iσmξ̃′I , ξ̃′I = −iSµνσµνξI (20)

for some arbitrary Sµν . Then we find explicitly

ξI = 1√
· · ·

(
ξ̂

(s)
I − iσ

mxm
ˆ̃
ξ

(c)

I

)
(21)

ξ̃I = 1√
· · ·

(ˆ̃
ξ

(s)

I − iσmxmξ̂
(c)
I

)
(22)

with ˆ̃
ξ

(c)
∼ 1

2r
ˆ̃
ξ

(s)
.

Beyond putting the theory on S4 we can in fact put it on

S4
b :
{
x2

0
r2 + x2

1 + x2
2

`2
+ x2

3 + x2
4

˜̀2 = 1
}

and we set b =
√
`/˜̀. (23)

It is called the squashed sphere.

1.2 Localization on S4

See Benini’s lecture tomorrow for the supersymmetric localization argument.
Provided Q[Dφ] and QS = 0 and QO = 0 and

∫
Q2V = 0, we can apply

supersymmetric localization:

It :=
∫

[Dφ]Oe−S[φ]−t
∫
QV (24)
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has a vanishing t-derivative. Now if QV |bosonic ≥ 0 one can take t → +∞. It
introduces an infinitely steep potential and we eventually find∫

[Dφ]Oe−S[φ] =
∑∫

{φ0}=zeros of QV |bos

(
Oe−S

)
|φ0Z1-loop[φ0] (25)

Two choices: Q and V . Three things to determine: localization locus {φ0}, value
of observables and classical action for φ0, one-loop determinant Z1-loop.

Choose Q such that Q2 = bJ12 + b−1J34 + (b+ b−1)R. In other words choose
ξ and ξ̃. It turns out ξ vanishes at the North pole and ξ̃ at the South pole.

Choose the canonical V

V =
∑

fermions ψ
(Qψ)†ψ (26)

Exercise: check Q2V = 0.
Warning: before starting we need to realize the supersymmetry Q off-shell,

otherwise Q2V will only vanish up to the equations of motion.
Step 1. Let us now find zeros of QV |bosonic. This is Qψ = 0 for all fermions ψ,

subject to reality conditions. The conclusion is that for the hypermultiplet all
hypermultiplet fields must vanish. For the vector multiplet, smooth solutions
have: Fmn = 0 (so in some choice of gauge Am = 0), φ = φ̃ = −i

2 a0 is constant,
and DIJ = −ia0wIJ where wIJ = −4ξIσmnξJSmn/(ξKξK). Everything is
controlled by the same constant a0. On the other hand, at the North pole
ξ vanishes so the constraint on F is a bit weaker, namely F+

µν = 0 while at
the South pole F−µν = 0. These equations are the instanton and anti-instanton
equations respectively.

Step 2. The hypermultiplet action contributes nothing. The vector multiplet
action (5) gives

1
g2
YM

∫
d4x
√
gLYang–Mills = 8π2

g2
YM

Tr â2
0 (27)

where â0 =
√
`˜̀a0.

Step 3. Then we need to write the contribution from quadratic fluctuations.
One way on the round S4 is to decompose into spherical harmonics. Alternatively
one can pair up bosonic and fermionic modes whose contributions cancel. A
more conceptual way is to use an index theorem; see Zabzine’s lectures next
week.

At the end of the day,

ZVM
1-loop =

∏
roots α>0

Υb(iα(â0))Υb(−iα(â0)) (28)

ZHM
1-loop =

∏
weights w of R

Υb(iw(â0) +Q/2) (29)

with Q = b+ b−1. Here

Υb(x) =
∏

m,n≥0
(mb+ nb−1 + x)((m+ 1)b+ (n+ 1)b−1 − x) (30)
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regularized.

2 Lecture 2, July 17
Recap from yesterday. We built 4d N = 2 theories on S4. With the full power
of supergravity one can do the same on S4

b , see https://arxiv.org/abs/1206.
6359. The localizing supercharge Q obeys

Q2 = bJ12 + b−1J34 + (b+ b−1)R. (31)

We take V =
∑

fermions ψ(Qψ)†ψ and reduce to the locus QV |bosonic = 0.
Smooth solutions have hypermultiplets set to zero and vector multiplets set

to zero except the vector multiplet scalar φ = φ̃ = −i
2 a0 and auxiliary field

DIJ = −ia0wIJ where wIJ is built from the generalized Killing spinors, see last
lecture.

There are also singular solutions with F+ = 0 but F− 6= 0 at the North pole,
and F− = 0 but F+ 6= 0 at the South pole.

We can compute the classical action and one-loop determinants.

