
1 Answers for exercise session 1, July 16
1.1 Exercises about Guido Festuccia’s course
Exercise 1.-1 (Symmetric Energy Momentum Tensor).

Exercise 1.0 (BPS String).

Exercise 1.1 (Strings in sQED).

Exercise 1.2. Show that Sαα̇ = 2gij̄DαΦiDα̇Φj̄ , χα = D
2
DαK, Yα = 4DαW in a Wess–Zumino

model obey Dα̇Sαα̇ = χα + Yα, Dα̇χα = 0, Dαχα = Dα̇χ
α̇, DαYβ +DβYα = 0, D2

Yα = 0.

Answer. Notice first that for C chiral, Dα̇
DαC = {Dα̇

, Dα}C is chiral since the translation
{Dα̇

, Dα} commutes with Dβ̇ . We deduce that D2
Yα = 0. The antisymmetry DαYβ +DβYα = 0

derives from {Dα, Dβ} = 0. Next, χ is chiral because D3 = 0. For the other relation Dαχα =
Dα̇χ

α̇ we simply check (remember that D2 = DαDα while D2 = Dα̇D
α̇)

DαD
2
Dα −Dα̇D

2D
α̇ = {Dα, Dα̇}D

α̇
Dα −Dα̇D

α{Dα̇
, Dα} =

[
{Dα, Dα̇}, D

α̇
Dα

]
= 0. (1)

For the final constraint, first notice that 2DαΦiDα̇∂iK = 2gij̄DαΦiDα̇Φj̄ = Sαα̇ since Dα̇Φj = 0.
We deduce (remember signs in Leibniz’ rule with anticommuting derivatives, and remember
D
α̇
Dα̇ = −D2)

D
α̇Sαα̇ − χα = 2Dα̇(

DαΦiDα̇∂iK
)

+D
α̇
Dα̇

(
DαΦ∂iK

)
= DαΦiD2

∂iK −D
2
DαΦ∂iK. (2)

The last term vanishes since Dα̇
DαΦ is chiral. Using the equation of motion D2

∂iK = 4∂iW , the
first term is Yα as desired. It could be tempting to define Yα = DαΦiD2

∂iK so that we wouldn’t
need the equations of motion. However, DαYβ +DβYα = 0 would then only hold on-shell. The
need for the equations of motion is of course not surprising given the next exercise which shows
that the conservation of Tµν is encoded into the constraints on S, χ, Y .

Exercise 1.3.

1.2 Exercises about Francesco Benini’s course
Exercise 1.4. Compute

∫
S2 e

ic cos θdVol(S2).

Answer. (Provided by Pieter Bomans.)
We consider the round 2-sphere with unit radius and metric

ds2 = dθ2 + sin2 θdφ2 (3)

with volume form ω = sin θdθ ∧ dφ
Method 1: Direct integration simply gives

I(c) =
∫ 2π

0
dφ
∫ π

0
dθ sin θeic cos θ = 2π

∫ 1

−1
dzeicz = 2πi

c
(−eic + e−ic) = 4π sin c

c
(4)

We see that only the stationary points of cos θ contribute to the integral. In this case the stationary
phase approximation is exact.

Method 2: Using Duistermaat-Heckman localisation formula.
Let’s take the area form on the sphere as the symplectic form. It is closed and non-degenerate.

The vector field generating rotations around the z-axis is given by V = ∂/∂φ. The Hamiltonian
associated to V is determined by the equation

iV ω + dH = 0 (5)
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which implies that H = cos θ = z up to constant shifts. The integral we want to compute

I(c) =
∫
S2
ωeicz (6)

is indeed of the form needed to apply the Duistermaat-Heckman integral and is given by the
Duistermaan-Heckman formula

I(c) =
(

2π
ic

)l∑
p

eicH(xp)

λp1 · · ·λ
p
2

(7)

There are two fixed points of the U(1) action, namely the North and South pole with values for
the Hamiltonian zNP = 1 and zSP = −1 and indices λNP = 1 and λSP = −1. The localisation
formula thus gives

I(c) = 2π
ic

(
eiczNP

λNP
+ eiczSP

λSP

)
= 4π sin c

c
(8)

confirming the result above.
Method 3: Using Atiyah-Bott-Berline-Vergne localisation formula. The localisation formula of

Duistermaat and Heckman is a special case of the more general localisation formula∫
M
α(c) =

(
2π
ic

)l∑
p

α0(c)(xp)
λp1 · · ·λ

p
l

(9)

where α(c) is an equivariant cocycle. We can use this formula by making the integrand into an
equivariantly closed polyform

α(c) = eic cos θ
(
ω − 1

ic

)
(10)

and then apply the formula to get again the same answer.

