4d $\mathcal{N} = 1$ supersymmetry

Lectures by Seiji Terashima notes by Bruno Le Floch

July 18–20, 2018

Nobody (even the typist) proof-read these notes, so there may be obvious mistakes: tell BLF.

Abstract

We discuss aspects of 4d $\mathcal{N} = 1$ localization. These are lecture notes for the 2018 IHÉS summer school on *Supersymmetric localization and exact results*.

These lecture notes assume familiarity with supersymmetry at the level of the first few chapters of the book by Wess and Bagger.

1 Lecture 1, July 18

1.1 First some 4d $\mathcal{N} = 1$ review

Supersymmetry algebra generated by Q_{α} , $\overline{Q}_{\dot{\beta}}$, P_m with $\{Q_{\alpha}, \overline{Q}_{\dot{\beta}}\} = 2\sigma_{\alpha\dot{\alpha}}^m P_m$ where $(\sigma^m)_{\alpha\dot{\alpha}}$ are given by $\sigma^0 = -1$ and σ^i are Pauli matrices for $1 \le i \le 3$, while $(\overline{\sigma}^m)^{\alpha\dot{\alpha}}$ given by $\overline{\sigma}^0 = -1$ and $\overline{\sigma}^i = -\sigma^i$.

1.1.1 Holomorphy

A chiral superfield is Φ such that $\overline{D}_{\dot{\alpha}}\Phi(x,\theta,\overline{\theta}) = 0$. In coordinates $(y^m,\theta,\overline{\theta})$ with $y^m = x^m + i\theta\sigma^m\overline{\theta}$, we can write $\overline{D}_{\dot{\alpha}} = -\partial/\partial\overline{\theta}^{\dot{\alpha}}$. Then

$$\Phi(y,\theta) = \phi(y) + \sqrt{2}\psi_{\alpha}\theta^{\alpha} + \theta\theta F(y).$$
(1)

The superpotential term $\int d^4y \int d^2\theta W(\Phi(y,\theta))$ is supersymmetry invariant provided W is a holomorphic function of the chiral multiplets. In the low-energy effective action, W_{eff} is still a holomorphic function. This makes symmetries be more constraining.¹

Seiberg and collaborators had very powerful results using this holomorphy.

¹The holomorphy idea works in any theory with at least 4 supercharges, such as 4d $\mathcal{N} = 1$ or 3d $\mathcal{N} = 2$ or 2d $\mathcal{N} = (2, 2)$.

1.1.2 Chiral ring

The lowest component ϕ of Φ obeys $\delta_{\overline{\epsilon}}\phi = [\overline{\epsilon}\overline{Q}, \phi] = 0$ because $\delta\phi = \epsilon\psi$ (no $\overline{\epsilon}$ term). Thus ϕ is $\delta_{\overline{\epsilon}}$ -closed. Then $\partial_{\mu}\phi \sim [\delta_{\overline{\epsilon}}, \delta_{\epsilon}]\phi = \delta_{\overline{\epsilon}}\delta_{\epsilon}\phi$. Thus moving a chiral operator does not change its class in the cohomology of $\delta_{\overline{\epsilon}}$:

$$\phi(x) = e^{x^{\mu}\partial_{\mu}}\phi(0) = \phi(0) + \delta_{\overline{\epsilon}}(\cdots).$$
⁽²⁾

The cohomology of $\delta_{\overline{\epsilon}}$ is called the *chiral ring*. Since

$$\partial_{\mu}\phi_{1}\phi_{2}\cdots = \delta_{\overline{\epsilon}}(\cdots),\tag{3}$$

correlators of chiral operators do not depend on the positions of the chiral operators. By cluster decomposition,

$$\langle \phi_1(x_1)\phi_2(x_2)\cdots \rangle = \langle \phi_1(0)\rangle\langle \phi_2(0)\rangle\cdots$$
 (4)

so the condensates $\langle \phi_1(0) \rangle$ are enough to compute all correlators. In theories with R-symmetry, the condensates all vanish except if ϕ has no R-charge. However, the R-charge and dimension are related for chiral operators so that means ϕ is the identity.