1
g2
YM

∫
d4x
√
gLYang–Mills = 8π2

g2
YM

Tr â2
0 (32)

ZVM
1-loop =

∏
roots α>0

Υb(iα(â0))Υb(−iα(â0)) (33)

ZHM
1-loop =

∏
weights w of R

Υb(iw(â0) +Q/2) (34)

and combine them into

Z =
∫

dâ0 e
−8π2

g2
YM

Tr â2
0
Zvector multiplet
1-loop (â0)Zhypermultiplet

1-loop (â0)× Znonperturbative.

(35)
We still have to understand the nonperturbative contribution due to instantons
and antiinstantons at the poles.

Masses are easily introduced by noticing that they are equivalent to back-
ground values for the scalar field in a nondynamical vector multiplet coupled to
the given flavour symmetry.

What operators can we add?

• We can put chiral operators at the North pole (concretely Trφk) and
the South pole (concretely Tr φ̃k). To perform the computation we just
need to insert inside the integral (35) the value of these operators on the
localization locus.

• Wilson loops, see Pestun’s original paper;

• ’t Hooft loops, see paper by Gomis–Okuda–Pestun;

• surface operators, either as disorder operator or defect operators.
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2.1 Instantons
Our goal is to find the nonperturbative contribution from instantons at the poles.
Infinitesimally close to the poles the sphere is close to flat space so it makes
sense to ask the question in flat space.

Back to non-supersymmetric Yang–Mills in flat space.

1
g2
YM

∫
d4xTr(FµνFµν) (36)

Search for finite-action solutions solving the equation of motion. Note that∫
TrF ∧?F = 1

2

∫
Tr(F ±?F )∧ (F ±?F )∓

∫
TrF ∧F ≥ ∓

∫
TrF ∧F (37)

The inequality is saturated if F = ±?F . Solutions of this first order differential
equation, called (anti)selfdual connections or (anti)instantons automatically obey
the equations of motion DF = ±D?F = 0 (by the Bianchi identity).

The lower bound is a topological charge. Gauge field configurations with
Fµν → 0 fast enough at infinity (to keep the action finite) must be pure gauge
at infinity, which means that Am

i→∞−−−→ g−1∂mg. The function g : S3
∞ → G

cannot necessarily be continuously deformed to a constant, and the obstruction
is measured by π3(G), equal to Z for any simple gauge group G other than U(1).
The precise map is {

π3(G) → Z
g 7→ 1

8π2

∫
Tr(F ∧ F ).

(38)

We will typically denote the instanton number by k = 1
8π2

∫
Tr(F ∧ F ).

Example: k = 1 instanton for SU(2) gauge group

Asingular
µ (x) = ρ2(x−X)ν

(x−X)2
(
(x−X)2 + ρ2

) η̃iµν(gσig−1) (39)

where η̃ is defined by σµν = 1
2 (σµσ̃ν − σν σ̃µ) = η̃iµντi. This solution is character-

ized by 8 coordinates:

• X position of the instanton (4 coordinates);

• ρ size (1 coordinate);

• g ∈ SU(2) global gauge (3 coordinates).

What about SU(N) instantons? We can map the instanton above using any
embedding SU(2) → SU(N). Changing the embedding corresponds to conju-
gating by h ∈ SU(N), but many choices of h give the same instanton, namely
conjugating by an element of U(N − 2) changes nothing and conjugating by an
element of SU(2) ⊂ SU(N) is equivalent to changing g ∈ SU(2). Altogether,
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choices are parametrized by SU(N)/S[U(N − 2)× U(2)]. Together with the 8
coordinates found for SU(2) we get

8 + (N2 − 1)− ((N − 2)2 + 4− 1) = 4N. (40)

For multiple instantons, it can be shown using an index theorem that

dimMk,SU(N) = 4kN. (41)

The index theorem relates the dimension of the k-instanton moduli space with
the number of zero-modes, namely normalizable solutions to linearized field
equations for fluctuations.

To be more concrete, linearize around a solution Acl
µ . We write Aµ =

Acl
µ (X) + δAµ, where X are coordinates on the moduli space of instantons, and

get
DµδAν −DνδAµ = εµνρσD

ρδAσ (42)

but we want to restrict to solutions that are orthogonal to the space of gauge
transformations, so

0 =
∫

d4x Tr δAµDµΛ ⇔ DµδA
µ = 0. (43)

Solutions to these equations are in one-to-one correspondence with coordinates on
the instanton moduli space. In one direction it is straightforward: the variation
of Acl

µ with respect to a coordinate α obeys the equations above. On the other
hand, δS

cl

δAcl
µ

= 0 implies

0 = ∂

∂xα
δScl

δAcl
µ

=
∫

δ2Scl

δAcl
µ (x)δAcl

µ (y)
∂Acl

µ (y)
∂xα

d4y. (44)

The zero-modes also provide us with a metric:

gαβ =
∫

d4xTr
(
δαAµδβA

µ
)
. (45)

Adding Fermions. Just like we studied bosonic zero modes to find collective
coordinates it makes sense to find fermionic zero modes.

