
4d N = 1 supersymmetry
Lectures by Seiji Terashima notes by Bruno Le Floch

July 18–20, 2018

Nobody (even the typist) proof-read these notes, so there
may be obvious mistakes: tell BLF.

Abstract
We discuss aspects of 4d N = 1 localization. These are lecture notes for

the 2018 IHÉS summer school on Supersymmetric localization and exact
results.

These lecture notes assume familiarity with supersymmetry at the level of
the first few chapters of the book by Wess and Bagger.

1 Lecture 1, July 18
1.1 First some 4d N = 1 review
Supersymmetry algebra generated by Qα, Qβ̇ , Pm with {Qα, Qβ̇} = 2σmαα̇Pm
where (σm)αα̇ are given by σ0 = −1 and σi are Pauli matrices for 1 ≤ i ≤ 3,
while (σm)αα̇ given by σ0 = −1 and σi = −σi.

1.1.1 Holomorphy

A chiral superfield is Φ such that Dα̇Φ(x, θ, θ) = 0. In coordinates (ym, θ, θ)
with ym = xm + iθσmθ, we can write Dα̇ = −∂/∂θα̇. Then

Φ(y, θ) = φ(y) +
√

2ψαθα + θθF (y). (1)

The superpotential term
∫

d4y
∫

d2θW (Φ(y, θ)) is supersymmetry invariant pro-
vided W is a holomorphic function of the chiral multiplets. In the low-energy
effective action, Weff is still a holomorphic function. This makes symmetries be
more constraining.1

Seiberg and collaborators had very powerful results using this holomorphy.
1The holomorphy idea works in any theory with at least 4 supercharges, such as 4d N = 1

or 3d N = 2 or 2d N = (2, 2).
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1.1.2 Chiral ring

The lowest component φ of Φ obeys δεφ = [εQ, φ] = 0 because δφ = εψ (no ε̄
term). Thus φ is δε̄-closed. Then ∂µφ ∼ [δε, δε]φ = δεδεφ. Thus moving a chiral
operator does not change its class in the cohomology of δε:

φ(x) = ex
µ∂µφ(0) = φ(0) + δε(· · ·). (2)

The cohomology of δε is called the chiral ring. Since

∂µφ1φ2 · · · = δε(· · ·), (3)

correlators of chiral operators do not depend on the positions of the chiral
operators. By cluster decomposition,

〈φ1(x1)φ2(x2) · · · 〉 = 〈φ1(0)〉〈φ2(0)〉 · · · (4)

so the condensates 〈φ1(0)〉 are enough to compute all correlators. In theories with
R-symmetry, the condensates all vanish except if φ has no R-charge. However,
the R-charge and dimension are related for chiral operators so that means φ is
the identity.

1.2 4d N = 1 SQCD
See https://arxiv.org/abs/hep-th/9509066 (Intriligator–Seiberg). They
consider a gauge theory with gauge group G = SU(Nc), with Nf fundamental
flavours

(
one flavour is a pair of chiral multiplets, one transforming in the funda-

mental and one in the antifundamental representation of SU(Nc)
)
. The chiral

superfields are:

• Wα = λα + · · · the gauge field strength, in the adjoint of SU(Nc) and
space-time spinor;

• Qi the fundamental chirals;

• Q̃i the antifundamental chirals.

We can only turn on masses by adding a term QQ̃ to the superpotential.
The action is (here τ = θ/(2π) + i(4π)/g2

YM)

L ' −1
8π Tr

(∫
d2θτWαW

α

)
+ h.c.

+
∫

d2θd2θ
(
QieVQ†i + Q̃ie

V Q̃†i
)

+
∫

d2θ
(
mj
iQ

iQ̃j
)

+ h.c.

(5)

Gauge-invariant chiral superfields are

• “Meson” M j
i = QjrQ̃

r
i where 1 ≤ r ≤ Nc;
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• “Baryons” Bj1...jNc = εr1...rNcQj1
r1
· · ·QjNcrNc and antibaryons built from Q̃;

• “Glueballs” S ' Tr(WαW
α) ' Tr(λαλα) + · · · .

We will be interested in the expectation value of glueballs. This is a purely
strong coupling phenomenon: even instantons cannot contribute.

The 1-loop β function, which is in fact exact, is

β = −3Nc −Nf
16π2 g3

YM. (6)

For Nf = 3Nc we get a CFT but let us actually focus on Nf < Nc . Then we
can define the scale Λ (complex) by(

Λ
µ

)3Nc−Nf
= e2πiτeff . (7)

The effective potential

Weff = (Nc −Nf )
(

Λ3Nc−Nf

detM

)1/(Nc−Nf )

+mi
jM

j
i . (8)

(where m is the masses and M the mesons) is fixed by symmetries, up to a
numerical factor that is fixed by a one instanton calculation.