1.2 4d $\mathcal{N} = 1$ SQCD

See https://arxiv.org/abs/hep-th/9509066 (Intriligator-Seiberg). They consider a gauge theory with gauge group $G = SU(N_c)$, with N_f fundamental flavours (one flavour is a pair of chiral multiplets, one transforming in the fundamental and one in the antifundamental representation of $SU(N_c)$). The chiral superfields are:

- $W^{\alpha} = \lambda^{\alpha} + \cdots$ the gauge field strength, in the adjoint of $SU(N_c)$ and space-time spinor;
- Q^i the fundamental chirals;
- \widetilde{Q}^i the antifundamental chirals.

į

We can only turn on masses by adding a term $Q\widetilde{Q}$ to the superpotential. The action is (here $\tau = \theta/(2\pi) + i(4\pi)/g_{\rm YM}^2$)

$$\mathcal{L} \simeq \frac{-1}{8\pi} \operatorname{Tr} \left(\int \mathrm{d}^2 \theta \tau W_{\alpha} W^{\alpha} \right) + \text{h.c.} + \int \mathrm{d}^2 \theta \mathrm{d}^2 \overline{\theta} \left(Q^i e^V Q_i^{\dagger} + \widetilde{Q}_i e^V \widetilde{Q}^{\dagger i} \right) + \int \mathrm{d}^2 \theta \left(m_i^j Q^i \widetilde{Q}_j \right) + \text{h.c.}$$
(5)

Gauge-invariant chiral superfields are

• "Meson" $M_i^j = Q_r^j \widetilde{Q}_i^r$ where $1 \le r \le N_c$;

- "Baryons" $B^{j_1...j_{N_c}} = \epsilon^{r_1...r_{N_c}} Q^{j_1}_{r_1} \cdots Q^{j_{N_c}}_{r_{N_c}}$ and antibaryons built from \widetilde{Q} ;
- "Glueballs" $S \simeq \operatorname{Tr}(W_{\alpha}W^{\alpha}) \simeq Tr(\lambda_{\alpha}\lambda^{\alpha}) + \cdots$

We will be interested in the expectation value of glueballs. This is a purely strong coupling phenomenon: even instantons cannot contribute.

The 1-loop β function, which is in fact exact, is

$$\beta = -\frac{3N_c - N_f}{16\pi^2} g_{\rm YM}^3.$$
 (6)

For $N_f = 3N_c$ we get a CFT but let us actually focus on $N_f < N_c$. Then we can define the scale Λ (complex) by

$$\left(\frac{\Lambda}{\mu}\right)^{3N_c - N_f} = e^{2\pi i \tau_{\text{eff}}}.$$
(7)

The effective potential

$$W_{\text{eff}} = (N_c - N_f) \left(\frac{\Lambda^{3N_c - N_f}}{\det M} \right)^{1/(N_c - N_f)} + m_j^i M_i^j.$$
(8)

(where m is the masses and M the mesons) is fixed by symmetries, up to a numerical factor that is fixed by a one instanton calculation.

Integrating out M (for large masses) by $\partial W_{\text{eff}}/\partial M_i^j = 0$ we find

$$M = m^{-1} \left(\Lambda^{3N_c - N_f} \det m \right)^{1/N_c}.$$
 (9)

Note that the power $1/N_c$ has N_c branches, so we expect N_c vacua; a supersymmetric localization calculation of the Witten index confirms this. The effective twisted superpotential gives

$$W_{\rm eff} = N_c \left(\Lambda^{3N_c - N_f} \det m \right)^{1/N_c} = N_c \Lambda_0^3 \tag{10}$$

where $\Lambda_0^{3N_c} = \Lambda^{3N_c - N_f} \det m$ is the effective low-energy dynamical scale. From this we compute the gauge condensation:

- Make the gauge coupling τ into a chiral superfield $\tau(\theta) = \tau + \theta \psi_{\tau} + F_{\tau} \theta \theta$ that would have an expectation value $\langle \tau(0) \rangle = \tau$.
- Then that coupling being a chiral superfield it must appear holomorphically in the effective superpotential.
- Then

$$\langle \operatorname{Tr} \lambda \lambda \rangle \sim \partial \log Z / \partial F_{\tau} \sim \frac{\partial}{\partial F_{\tau}} \int \mathrm{d}^2 \theta \, W_{\text{eff}} \sim -16\pi^2 \Lambda_0^3$$
 (11)

where we used that we know $\log Z$ in the low-energy theory, and we have to remember that Λ_0 is essentially an exponential of τ (this is why the power of Λ does not change). Note that we can do the opposite: from the gluino condensate $\langle \text{Tr}(\lambda\lambda) \rangle$ we can integrate it and get the effective superpotential and from that we get correlators of all chiral ring operators.

1.2.1 Seiberg duality

For the range $\frac{3}{2}N_c < N_f < 3N_c$ then at low energies the theory is claimed to flow to a nontrivial CFT. Moreover there is a "magnetic" dual theory with gauge group $SU(\tilde{N}_c)$ with N_f flavours q and \tilde{q} and N_f^2 gauge singlets M_i^j which flows to the same infrared fixed point; here $\tilde{N}_c = N_f - N_c$.

1.3 Localization

See other lectures for how supersymmetric localization works. We shall use the canonical choice $V \sim (\delta \lambda_i)^{\dagger} \lambda_i$.

1.3.1 4d $\mathcal{N} = 1$ theory on S^4

We can put 4d $\mathcal{N} = 1$ theories on S^4 in two ways:

- as Guido explained by building a supergravity background of an appropriate supergravity;
- by starting from 4d $\mathcal{N} = 2$ put on S^4 by Pestun, and decomposing multiplets into 4d $\mathcal{N} = 1$ multiplets.

The problem is that $V \sim (\delta \lambda_i)^{\dagger} \lambda_i$ does **not** satisfy $\delta V|_{\text{bosonic}} \geq 0$. So while the theory makes sense and its partition function is probably finite, we cannot do localization.

1.3.2 4d $\mathcal{N} = 1$ theory on Euclidean $S^3 \times S^1$

We normalize the radius of S^3 to be 1 and the radius of S^1 to be β .

Recall supersymmetry on Euclidean \mathbb{R}^4 (vector multiplet):

$$\delta A_{\mu} = \frac{i}{2} (\epsilon \sigma_{\mu} \overline{\lambda} - \overline{\epsilon} \overline{\sigma}_{m} \lambda) \tag{12}$$

$$\delta\lambda = \frac{1}{2}\sigma^{mn}\epsilon F_{mn} - \epsilon D \tag{13}$$

$$\delta\overline{\lambda} = \frac{1}{2}\overline{\sigma}^{mn}\overline{\epsilon}F_{mn} - \overline{\epsilon}D\tag{14}$$

$$\delta D = \frac{-i}{2} \epsilon \sigma^m D_m \overline{\lambda} - \frac{i}{2} \overline{\epsilon} \overline{\sigma}^m D_m \lambda \tag{15}$$

where m = 1, 2, 3, 4 and $\sigma^m = (\sigma^1, \sigma^2, \sigma^3, 1)$ and $\overline{\sigma}^m = (\sigma^m)^{\dagger}$ and $\sigma_{mn} = \frac{1}{2}(\sigma_m \overline{\sigma}_n - \sigma_n \overline{\sigma}_m)$ and $\overline{\sigma}_{mn} = \frac{1}{2}(\overline{\sigma}_m \sigma_n - \overline{\sigma}_n \sigma_m)$. Recall that bars do not mean complex conjugation.

To place the theory on $S^3 \times S^1$ just replace $D_m \to D_m - iqV_m$ with q the R-charge, such that ϵ and λ has R-charge +1 and $\overline{\epsilon}$ and $\overline{\lambda}$ has R-charge -1, and $V_m dx^m = \frac{-i}{2} dt$.