The supersymmetry variation is

δλI = 1
2σ

mnξIFmn + · · · (46)

δλ̃I = 1
2σ

mnξ̃IFmn + · · · (47)

For an instanton background the ξ̃I supersymmetry is broken but δλI = 0 so
ξI is preserved. Broken supersymmetries give rise to some of the kN fermionic
zero-modes, but not all.
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The fact that instantons preserve some supersymmetry implies that bosonic
zero modes will be paired with fermionic zero-modes in multiplets of the preserved
supersymmetry. Two questions: which supersymmetry? which supermultiplets?

So, let us look at fermionic zero modes

/̃Dλ = 0, /Dλ̃ = 0 (48)

where /̃D = σ̃µDµ. Compute

/̃D /Dλ̃ = σ̃µσνDµDν λ̃ = (δµν + σµν)DµDν λ̃ = D2λ̃+ 1
2σ

µνFµν λ̃. (49)

If we are considering instantons (so k > 0), then the last term vanishes. Since
D2λ̃ = 0 implies λ̃ = 0 we learn that /Dλ̃ = 0 has no nontrivial solution.

On the other hand /̃Dλ = 0 has non-trivial solutions. In fact index theorems
show that the number of zero-modes of /̃D is kN if λ is in the fundamental
representations. For other representations we find other countings (in particular
for the adjoint it has to match with the bosonic zero modes).

2.2 ADHM matrix model
Lift to one dimension up, namely consider the 5d N = 1 analogue of our 4d
N = 2 theories we are interested in. Then the analogue of instantons will
be 1d objects that in the slow-varying approximation are described by a 1d
supersymmetric quantum mechanics, whose supersymmetry is 2d N = (0, 4)
reduced to 1d.

R4

•

t

4d N = 2 gauge theories can be realized in string theories as the world-volume
theory on D4 branes stretching between NS5 branes.

D4NS5
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Let us unravel this a little bit.

• The world-volume theory on infinite D4 branes is 5d N = 2 super Yang–
Mills.

• The world-volume theory on D4 branes stretching between NS5 branes is
4d N = 2 super Yang–Mills (so half as many supercharges as the infinite
D4 branes had).

• The infinite D4 branes stretching out of the diagram give rise to flavour
symmetries.

The matter content is read by looking at strings stretching between branes:

• strings stretching between the middle N D4 branes to each other gives rise
to an adjoint hypermultiplet of the SU(N) gauge group;

• strings stretching between the middle N D4 branes and the outer D4 branes
gives rise to N + N (one set for each side of the diagram) fundamental
hypermultiplets of the SU(N) gauge group

Now instantons are realized by D0 branes within the D4 branes and stretching
between NS5 branes too. (Read paper by Michael Douglas “Branes within
branes”.)

D4NS5
K D0 branes

We can read off the field content of the 0d theory. It preserves 4 supercharges
(half of the 4d N = 2), and multiplets coincide with dimensional reductions of
2d N = (0, 4) multiplets:

• D0–D0 strings give a U(k) vector multiplet and a U(k) hypermultiplet,
which in N = (0, 2) language means a vector multiplet and Fermi multiplet,
plus a pair of chiral multiplets

• D0–D4left strings give Fermi multiplets in the bifundamental representation
of the U(k) gauge group and the left U(N) flavour symmetry group.

• D0–D4right strings give Fermi multiplets in the bifundamental represen-
tation of the U(k) gauge group and the right U(N) flavour symmetry
group.
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• D0–D4middle strings give Fermi multiplets in the hypermultiplet represen-
tation of the U(k) gauge group and the 4d SU(N) gauge group.

Instantons are described by D0 branes that lie inside the D4 branes. The
possible configurations are parametrized by the Higgs branch of the 0d matrix
model described above:

Mk,SU(N) with 2N flavours = Higgs branch
(

U(k)

U(N) SU(N) U(N)

)

(50)
where we used 2d N = (0, 2) quiver notations:

• dotted lines are Fermi multiplets,

• arrows are chiral multiplets,

• round nodes are gauge groups (the SU(N) gauge group is a 4d gauge
group, the U(k) gauge group is a 0d gauge group),

• square nodes are flavour groups.

References:

• Tong’s lecture notes;

• Vandoren and van Nieuwenhuizen;

• Douglas “Branes within branes” https://arxiv.org/abs/hep-th/9512077
and “Gauge fields and D-branes” https://arxiv.org/abs/hep-th/9604198.