Exercise 1.5. Show that {d, iV } = LV hence dV = d− iV squares to −LV .

Answer. (Provided by Pieter Bomans.) We start by showing that this holds on functions and
then argue that this identity extends to p-forms for any p1. Indeed acting with the lie derivative
on a function f gives

LV f := d
dt
∣∣
t=0φ

∗
t f = df(V ). (11)

The space of −1 forms is empty so iV f = 0. Thus (diV + iV d)f = iV df = df(V ). Since the space
of all p-forms is generated by functions and the operation d ze can show that Cartan’s formula
holds for any p-form. Since both LV and (diV + iV d) commute with d and both are degree 0
derivations, i.e. they map p-forms to p-forms and

D(ab) = (Da)b+ a(Db), where D = LV or (diV + iV d) , (12)

they are equal on all forms. Now it is easy to see that

d2
V = d2 − {d, iV }+ i2V = −LV . (13)

Exercise 1.6. Let η = g(V, ) and

ΘV = η ∧

(
−1
|V |2

(
1 + dη
|V |2

+ · · ·+ (dη)dimM/2

|V |dimM

))
. (14)

Check that dV ΘV = 1 and deduce that on M \ MV , dV α = 0 implies α = dV β.
1Another nice proof using homotopy can be found on https://math.stackexchange.com/questions/1480545/

proving-cartans-magic-formula-using-homotopy

2

https://math.stackexchange.com/questions/1480545/proving-cartans-magic-formula-using-homotopy
https://math.stackexchange.com/questions/1480545/proving-cartans-magic-formula-using-homotopy


Answer. (Provided by Pieter Bomans.) we know that dV η = −|V |2 + dη is invertible onMMV .
We can write ΘV = η(dV η)−1). Then by construction of ΘV we have dV ΘV = dV η(dV η)−1 = 1
and is well defined onMMV . Now we can write any equivariantly closed polyform alpha as

α = 1 · α = (dV ΘV )α = dV (ΘV α) . (15)

This shows that V equivariantly closed forms on M are equivariantly exact on M MV . By
Stokes’ theorem we see that the integral

∫
M α does not recieve contributions fromMMV and

thus localises to the fixed points.

Exercise 1.7. Compute
∫
U(N) exp(tTr(AUBU†))dU .

Answer. First diagonalize A = V †ÃV and B = WB̃W † and notice that Tr(AUBU†) =
Tr(V †ÃV UWB̃W †U†) = Tr(ÃŨB̃Ũ†) with Ũ = V UW a unitary matrix; we are just doing
a change of coordinates in U(N). Drop all tildes.

It can be argued (using the Duistermaat–Heckmann equivariant localization formula on
symplectic manifolds) that the saddle-point approximation of the integral gives the correct result.
Hopefully a later version of this answer sheet will explain this point carefully.

The saddle-point equations are obtained by varying U → U + δU and noting that U† =
U−1 → U−1 − U−1(δU)U−1. We find [A,UBU−1] = 0. For generic diagonal A this implies that
UBU−1 is diagonal. Since this matrix is conjugate to B it has the same eigenvalues in some
order, in other words it is equal to σBσ−1 where σ is a permutation matrix. We learn that σ−1U
and B commute, hence (again for generic diagonal B) we find that σ−1U is a diagonal unitary
matrix. Altogether saddle-points are U (0) = σD for σ ∈ SN ⊂ U(N) and D ∈ U(1)N ⊂ U(N).

Now parametrize a neighborhood of U (0) by U = σD exp(t−1/2V ) with V antihermitian, so
U† = U−1 = exp(−t−1/2V )D−1σ−1 +O(t−3/2). The action is

tTr(AUBU−1) = tTr(A(σ)(1 + t−1/2V + t−1V 2/2)B(1− t−1/2V + t−1V 2/2)) +O(t−1/2) (16)

= tTr(A(σ)B)− 1
2 Tr([V,A(σ)][V,B]) +O(t−1/2). (17)

Here we defined the diagonal matrix A(σ) = σ−1Aσ, which has the same eigenvalues of A but
permuted according to σ. Being diagonal, it commutes with D and with B. We used this and
cyclicity of the trace to simplify expressions. In particular the t1/2 term vanishes since U (0) is a
saddle-point. For the O(1) term we used [A(σ), B] = 0.

For the saddle-point approximation we thus need to compute the Gaussian integral∫
dV exp

(
−1
2 Tr

(
[V,A(σ)][V,B]

))
. (18)

Remember that σ−1DV is a tangent vector to U(N) at the saddle-point σ−1D, so V is an anti-
Hermitian matrix. The Gaussian integral is only over the V with all diagonal entries vanishing,
because we only want to integrate over directions transverse to the localization locus (which is
parametrized by D and the discrete σ). The Gaussian integral gives a determinant to the power
−1/2. How do we compute this determinant?