Integrating out M (for large masses) by ∂Weff/∂M
j
i = 0 we find

M = m−1
(

Λ3Nc−Nf detm
)1/Nc

. (9)

Note that the power 1/Nc has Nc branches, so we expect Nc vacua; a supersym-
metric localization calculation of the Witten index confirms this. The effective
twisted superpotential gives

Weff = Nc

(
Λ3Nc−Nf detm

)1/Nc
= NcΛ3

0 (10)

where Λ3Nc
0 = Λ3Nc−Nf detm is the effective low-energy dynamical scale. From

this we compute the gauge condensation:

• Make the gauge coupling τ into a chiral superfield τ(θ) = τ + θψτ + Fτθθ
that would have an expectation value 〈τ(0)〉 = τ .

• Then that coupling being a chiral superfield it must appear holomorphically
in the effective superpotential.

• Then
〈Trλλ〉 ∼ ∂ logZ/∂Fτ ∼

∂

∂Fτ

∫
d2θWeff ∼ −16π2Λ3

0 (11)

where we used that we know logZ in the low-energy theory, and we have
to remember that Λ0 is essentially an exponential of τ (this is why the
power of Λ does not change).
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Note that we can do the opposite: from the gluino condensate 〈Tr(λλ)〉 we can
integrate it and get the effective superpotential and from that we get correlators
of all chiral ring operators.

1.2.1 Seiberg duality

For the range 3
2Nc < Nf < 3Nc then at low energies the theory is claimed to

flow to a nontrivial CFT. Moreover there is a “magnetic” dual theory with gauge
group SU(Ñc) with Nf flavours q and q̃ and N2

f gauge singlets M j
i which flows

to the same infrared fixed point; here Ñc = Nf −Nc.

1.3 Localization
See other lectures for how supersymmetric localization works. We shall use the
canonical choice V ∼ (δλi)†λi.

1.3.1 4d N = 1 theory on S4

We can put 4d N = 1 theories on S4 in two ways:

• as Guido explained by building a supergravity background of an appropriate
supergravity;

• by starting from 4d N = 2 put on S4 by Pestun, and decomposing
multiplets into 4d N = 1 multiplets.

The problem is that V ∼ (δλi)†λi does not satisfy δV |bosonic ≥ 0. So while the
theory makes sense and its partition function is probably finite, we cannot do
localization.

1.3.2 4d N = 1 theory on Euclidean S3 × S1

We normalize the radius of S3 to be 1 and the radius of S1 to be β.
Recall supersymmetry on Euclidean R4 (vector multiplet):

δAµ = i

2(εσµλ− εσmλ) (12)

δλ = 1
2σ

mnεFmn − εD (13)

δλ = 1
2σ

mnεFmn − εD (14)

δD = −i2 εσmDmλ−
i

2εσ
mDmλ (15)

where m = 1, 2, 3, 4 and σm = (σ1, σ2, σ3, 1) and σm = (σm)† and σmn =
1
2 (σmσn − σnσm) and σmn = 1

2 (σmσn − σnσm). Recall that bars do not mean
complex conjugation.
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To place the theory on S3 × S1 just replace Dm → Dm − iqVm with q the
R-charge, such that ε and λ has R-charge +1 and ε and λ has R-charge −1, and
Vmdxm = −i

2 dt.
This procedure should be equivalent to Guido’s approach with new minimal

supergravity. Importantly the theory must have a non-anomalous R-symmetry.
Note that SQCD’s obvious R-symmetry is anomalous but it can be changed to
become non-anomalous.

Preserved supersymmetries are labeled by generalized Killing spinors, such
that

Dmε = −1
2 σmσ4ε (16)

Dmε = −1
2 σmσ4ε. (17)

The Yang–Mills action on S1 × S3 is

LYM = Tr
(

1
g2
YM

(
1
2FmnF

mn+D2+iλσmDmλ+ iθ

16π2F∧F
)

+fermions
)
. (18)

again we define τ = θ/(2π) + 4πi/g2
YM.

There are actually two choices for (ε, ε). Then we take the standard V .

• The first choice has ε 6= 0 and ε 6= 0 everywhere. Then, defining F± =
(F ± ?F )/2 we have

(δλ)†δλ ∼ F+
mnF

+mn +D2 + fermions (19)
(δλ)†δλ ∼ F−mnF−mn +D2 + fermions. (20)

When coefficients are the same we get V ∼ |F |2 +D2 while if coefficients
are different we get an additional F ∧ F contribution. The saddle-point
configuration is trivial: Fmn = D = 0 (more precisely there are holonomies
around the time circle). The classical action is zero and we are left with a
free theory, for which we can simply do a mode expansion in S3 spherical
harmonics. We cannot compute any local observables, only the partition
function, which in the case of SCFT is the superconformal index.