3 Lecture 3, July 18
Summary of yesterday: we solved F+ = 0 in flat space in the topological sector
with 1

8π2

∫
F ∧F = k ∈ Z≥0. We found that there is a moduli space of dimension

4kN . The local coordinates X on this moduli space are collective coordinates
of the k instantons. Directions are in one-to-one correspondence with bosonic
zero-modes Aµ = Acl

µ (X) + δAµ. If the theory has fermions there are also
fermionic zero-modes around the instanton background.

In a supersymmetric gauge theory, instanton backgrounds turn out to preserve
half of the supersymmetry. The bosonic and fermionic zero-modes are paired by
that supersymmetry. In 4d N = 2 theories the residual 0d symmetry coincides
with the dimensional reduction of 2d N = (0, 4) supersymmetry.
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Conceptual jump: consider the same problem in a (4 + 1)d theory. On each
time slice fix

∫
F ∧ F = 8π2k. Now instantons are 1d objects (namely particles),

and we can study the dynamics of these instantons. How do we determine this 1d
theory? In a supersymmetric theory this is going to be some 1d supersymmetric
theory. We can determine it by considering D0 branes inside D4 branes as
discussed yesterday. The outcome is (50).

3.1 Back to localizing on S4

The 4d localizing supercharge obeys Q2 = bJ12 + b−1J34 + (b + b−1)R + iM ·
flavour + iφ · gauge where b describes the squashing of the sphere S4

b . We know
that instantons are solutions of the BPS equations, namely Q is preserved by
the instanton background, so Q must be a supersymmetry of the instanton
world-volume theory. We can rewrite

Q2
0d = (b+b−1)J+(b−b−1)Jleft+iM ·flavour+iφ·(4d gauge)+iϕ0d ·(0d gauge).

(51)
where ϕ0d is a scalar in the U(k) vector multiplet of the 0d theory.

N = (0, 2) FM CM CM FM VM FM CM CM
J 0 1

2
1
2 0 0 1 1

2
1
2

Jleft 0 0 0 0 0 0 1
2

1
2

U(k) k k k k adj adj adj adj
SU(N) N N
U(N)left N
U(N)right N

where empty entries are trivial representations and CM is chiral multiplet and FM
is Fermi multiplet and VM is vector multiplet. Using 2d N = (0, 2) localization,
or 1d N = 2 localization, or 0d localization, we get that the k-instanton partition
function is

Zk =
∫
JK

( k∏
I=1

dϕI
)
ZD0–D0(ϕ)ZD0–D4left(ϕ,M)ZD0–D4right(ϕ, M̃)ZD0–D4gauge(ϕ, φ)

(52)
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Explicitly

ZD0–D0 =
∏

I, J
(ϕIJ)′(ϕIJ + b+ b−1)
(ϕIJ + b)(ϕIJ + b−1) from all the adjoints of U(k)

(53)

ZD0–D4left =
k∏
I=1

N∏
A=1

(ϕI − iMA) (54)

ZD0–D4right =
k∏
I=1

N∏
A=1

(ϕI − iM̃A) (55)

ZD0–D4gauge =
k∏
I=1

N∏
A=1

1(
ϕI − iφA + 1

2 (b+ b−1)
)(
−ϕI + iφA + 1

2 (b+ b−1)
) .
(56)

The one-loop determinant of each N = (0, 2) multiplet is either a linear factor
(for Fermi multiplets and for vector multiplets because their field strength lies in
a Fermi multiplet) namely a fermionic contribution, or the inverse of a linear
factor (for chiral multiplets) namely a bosonic contribution.

3.2 The final result

ZS4
b

=
∫

dφ exp
(
−8π2 Trφ2

g2
YM

)
Zhypermultiplet
1-loop (φ,M, M̃)

×Zvector multiplet
1-loop (φ)

(∑
k

qkZk

)(∑
k

qkZk

)
.

(57)
Here q = exp(2πiτ) and τ = θ/(2π) + 4πi/g2

YM. Note that the qk comes from
the contribution of the instanton to the classical action:

exp
(
−1

2g2
YM

Tr
∫
F ∧ ?F + θ

8π2 Tr
∫
F ∧ F

)
= qk using F = ?F . (58)

Let us compute the k-dimensional integral by closing the k contours. The
“JK” (Jeffrey–Kirwan) prescription essentially states we should select poles only
of factors that came from negatively charged fields. This means that for each I
one of the following equations holds:

• ϕI = iφA + 1
2 (b+ b−1) for some 4d color 1 ≤ A ≤ N (from the 0d point of

view this is a flavour);

• ϕI = ϕJ + b for any other 0d color 1 ≤ J ≤ k;

• ϕI = ϕJ + b−1 for any other 0d color 1 ≤ J ≤ k.