This procedure should be equivalent to Guido's approach with new minimal supergravity. Importantly the theory must have a non-anomalous R-symmetry. Note that SQCD's obvious R-symmetry is anomalous but it can be changed to become non-anomalous.

Preserved supersymmetries are labeled by generalized Killing spinors, such that

$$D_m \epsilon = \frac{-1}{2} \sigma_m \overline{\sigma}_4 \epsilon \tag{16}$$

$$D_m \overline{\epsilon} = \frac{-1}{2} \overline{\sigma}_m \sigma_4 \overline{\epsilon}.$$
 (17)

The Yang–Mills action on $S^1 \times S^3$ is

$$\mathcal{L}_{\rm YM} = \text{Tr}\bigg(\frac{1}{g_{\rm YM}^2}\bigg(\frac{1}{2}F_{mn}F^{mn} + D^2 + i\overline{\lambda}\overline{\sigma}^m D_m\lambda + \frac{i\theta}{16\pi^2}F\wedge F\bigg) + \text{fermions}\bigg).$$
(18)

again we define $\tau = \theta/(2\pi) + 4\pi i/g_{\rm YM}^2$.

There are actually two choices for $(\epsilon, \overline{\epsilon})$. Then we take the standard V.

• The first choice has $\epsilon \neq 0$ and $\overline{\epsilon} \neq 0$ everywhere. Then, defining $F^{\pm} = (F \pm \star F)/2$ we have

$$(\delta\lambda)^{\dagger}\delta\lambda \sim F_{mn}^{+}F^{+mn} + D^2 + \text{fermions}$$
 (19)

$$(\delta\overline{\lambda})^{\dagger}\delta\overline{\lambda} \sim F_{mn}^{-}F^{-mn} + D^2 + \text{fermions.}$$
(20)

When coefficients are the same we get $V \sim |F|^2 + D^2$ while if coefficients are different we get an additional $F \wedge F$ contribution. The saddle-point configuration is trivial: $F_{mn} = D = 0$ (more precisely there are holonomies around the time circle). The classical action is zero and we are left with a free theory, for which we can simply do a mode expansion in S^3 spherical harmonics. We cannot compute any local observables, only the partition function, which in the case of SCFT is the superconformal index.

• The second choice has $\epsilon = 0$ and $\overline{\epsilon}$ nonvanishing. Now $\text{Tr}(\lambda \lambda)$ is Q-closed. The deformation term is

$$\delta V|_{\text{bosonic}} \sim \text{Tr}((F^-)^2 + D^2)$$
 (21)

so the saddle point is an instanton $F^- = 0$ (anti-self-dual condition). For this choice of $(\epsilon, \overline{\epsilon})$ the classical action is

$$\mathcal{L}_{\rm YM}|_{F^-=0, D=0, \overline{\lambda}=0} = \text{Tr}\left(\frac{1}{g_{\rm YM}^2} (F^+)^2 + \frac{i\theta}{16\pi^2} (F^+)^2\right) = \frac{i\tau}{8\pi} \,\text{Tr}(F \star F)$$
(22)

usual factor, gauge-coupling-dependent.

2 Lecture 2, July 20

2.1 Superconformal index of 4d $\mathcal{N} = 1$ theories on $S^3 \times S^1$

See Rastelli-Razamat https://arxiv.org/abs/1608.02965 and Hosomichi https://arxiv.org/abs/1412.7128.