• The second choice has ε = 0 and ε nonvanishing. Now Tr(λλ) is Q-closed.
The deformation term is

δV |bosonic ∼ Tr((F−)2 +D2) (21)

so the saddle point is an instanton F− = 0 (anti-self-dual condition). For
this choice of (ε, ε) the classical action is

LYM|F−=0,D=0,λ=0 = Tr
(

1
g2
YM

(F+)2 + iθ

16π2 (F+)2
)

= iτ

8π Tr(F?F )

(22)
usual factor, gauge-coupling-dependent.
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2 Lecture 2, July 20
2.1 Superconformal index of 4d N = 1 theories on S3 × S1

See Rastelli–Razamat https://arxiv.org/abs/1608.02965 and Hosomichi
https://arxiv.org/abs/1412.7128.

4d N = 1 on S3 × S1 has SU(2)L × SU(2)R × U(1) isometry; we denote
generators of the Cartan by J3

L, J3
R, D. The Killing spinors obey γ3ε = −ε and

γ3ε = −ε. We have

R(δε) = −1, J3
R(δε) = 1

2 , R(δε) = 1, J3
R(δε) = −1

2 . (23)

The partition function is equal to the index:

Z =
∫
S3×S1

Dφe−S(φ) = TrS3

[
(−1)F e−β(D− 1

2R) (24)

where (−1)F comes from the fermion boundary conditions and D − 1
2R comes

from the twist Dt = ∂t − 1
2q where q is the R-charge.

Further twists ∂t → ∂t − iξ(2J3
R +R)− 2iηJ3

L − im with m associated to a
flavour symmetry. These twists preserve supersymmetry because [Q, 2J3

R+R] = 0
and [Q, J3

L] = 0. These twists give

Z = TrS3

[
(−1)F qD−R/2x2J3

R+Ry2J3
Leiwβ

]
(25)

with q = eβ , x = eiβξ, y = eiβη.
[. . . ]
This is called the superconformal index.
Only states that obey 0 = S|α〉 = Q|α〉 (hence H|α〉 = 0) contribute.

By a change of variables x = x′/q, x′ = (pp′)1/2, y = (p/p′)1/2 we find the
superconformal index

I = Z = TrS3

[
(−1)F pJ

3
R+J3

L+R/2(p′)J
3
R−J

3
L−R/2eiβme−βH

]
(26)

Since only states with H = 0 contribute we can omit the last factor.
Because of localization we can set the gauge coupling to zero and get a free

theory. Then the index is not too hard to compute. Let Aτ = a; the Gaussian
integral gives

detλ(Dτ − ia+ i /DS3) det′c(detτ −ia)
detA((−iDτ − ia)2 + ∆vector

S3 )1/2 (27)

The full partition function is

Z '
∫ r∏

i=1
dâi

∏
α>0

4 sin2 αâ

2 IvecIchiral (28)
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where r is the rank of the gauge group and â = βa and where

Ivec =
(∏
n≥1

(1− pn)(1− p′n)
)r ∏

α≷0

∏
n≥1

(1− pneαâ)(1− p′neαâ) (29)

Ichiral =
∏

w∈weights(R)

Γ(eiwâ(pp′)1/2, p, p′) (30)

in terms of the elliptic Gamma functions Γ(x, p, p′).
These very complicated integrals, specialized to two Seiberg-dual gauge

theories, turn out to give the same result through complicated mathematical
identities.

2.2 Gaugino condensation
See Terashima https://arxiv.org/abs/1410.3630 and https://arxiv.org/
abs/1509.02916 and Davies et al https://arxiv.org/abs/hep-th/9905015.

ε = 0, ε = 1√
2

(
ei(−χ+φ+θ)/2

ei(−χ+φ+θ)/2

)
For chiral multiplets, δV |bosonic = |Dmφ|2 + r2|φ|2 + |F |2 so saddle points

are φ = F = 0.
Note that we retrieve holomorphy without needing to talk about superfields.
Consider the Q-exact term

Lw = δ

(
∂W (φ)
∂φ

i
ηψ

i
)

= ∂W

∂φ
i
F + fermions (31)

where we used η = U × (0, 1) with U = (ε̄iσ2(ε)∗ and ε = U × (1, 0) so ηε = 1.
So parameters in the antiholomorphic superpotential cannot show up in the
partition function or correlators of holomorphic operators.

Consider 4d N = 1 super Yang–Mills with gauge group G = SU(Nc) on
R3 × S1. We want to determine 〈λλ〉. We add

δV ∼ τ
(∫

(F−)2 +D2 + · · ·
)

(32)

to make the theory weakly coupled and localize onto anti-self-dual “instantons”.
Configurations on R3 × S1 are classified by

• the instanton charge Q ∼
∫
F ∧ F ;

• the Wilson loop 〈φ〉 = lim|x|→∞
∫ β

0 dx0A0, which generically breaks G to
U(1)r;

• monopole charge for U(1)r.