For any such choice of ϕ we can draw a diagram by drawing a box for each ϕI
that is equal to iφA + 1

2 (b + b−1), then for each ϕI = ϕJ + b write a box for
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ϕI to the left of the box for ϕJ , and for each ϕI = ϕJ + 1/b write a box for
ϕI to the bottom of the box for ϕJ . Due to the factor (ϕIJ)′ we will not end
up with boxes on top of each other. Due to a subtle interaction between the
(ϕIJ + b+ b−1) numerator and ϕIJ + b and ϕIJ + b−1 denominator, the diagram
we get is a Young diagram.

We end up writing Zk as a sum over k-box collections of N Young diagrams,
which you can find in Nekrasov’s original paper and elsewhere:

ZNekrasov =
∑
k

qkZk =
∑
~Y

q|
~Y |Z~Y (59)

where ~Y = (Y1, . . . , YN ) is a collection of N Young diagrams and |~Y | is the total
number of boxes.

3.3 Higgs branch localization
Recall that adding a Q-exact term to the action does not change the result, so
we can use a different deformation action. Instead of the standard V we use

V =
∑

fermions ψ
(Qψ)†ψ + Tr

(
HIJ

(
ξ(IλJ) − ξ̃(I λ̃J)

))
. (60)

Here HIJ is some functional of bosonic fields that we will specify later and that
is in the triplet representation of SU(2)R, namely I and J are symmetrized.
Here ξ and ξ̃ describe the supercharge Q

ξ,ξ̃
and λ and λ̃ are gaugini. We have

QV |bosonic =
∑

fermions ψ
(Qψ)†Qψ + Tr

(
HIJ

(
ξ(IQλJ) − ξ̃(IQλ̃J)

))
(61)

Note that QλI = · · · + DIJξ
J and Qλ̃I = · · · + DIJ ξ̃

J are linear in the aux-
iliary field DIJ , while these fields appear quadratically in the standard part
of QV |bosonic. We can perform the Gaussian integral over DIJ and get as a
critical point1

DIJ = −1
2 HIJ − iφ1wIJ + · · · (62)

where the dots are a 1/t or 1/t2 term due to the fact that we are looking at
the critical point of tQV + S and not just of tQV . On round S4 we have
wIJ =

( 0 1/r
1/r 0

)
. Then a calculation shows that QV |bosonic is a sum of positive

terms.
The vector multiplet localization equations are Dµφ1 = 0, vµDµφ2 = 0,

[φ1, φ2] = 0, and

−2s(F−µν − 4φ2Sµν) + 2
(
κ ∧ dAφ2

)−
µν

= 1
2HIJΘIJ

µν (63)

−2s̃(F+
µν + 4φ2S̃µν)− 2

(
κ ∧ dAφ2

)+
µν

= −1
2HIJΘ̃IJ

µν (64)

1Actually our contour is φ = (φ2 − iφ1)/2 and φ̃ = (−φ2 − iφ1)/2 with φ1 and φ2 real.
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with s = ξIξI and s̃ = ξ̃I ξ̃
I and κµ = gµνv

ν where vν = ξIσµξ̃I .
The hypermultiplet localization equations are φ1qI = 0 and FIA = 0 and

−2σµξ̃IDµqI − σµDµξ̃
IqI − 2ξIφ2qI = 0 (65)

−2σ̃µξIDµqI − σ̃µDµξ
IqI + 2ξ̃Iφ2qI = 0. (66)

Let us see what these equations tell us for various choices of HIJ .

• Choose HIJ = 0. Then we retrieve the Coulomb branch localization locus
0 = φ2 = Aµ and φ1 = a = constant and DIJ = −iawIJ (this is (62) for
HIJ = 0). At the North and South poles we get instantons because the
coefficients s and s̃ each vanish at one pole.

• In the case of a U(1) gauge group, choose

HIJ = −ζ
FI

`
wIJ − i

(
QQ̃ QQ† − Q̃Q̃†

QQ† − Q̃Q̃† −Q̃†Q†

)
IJ

. (67)

The second term (the matrix) is the moment map of some flavour symmetry.
We shall split the constant FI parameter ζFI = ζvec + ζSW (where SW
stands for Seiberg–Witten).
In that case we have solutions that can be dubbed “deformed Coulomb
branch”, where hypermultiplet scalars vanish and

A = ζ

3rK, φ2 = 1
6`ζ cos ρ, φ1 = a, DIJ =

(
1
2
ζ

`
− ia

)
wIJ

(68)
where since the FI parameter is in a U(1) factor, there can still be instantons
and antiinstantons at the poles. Note that in the ζ → 0 limit we retrive
the Coulomb branch.
We also have solutions with non-zero hypermultiplets
[. . . ]
At certain points of the Coulomb branch we have a vanishing mass φ1+m =
0 in (φ1+m)qI = 0. We can solve the simpler equestions ζSW = QQ†−Q̃Q̃†
and QQ̃ = 0. Depending on the sign of the ζSW exactly one of the two Q
and Q̃ takes a nonzero value.
We actually find solutions as linear combinations of giving a nonzero vev
to Q hypermultiplet scalars or Q̃ hypermultiplet scalars, and of deformed
Coulomb branch vacua (68), but the two have different ζ parameters,
which get summed. This works for special values of ζ for (68).