We complexify the space on which the operator acts and compute the determinant of the
operator acting on the complex vector space of all complex matrices with vanishing diagonal.
(This does not square the determinant for the same reason that the determinant of an explicit
real matrix does not depend on whether we treat it as being a real matrix or a complex matrix
whose components happen to be real.) Complexifying helps us find very simple eigenvectors: V
with a single non-zero entry in position (i, j). The eigenvalue is (Aσ(i) −Aσ(j))(Bi −Bj).

Taking the product over all i 6= j then taking the square-root gives the result

∫
U(N)

dU exp
(
tTr(AUBU†)

)
= cN

∑
σ∈SN

t−(n2−n)/2 exp
(
tTr(A(σ)B)

)
∆(A(σ))∆(B)

(19)

with ∆(B) =
∏
i<j(λi(B)− λj(B)), a power of t that came from the measure when we scaled V ,

a numerical coefficient cN that comes from the Gaussian integral and the integral over D (on
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which nothing depends). This is put in the desired form by using ∆(A(σ)) = (−1)σ∆(A) and
summing over permutations, which precisely implements the determinant in the final formula

∫
U(N)

dU exp
(
tTr(AUBU†)

)
= cN

t−(n2−n)/2 det exp
(
tλi(A)λj(B)

)
1≤i,j≤N

∆(A)∆(B) . (20)

It would be interesting to find the coefficient cN by being more careful about coefficients, for
instance about the volume of U(N).

1.3 Exercises about Wolfger Peelaers’ course
Exercise 1.8.

Exercise 1.9.

Exercise 1.10.

Exercise 1.11.

1.4 On spinors
Exercise 1.12.

Exercise 1.13.

Exercise 1.14.

Exercise 1.15.

Exercise 1.16.

1.5 Special functions
Exercise 1.17. Try to get log Γ(x) = x log x− x− 1

2 log x+O(1) using Γ(x+ 1) = xΓ(x).

Answer. Assume we know log Γ(x) = αx log x+ βx+ γ log x+O(1) for x→∞, and apply this
in Γ(x+ 1) = xΓ(x). We find

0 = log Γ(x+ 1)− log Γ(x)− log x (21)

= α
(

(x+ 1) log(x+ 1)− x log x
)

+ β + γ
(

log(x+ 1)− log x
)
− log x+O(1) (22)

= α
(

log x+ 1
)

+ β − log x+O(1) (23)

so α = 1 and β = −1 but it seems we cannot determine γ = −1/2 in this way.

Exercise 1.18. The Barnes double gamma function Γb(x) is such that Γb(x + b)/Γb(x) =√
2πbxb−1/2/Γ(xb) and Γb = Γ1/b. If b > 0, the function Γb is analytic away from {x ≤ 0} ⊂ R.

Find its poles and their order. Find the large-x expansion of log Γb.
This is related to the Upsilon function by Υ(x) = 1/

(
Γb(x)Γb(b+ b−1 − x)

)
. Check that the

zeros of Υ are consistent with the product formula Wolfger gave during the lecture.

Answer. The condition that Γb = Γ1/b implies that there are two shift relations:

Γb(x+ b)/Γb(x) =
√

2πbxb−1/2/Γ(xb), Γb(x+ 1/b)/Γb(x) =
√

2πb−x/b+1/2/Γ(x/b). (24)

Using the Stirling expansion we know

log Γb(x+ b)/ log Γb(x) = − log Γ(xb) + (b log b)x+O(1) = −bx log x+ bx+ 1
2 log x+O(1). (25)
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This is of order x log x so we search for an expansion

log Γb(x) = αx2 log x+ βx2 + γx log x+ δx+ ε log x+O(1). (26)

We deduce

log Γb(x+ b)− log Γb(x) = 2αbx log x+ (α+ 2β)bx+ (γ + bα)b log x+O(1). (27)

Comparing to (25) we find α = −1/2, β = 3/4, γ = 1
2 (b+ 1/b). This is invariant under b→ 1/b,

consistently with Γb = Γ1/b.
The poles of the Gamma function can be found by inverting the shift relation to Γ(x) =

Γ(x + 1)/x and noticing that this blows up for x = 0 or for x + 1 equal to a pole of Gamma.
We apply the same strategy and find that Γb has simple poles at −mb − nb−1 for all integers
m,n ≥ 0, and is analytic away from those poles. We deduce that the Υ function has two sets of
zeros: at −mb− nb−1 and (1 +m)b+ (1 + n)b−1 for m,n ≥ 0. Each of these zeros is a zero of
one of the linear factors in the regularized product description of the Upsilon function.
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