To get a non-zero value for 〈λλ〉 we need two zero modes, but an instanton
has 2Nc.
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Antiselfdual configurations with 2 zero modes are “fundamental monopoles”.
There are r of them, T-dual (in the sense that the scalar φ is converted to A0)
of BPS monopoles, “fractional instantons”.

The brane picture (in a sufficiently supersymmetric setting) is that the
SU(Nc) theory is realized by Nc D4 branes compactified on S1, and an instanton
is realized by a D0 brane.

S1

Nc D4

• D0
T-dual

D3

S1

KK
D1

BPS
BPS

(33)

The T-dual to the stack of Nc D4 branes is Nc D3 branes localized at points
along S1 (the positions are eigenvalues of 〈φ〉), and the D0 brane becomes
a D1 brane wrapping S1, which splits into Nc D1 branes stretching between
neighboring D3 branes. Each of these D1 brane segments is consistent on its
own and describes a fundamental monopole: Nc − 1 BPS monopoles and one
KK monopole.

The solution for a single monopole can be given explicitly. Here αi ranges
over simple roots, so 1 ≤ i ≤ r. We define v = 1

β 〈φ〉αi.

• BPS monopole. Magnetic charge αi, instanton charge Q = 1
2παi · 〈φ〉, the

classical action is −iταi〈φ〉

• The KK monopole has monopole charge α0 = −
∑r
i=1 αi, and has Q =

q + 1
2πα0〈φ〉 and S = −2πiτ − iτα0〈φ〉.

We will call these r + 1 monopoles “fundamental monopoles”.
Now S3 × R is non-compact so we need to find vacua of the t→∞ limit to

impose at infinity in space.
We shall send t→∞ and get a weakly-coupled limit.
Let us consider the effective action for the massless fields. We should get U(1)

vector multiplets with zero KK momentum, which is equivalent to 3d N = 2
U(1)r vetor multiplets.

The Wilson loop φ and dual photon σ combine into Z = i(τφ+ σ) and can
be repackaged into 3d N = 2 chiral superfield χ. The action becomes

S → 1
4πβ

∫
d3xχ†χ|θθθθ (34)

with no potential.
To find the vacua we need the scalar potential, which comes from the

superpotential, which we can deduce from the fermion bi-linear. To compute the
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fermion bilinear we need configurations with two fermionic zero modes, namely
fundamental monopoles.

The path integral measure of zero modes is∫
dM(j)

? = µ2

g2
?

2π e
−Si

∫
d3xdΩd2ξ (35)

where µ is the cutoff scale, g = g(µ) the gauge coupling, which is defined at
t = 0, and Si = −2πiδi,0 − αi〈Z〉.

The correlator

〈λα(x)⊗ λβ(0)〉 −→
r∑
j=0

2?π2µ3β

g2 αj ⊗ αje−Sj ×
∫

d3aSF (x− a)αγ × SF (a)βγ .

(36)
(where SF are fermionic propagators?) To give rise to this gaugino two-point
function, the low-energy effective action must contain a term (· · ·)λλ, so this two-
point function tells us what the (· · ·) should be, hence tells us the superpotential.
We deduce

W (χ) = µ3β

g2

( r∑
j=1

eαjχ + e2πiτ+α0χ

)
+ derivatives of χ. (37)

The vacuum ∂W/∂χ = 0 is χ = 2πiτ
c2

∑r
j=1$i where αj$i = δij with c2 the . . .

number of the gauge group.
Then

〈W 〉 = µ3β

g2 c2e
2πiτ/c2 = βc2Λ3 (38)

where Λ3 = (µ3/g2) exp
(
2πiτ(µ)/c2

)
and〈

Tr(λλ)
16π2

〉
= Λ3e2πis/c2 (39)

for 0 ≤ s < c2.
The vacua are discrete, so they cannot mix when τ is varied. The result

above then applies to τ = 0, which is the original theory.
Could we do R4? This same localization technique does not work for R4

because there is always a range of energy scales < Λ′ = Λe−t for which the
theory is strongly coupled. On the other hand, on R3×S1 we can choose t large
enough to make the theory weakly coupled.

Consider now 4d N = 1 on R3 × S1 with Wv = 2πiτ0S + F (S, Si). With
some work we can show that

〈S〉 (40)
is given by ∂WS/∂S for the VY superpotential

WS = −c2S
(

log S

Λ3 − 1
)

+ F (S). (41)

We can do similar calculations with matter. See Dijkgraaf–Vafa superpotential.
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