Assume that the φ1 is uniquely solved in terms of the masses M in (φ1 +
M)qI = 0, then U(N) is broken to U(1)N .

On the other hand, imposing ζSW = Q†Q− Q̃Q̃† gives a vev to the hyper-
multiplet scalars, whih breaks U(1)N completely by the Higgs mechanism. We
get discrete vacua.
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A third type of configurations we can find is by relaxing HSW
IJ 6= 0 and

without loss of generality ζ > 0. These equations are not exactly solvable but we
can study their aspect by considering various limits. On S4

b define two squashed
two-spheres S2

ϕ : {x3 = x4 = 0} ⊂ S4
b and S2

χ : {x3 = x4 = 0} ⊂ S4
b intersecting

at the North pole and South pole.
We define the winding Q ∼ eimϕeinχ far away from the core. There exists a

vortex like solution whose core is each of the S2: on the two-plane orthogonal to
that sphere it looks like a vortex with winding number n around one two sphere
and m around the other. These are smoothly joined together at the poles. See
https://arxiv.org/abs/1508.07329.

The vortex size is proportional to
√
n/ζ which goes to zero as ζ →∞, giving

singular vortices.
Even though for finite ζ we cannot do anything analytically, but since S4

has a finite size we can bound the maximum number of vortices at finite ζ. BPS
equations in fact imply a bound

mb+ nb−1 + Q

2 ≤
ζQ

12 . (69)

Summary: we have parameters ζ that we can tune. For ζ = 0 we just get the
Coulomb branch locus. For any finite ζ we get deformed Coulomb branch vacua.
When the bound (69) gets saturated for some integers n and m then we pick up
further solutions with a number of vortices n and m. We get discrete vacua.

From Coulomb branch intuition expect point-like solutions at the North
and South poles. Locally around poles we have the complex manifold C2 away
from each poles. The almost complex structure J̃µν : TM → TM is integrable
(Nijenhuis tensor vanishes) but is not well-defined on S4.

Define α = Q ∈ Ω(0,0)
J̃

one hypermultiplet scalar and β = −s̃−1Q̃†Θ̃11 ∈

Ω(0,2)
J̃

.
Expand around the deformed Coulomb branch vacuum A = Avac + a and

φ2 = (φ2)vac + ∆φ2. The equations are

0 = ∂aα+ ∂
∗
aβ (70)

0 = F (0,2)
a − i

2αβ (71)

and

F J̃a = −1
4

[
ζSW

2 + 2∆φ2

`
− |α|2 + |β|2

]
J̃ (72)

0 = ∆φ2α = [∆φ2 + 2`−1]β. (73)

The first two equations imply α = 0 or β = 0 and a few constraints on derivatives.
Signs imply α 6= 0 and we deduce ∆φ2 = 0, and the equations reduce to Seiberg–
Witten monopole equations.

[. . . ]
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3.4 Comparing partition functions
Since HIJ was introduced through a Q-exact term, the answer needs to be
independent of HIJ . Even though the backgrounds are not known analytically,
the one-loop determinant can be computed using an index theorem, which only
requires knowing the solution near fixed points of Q2. We find

Zvector multiplet
1-loop =

∏
α6=0

Υb

(
iα(â)

)
, (74)

Zhypermultiplet
1-loop =

∏
w∈weights(R)

Υb

(
iw(â) + iM +Q/2

)−1
, (75)

where âNP = âSP = â =
√
`˜̀
(
2i(φs̃+ φ̃s) + 2ivµAµ

)
gives the same value when

evaluated at the North pole and at the South pole.
On the deformed Coulomb branch we get

Svector multiplet
cl = 8π2`˜̀

Tr

(
a+ iζQ

12
√
`˜̀

)
(76)

Evaluating â on the deformed Coulomb branch configuration is

â =
√
`˜̀
(
a+ iζQ

12
√
`˜̀

)
. (77)

The picture that emerges is that ζ moves the Coulomb branch integral transversely
to the contour. The contour theorem tells us that the integral does not change
provided we pick up discrete contributions associated to the poles that cross
the integration contour. These poles that move from one side to the other as ζ
is varied precisely correspond to vortex-like configurations and Seiberg–Witten
monopoles that are allowed by the bound.

Importantly, for this picture to work, the instanton partition function, evalu-
ated at a = −M+mb+n/b, had better match the contribution of Seiberg–Witten
monopoles on top of the vortices.

