3 Answers for exercise session 3, July 19

3.1 Exercises about Guido Festuccia’s course
Exercise 3.1.

Exercise 3.2. What is the number of DOFs (physical components) in a closed k-form in d
dimensions?

Answer. (Provided by Yale Fan.) First note that the Bianchi identity gives

(# DOFs in closed k-form) = (# DOFs in k-form) — (# DOFs in exact (k + 1)-form).
Equivalently, we have

(# DOFs in exact (k + 1)-form) = (# DOFs in k-form) — (# DOFs in closed k-form)

simply by taking the exterior derivative of a k-form and noting that the resulting exact (k+1)-form
is independent of shifts of the k-form by closed k-forms. For the purpose of counting DOFs, we
note that closed forms are LOCALLY exact, so that we in fact have

(# DOFs in closed k-form) = (# DOFs in k-form) — (# DOFs in closed (k 4 1)-form).

Recursively applying this formula and noting that top forms are automatically closed gives
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(this is “inclusion-exclusion”). An alternative (but really, equivalent) method of counting is as
follows. Again, a closed k-form is locally exact: F¢ ~ dFj_;. But in making this identification,
Fy_1 is only defined up to shifts by a closed form F | where F¢_| ~ dFj_o, and so on (these
are “gauge ambiguities”). Thus we can recursively apply the same formula, rewritten as

(# DOFs in closed k-form) = (# DOFs in (k — 1)-form) — (# DOFs in closed (k — 1)-form),

in the other direction. This gives:
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The two expressions for (# DOFs in closed k-form) are equal because Zj:()(—l)j (j) =0.

In fact these formulas simplify further thanks to >, (=1)* (") = (=1)™(”). The number
of physical degrees of freedom is then (Zj) (zero for k = 0). O
Exercise 3.3.
Exercise 3.4.
Exercise 3.5 (Special cases of the index).
Answer. (Provided by Jonathan Schulz and co..)
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For r = 1, the superpotential W = m®? has R-charge 2 and thus preserves supersymmetry.
This potential introduces a mass m for ®, so ® freezes out in the IR, thus the IR theory is
the trivial SCFT, consistent with the index 1.
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The superpotential W = m®;®5 has R-charge 2 and is thus valid. This introduces a mass
term for both ®; and ®», so a theory with this superpotential also has a trivial SCFT in

the IR.
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The valid superpotential W = A® leads to a scalar potential V = |%%\2 =A%, s0 for A # 0
supersymmetry is spontaneously broken. In this case, no BPS states exist, so the index is
Zero.

O

3.2 Exercises about Francesco Benini’s course
Exercise 3.6.

Answer. (Provided by Jonathan Schulz and co..) We use the following vielbein on Sa:

ds* = r2(df? + sin® 0d¢?) = Z e“e”, e =e,dat,

ep =T, eézO, eZ:O, 63,:7“0089

The spin connection fulfills
de® +w® Aeb =0,

so w'? = — cos Bdé.

The covariant derivative on spinors
Ve = 0ue — %wﬁbvavba
simplifies in two dimensions to
Ve = 0ue — %w}f [v1,72]e.
Using the vielbein, the right hand side of the equation can be rewritten to

i i,
R e = QR
With the gamma matrices v, = (o!,02) (which now are just like in flat space, as we have a
vielbein) we get the equations
dpe = Lo'e

dpe — % cos(f)o’e = Lsin(h)o’e.



The ansatz N
o (§> et =" (9), €t —em =eT%(9)

solves the equation in 6 and yields the equations

in ¢. These are solved by

F(9) = ae'®/? 4 be ="/,
g9(¢) = ae'®/? — pe=i¢/2,

These solutions are anti-periodic and thus € is a valid globally defined spinor on Sy for any values
of a,b € C. The computation in € is identical and yields two more complex parameters. O

Exercise 3.7.
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