4d $\mathcal{N} = 1$ on $S^3 \times S^1$ has $SU(2)_L \times SU(2)_R \times U(1)$ isometry; we denote generators of the Cartan by J_L^3 , J_R^3 , D. The Killing spinors obey $\gamma_3 \epsilon = -\epsilon$ and $\gamma_3 \overline{\epsilon} = -\overline{\epsilon}$. We have

$$R(\delta_{\epsilon}) = -1, \quad J_R^3(\delta_{\epsilon}) = \frac{1}{2}, \quad R(\delta_{\overline{\epsilon}}) = 1, \quad J_R^3(\delta_{\overline{\epsilon}}) = \frac{-1}{2}.$$
 (23)

The partition function is equal to the index:

$$Z = \int_{S^3 \times S^1} D\phi \, e^{-S(\phi)} = \operatorname{Tr}_{S^3} \left[(-1)^F e^{-\beta (D - \frac{1}{2}R)} \right]$$
(24)

where $(-1)^F$ comes from the fermion boundary conditions and $D - \frac{1}{2}R$ comes from the twist $D_t = \partial_t - \frac{1}{2}q$ where q is the R-charge.

Further twists $\partial_t \to \partial_t - i\xi(2J_R^3 + R) - 2i\eta J_L^3 - im$ with *m* associated to a flavour symmetry. These twists preserve supersymmetry because $[Q, 2J_R^3 + R] = 0$ and $[Q, J_L^3] = 0$. These twists give

$$Z = \text{Tr}_{S^3} \left[(-1)^F q^{D-R/2} x^{2J_R^3 + R} y^{2J_L^3} e^{iw\beta} \right]$$
(25)

with $q = e^{\beta}$, $x = e^{i\beta\xi}$, $y = e^{i\beta\eta}$. [...]

This is called the superconformal index.

Only states that obey $0 = S|\alpha\rangle = Q|\alpha\rangle$ (hence $H|\alpha\rangle = 0$) contribute. By a change of variables x = x'/q, $x' = (pp')^{1/2}$, $y = (p/p')^{1/2}$ we find the superconformal index

$$I = Z = \text{Tr}_{S^3} \left[(-1)^F p^{J_R^3 + J_L^3 + R/2} (p')^{J_R^3 - J_L^3 - R/2} e^{i\beta m} e^{-\beta H} \right]$$
(26)

Since only states with H = 0 contribute we can omit the last factor.

Because of localization we can set the gauge coupling to zero and get a free theory. Then the index is not too hard to compute. Let $A_{\tau} = a$; the Gaussian integral gives

$$\frac{\det_{\lambda}(D_{\tau} - ia + i \not\!\!D_{S^3}) \det_c'(\det_{\tau} - ia)}{\det_A((-iD_{\tau} - ia)^2 + \Delta_{S^3}^{\text{vector}})^{1/2}}$$
(27)

The full partition function is

$$Z \simeq \int \prod_{i=1}^{r} \mathrm{d}\hat{a}_{i} \prod_{\alpha>0} 4 \sin^{2} \frac{\alpha \hat{a}}{2} I_{\mathrm{vec}} I_{\mathrm{chiral}}$$
(28)

where r is the rank of the gauge group and $\hat{a} = \beta a$ and where

$$I_{\text{vec}} = \left(\prod_{n \ge 1} (1 - p^n)(1 - p'^n)\right)^r \prod_{\alpha \ge 0} \prod_{n \ge 1} (1 - p^n e^{\alpha \hat{a}})(1 - p'^n e^{\alpha \hat{a}})$$
(29)

$$I_{\text{chiral}} = \prod_{w \in \text{weights}(R)} \Gamma(e^{iw\hat{a}}(pp')^{1/2}, p, p')$$
(30)

in terms of the elliptic Gamma functions $\Gamma(x, p, p')$.

These very complicated integrals, specialized to two Seiberg-dual gauge theories, turn out to give the same result through complicated mathematical identities.

2.2 Gaugino condensation

See Terashima https://arxiv.org/abs/1410.3630 and https://arxiv.org/abs/1509.02916 and Davies et al https://arxiv.org/abs/hep-th/9905015.

$$\epsilon = 0, \ \overline{\epsilon} = \frac{1}{\sqrt{2}} \begin{pmatrix} e^{i(-\chi + \phi + \theta)/2} \\ e^{i(-\chi + \phi + \theta)/2} \end{pmatrix}$$

For chiral multiplets, $\delta V|_{\text{bosonic}} = |D_m \phi|^2 + r^2 |\phi|^2 + |F|^2$ so saddle points are $\phi = F = 0$.