Sending ζ →∞ kills the deformed Coulomb branch integral and leads just
to a sum over all vortex–vortex configurations. The result is

Z =
∑

Higgs vacua v
ZvclZ

′v
1-loopZ

v
resummed (78)

where
Zvresummed =

∑
m,n≥0

Z
(m,n)
cl Z

v,(m,n)
pert |Z(m,n)

SW |2 (79)

For n = 0 we should expect the summand to become the S2 partition function
of the m-vortex theory.

3.5 AGT correspondence
Claim: Zclass S

S4 ↔2d Liouville (or Toda) CFT.
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3.5.1 Theories of class S of type A1

Gaiotto https://arxiv.org/abs/0904.2715.
The idea of class S theories is to associate a 4d N = 2 theory to any Riemann

surface.
4 free hypermultiplets carry flavour symmetry USp(8). Indeed, we have

16 real scalars, which have SO(16) flavour symmetry group, but the SU(2)R
symmetry has commutant USp(8). This has a subgroup SU(2)a × SU(2)b ×
SU(2)c. Let us draw a cute picture to describe 4 hypermultiplets:

(80)

Here each puncture represents an SU(2) flavour symmetry.
Next consider an SU(2) gauge theory with Nf = 4 fundamental hypermulti-

plets (note that β = 0 so we have an SCFT. Since the fundamental of SU(2)
is pseudoreal the theory has SO(8) flavour symmetry, but let us only make
so(4)× so(4) = su(2)4 explicit. Then we draw a picture

(81)

4 Lecture 5, July 16
Next, consider

2 SU(2) SU(2) 2 (82)

The 2 hypermultiplets on the left are in a pseudoreal representation of the
SU(2) gauge group hence carry so(4) = su(2) × su(2) flavour symmetry. The
bifundamental hypermultiplet in the middle is in the [2, 2] representation of the
SU(2) × SU(2) gauge group, namely the vector representation of Spin(4) =
SU(2)×SU(2), so it it in a real representation and it carries usp(2) = su(2) flavour
symmetry. The 2 hypermultiplets on the right have su(2)2 flavour symmetry.
Altogether we have su(2)5 flavour symmetry. Accordingly, the Riemann surface
we draw is a sphere with five punctures:

(83)

The theory is built by taking three sets of 4 hypermultiplets and gauging diagonal
su(2) flavour symmetries. Each set of hypermultiplets is represented by a “pair of
pants” (three-punctured sphere), and gauging is represented by gluing punctures
together.
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We can in fact do the same with generalized quivers such as

SU(2) SU(2)

SU(2)

SU(2)

SU(2)

SU(2)

SU(2)

SU(2)

SU(2)

(84)

This corresponds to a six-punctured sphere obtained by gluing one three-
punctured sphere to each puncture in a three-punctured sphere.

Some brief comments on higher-rank cases. Consider N2 hypermultiplets
with N > 2. This has USp(2N2) flavour symmetry, but we make SU(N) ×
SU(N) × U(1) manifest. We depict such a theory of free hypermultiplets as
a three-punctured sphere with punctures labeled by the corresponding flavour
symmetry: there are two types of punctures, one for SU(N) flavour symmetry
(called “maximal puncture”) and one for U(1). By gauging together the SU(N)
flavour symmetries we can build more complicated Riemann surfaces. We
get punctured spheres with two maximal punctures and some number of U(1)
punctures. The corresponding quiver gauge theory is

N SU(N) SU(N) · · · SU(N) N (85)

To get more general Riemann surfaces we need to know what a sphere with
three maximal punctures corresponds to. It corresponds to an isolated non-
Lagrangian SCFT called TN that has SU(N)3 flavour symmetry. For N = 3
this SU(3)3 symmetry is enhanced to E6 and the SCFT is actually the Minahan–
Nemeschansky E6 theory involved in Argyres–Seiberg duality.

4.1 Generalized S-duality
Let us go back to A1 class S theories. The gauge coupling is encoded in the
Riemann surface’s complex structure as the parameter used for gluing three-
punctured spheres: the coordinate z close to one puncture is identified with the
coordinate w close to another puncture by zw = constant = q where q = e2πiτ

where τ = 4πi
g2

YM
+ θ

2π .
The weak coupling limit (gYM → 0) gives τ → i∞ so q → 0, meaning that

the tube joining the two three-punctured spheres is very long.
When making the coupling stronger, we find that the punctures get close to

each other in a different pattern, which can lead to a different weakly-coupled
description. This is consistent with S-duality found by Seiberg and Witten in 4d
N = 2 SU(2) with Nf = 4 (corresponding to the four-punctured sphere for us).
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4.2 Partition function
We consider 4d N = 2 SU(2) with 4 fundamental hypermultiplets, and we give
masses p1, . . . , p4 by turning on backgrounds for vector multiplet scalars coupled
to the four SU(2) flavour symmetries. The partition function is

ZS4

[ ]
(86)

=
∫ ∞
−∞

dP Z1-loop[P, pi](qq)P
2
(∑

~Y

q|
~Y | . . .

)(∑
~Y

q|
~Y | . . .

)
(87)

where
Z1-loop[P, pi] = Υ(2iP )Υ(−2iP )∏4

j=1 Υ
(
Q
2 + iP + iµj

)
Υ
(
Q
2 − iP + iµj

) (88)

with µj being sums and differences of the pj .

4.3 Liouville CFT
Quick CFT facts. Local CFT data:

• spectrum (dimensions of operators);

• three-point couplings.

In general dimension, the Euclidean conformal group is SO(d+ 1, 1), generated
by translations, rotations, dilations, special conformal transformations. In 2d,
SO(3, 1) = SL(2,C) is roughly SL(2) × SL(2); it enhances to two Virasoro
algebras, with generators Ln for n ∈ Z and similarly Ln. Correlators are
constrained by conformal invariance.

〈φ1(x)φ2(y)〉 = δφ1φ2

|x− y|2∆ (89)

〈φ1(x)φ2(y)φ3(z)〉 = λ123

|x− y|∆1+∆2−∆3 |y − z|∆1+∆3−∆2 |z − x|∆2+∆3−∆1

(90)

〈φ(x1)φ(x2)φ(x3)φ(x4)〉 = 1
|x1 − x2|2∆φ |x3 − x4|2∆φ

f(u, v) (91)

where u = |x1 − x2|2|x3 − x4|2
/ (
|x1 − x3|2|x2 − x4|2

)
and v = |x1 − x4|2|x3 −

x2|2
/ (
|x1 − x3|2|x2 − x4|2

)
. In 2d we can use the simpler cross-ratios z =

(z1 − z2)(z3 − z4)
/ (

(z1 − z3)(z2 − z4)
)
and z.

The OPE expresses products of two operators close-by as a sum of operators
at a point:

φ1(x)φ2(0) =
∑

O primary
λ12O

[
CO(x, ∂y)O(y)

]∣∣
y=0 (92)
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Using this twice in the four-point function we find

〈φ(x1)φ(x2)φ(x3)φ(x4)〉

=
∑
O,Õ

λφφOλÕφφ CO(x1 − x2, ∂y)CÕ(x1 − x2, ∂ỹ)〈O(y)Õ(ỹ)〉
∣∣
y=ỹ=0︸ ︷︷ ︸

conformal partial wave

(93)

and the sum restricts to O = Õ since the two-point function vanishes otherwise.
As promised, we expressed the 4-point function in terms of 3-point structure
constants and conformal partial waves, which are completely fixed by conformal
invariance.

Liouville CFT is a 2d CFT with central charge c = 1+6Q2 where Q = b+b−1

and we recall that the central charge shows up in the stress-tensor OPE:

T (z)T (0) ∼ c/2
z4 + 2T (0)

z2 + ∂T (0)
z

+ · · · (94)

Liouville CFT has operators Vα labeled by α = Q/2 + iP with P real and
with Vα = R(α)VQ−α for some coefficient R(α) called “reflection amplitude”.
This means that only P ≥ 0 is physically relevant. The holomorphic and
antiholomorphic dimensions of Vα are

h(α) = h(α) = α(Q− α) = Q2

4 + P 2. (95)

The OPE is

Vα1(z, z)Vα2(0) = 1
2

∫ +∞

−∞
dP CQ/2+iP

α1α2

(
zz
)Q2/4+P 2−∆1−∆2

(
VQ/2+iP (0) + · · ·︸︷︷︸

descendants

)
(96)

where “descendants” means “Virasoro descendants”, obtained by acting with
raising operators L−n, n > 0 in the mode decomposition of T (z). The structure
constants are Cα3

α1α2
= C(α1, α2, Q− α3) in terms of three-point functions. The

three-point functions are given by the DOZZT formula

C(α1, α2, α3) =
(
πµγ(b2)b2−2b2

)(Q−α)/b Υ′(0)
∏3
i=1 Υ(2αi)

Υ(α−Q)
∏3
i=1 Υ(α− 2αi)

(97)

where α = α1 + α2 + α3.
The four-point functions are

〈Vα1(z, z)Vα2(0)Vα3(1)Vα4(∞)〉

= 1
2

∫ +∞

−∞
dP C(α1, α2, Q/2 + iP )C(Q/2− iP, α3, α4)

∣∣∣∣∣Fp
(
α2 α3
α1 α4

∣∣∣∣ z)
∣∣∣∣∣
2

.

(98)
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