Note that we retrieve holomorphy without needing to talk about superfields. Consider the Q-exact term

$$\mathcal{L}_{\overline{w}} = \delta \left(\frac{\partial \overline{W}(\overline{\phi})}{\partial \overline{\phi}^{i}} \overline{\eta} \overline{\psi}^{i} \right) = \frac{\partial \overline{W}}{\partial \overline{\phi}^{i}} \overline{F} + \text{fermions}$$
(31)

where we used $\overline{\eta} = U \times (0, 1)$ with $U = (\overline{\epsilon} i \sigma^2(\overline{\epsilon})^* \text{ and } \overline{\epsilon} = U \times (1, 0)$ so $\overline{\eta}\overline{\epsilon} = 1$. So parameters in the antiholomorphic superpotential cannot show up in the partition function or correlators of holomorphic operators.

Consider 4d $\mathcal{N} = 1$ super Yang–Mills with gauge group $G = SU(N_c)$ on $\mathbb{R}^3 \times S^1$. We want to determine $\langle \lambda \lambda \rangle$. We add

$$\delta V \sim \tau \left(\int (F^{-})^2 + D^2 + \cdots \right)$$
(32)

to make the theory weakly coupled and localize onto anti-self-dual "instantons". Configurations on $\mathbb{R}^3 \times S^1$ are classified by

- the instanton charge $Q \sim \int F \wedge F$;
- the Wilson loop $\langle \phi \rangle = \lim_{|x| \to \infty} \int_0^\beta \mathrm{d}x_0 A_0$, which generically breaks G to $U(1)^r$;
- monopole charge for $U(1)^r$.

To get a non-zero value for $\langle \lambda \lambda \rangle$ we need two zero modes, but an instanton has $2N_c$.

Antiselfdual configurations with 2 zero modes are "fundamental monopoles". There are r of them, T-dual (in the sense that the scalar ϕ is converted to A_0) of BPS monopoles, "fractional instantons".

The brane picture (in a sufficiently supersymmetric setting) is that the $SU(N_c)$ theory is realized by N_c D4 branes compactified on S^1 , and an instanton is realized by a D0 brane.

The T-dual to the stack of N_c D4 branes is N_c D3 branes localized at points along S^1 (the positions are eigenvalues of $\langle \phi \rangle$), and the D0 brane becomes a D1 brane wrapping S^1 , which splits into N_c D1 branes stretching between neighboring D3 branes. Each of these D1 brane segments is consistent on its own and describes a fundamental monopole: $N_c - 1$ BPS monopoles and one KK monopole.

The solution for a single monopole can be given explicitly. Here α_i ranges over simple roots, so $1 \leq i \leq r$. We define $v = \frac{1}{\beta} \langle \phi \rangle \alpha_i$.

- BPS monopole. Magnetic charge α_i , instanton charge $Q = \frac{1}{2\pi} \alpha_i \cdot \langle \phi \rangle$, the classical action is $-i\tau \alpha_i \langle \phi \rangle$
- The KK monopole has monopole charge $\alpha_0 = -\sum_{i=1}^r \alpha_i$, and has $Q = q + \frac{1}{2\pi} \alpha_0 \langle \phi \rangle$ and $S = -2\pi i \tau i \tau \alpha_0 \langle \phi \rangle$.

We will call these r + 1 monopoles "fundamental monopoles".

Now $S^3 \times \mathbb{R}$ is non-compact so we need to find vacua of the $t \to \infty$ limit to impose at infinity in space.

We shall send $t \to \infty$ and get a weakly-coupled limit.

Let us consider the effective action for the massless fields. We should get U(1) vector multiplets with zero KK momentum, which is equivalent to 3d $\mathcal{N} = 2$ $U(1)^r$ vetor multiplets.

The Wilson loop ϕ and dual photon σ combine into $Z = i(\tau \phi + \sigma)$ and can be repackaged into $3d \mathcal{N} = 2$ chiral superfield χ . The action becomes

$$S \to \frac{1}{4\pi\beta} \int \mathrm{d}^3 x \, \chi^\dagger \chi |_{\theta\theta\overline{\theta}\overline{\theta}}$$
 (34)

with no potential.

To find the vacua we need the scalar potential, which comes from the superpotential, which we can deduce from the fermion bi-linear. To compute the fermion bilinear we need configurations with two fermionic zero modes, namely fundamental monopoles.

The path integral measure of zero modes is

$$\int \mathrm{d}\mathcal{M}_{?}^{(j)} = \frac{\mu^2}{g^2} \frac{?}{2\pi} e^{-S_i} \int \mathrm{d}^3 x \mathrm{d}\Omega \mathrm{d}^2 \xi \tag{35}$$

where μ is the cutoff scale, $g = g(\mu)$ the gauge coupling, which is defined at t = 0, and $S_i = -2\pi i \delta_{i,0} - \alpha_i \langle Z \rangle$.

The correlator

$$\langle \lambda_{\alpha}(x) \otimes \lambda_{\beta}(0) \rangle \longrightarrow \sum_{j=0}^{r} \frac{2^{?} \pi^{2} \mu^{3} \beta}{g^{2}} \alpha_{j} \otimes \alpha_{j} e^{-S_{j}} \times \int \mathrm{d}^{3} a \, S_{F}(x-a)_{\alpha}{}^{\gamma} \times S_{F}(a)_{\beta\gamma}.$$
(36)

(where S_F are fermionic propagators?) To give rise to this gaugino two-point function, the low-energy effective action must contain a term $(\cdots)\lambda\lambda$, so this two-point function tells us what the (\cdots) should be, hence tells us the superpotential. We deduce

$$W(\chi) = \frac{\mu^3 \beta}{g^2} \left(\sum_{j=1}^r e^{\alpha_j \chi} + e^{2\pi i \tau + \alpha_0 \chi} \right) + \text{derivatives of } \chi.$$
(37)

The vacuum $\partial W/\partial \chi = 0$ is $\chi = \frac{2\pi i \tau}{c_2} \sum_{j=1}^r \varpi_i$ where $\alpha_j \varpi_i = \delta_{ij}$ with c_2 the ... number of the gauge group.

Then

$$\langle W \rangle = \frac{\mu^3 \beta}{q^2} c_2 e^{2\pi i \tau/c_2} = \beta c_2 \Lambda^3 \tag{38}$$

where $\Lambda^3 = (\mu^3/g^2) \exp\left(2\pi i \tau(\mu)/c_2\right)$ and

$$\left\langle \frac{\operatorname{Tr}(\lambda\lambda)}{16\pi^2} \right\rangle = \Lambda^3 e^{2\pi i s/c_2} \tag{39}$$

for $0 \leq s < c_2$.

The vacua are discrete, so they cannot mix when τ is varied. The result above then applies to $\tau = 0$, which is the original theory.

Could we do \mathbb{R}^4 ? This same localization technique does not work for \mathbb{R}^4 because there is always a range of energy scales $< \Lambda' = \Lambda e^{-t}$ for which the theory is strongly coupled. On the other hand, on $\mathbb{R}^3 \times S^1$ we can choose t large enough to make the theory weakly coupled.

Consider now 4d $\mathcal{N} = 1$ on $\mathbb{R}^3 \times S^1$ with $W_v = 2\pi i \tau_0 S + F(S, S_i)$. With some work we can show that

$$\langle S \rangle$$
 (40)

is given by $\partial W_S / \partial S$ for the VY superpotential

$$W_S = -c_2 S\left(\log\frac{S}{\Lambda^3} - 1\right) + F(S).$$
(41)

We can do similar calculations with matter. See Dijkgraaf–Vafa superpotential.