3 Answers for exercise session 3, July 19

3.1 Exercises about Guido Festuccia's course

Exercise 3.1.

Exercise 3.2. What is the number of DOFs (physical components) in a closed k-form in d dimensions?

Answer. (Provided by Yale Fan.) First note that the Bianchi identity gives

$$
(\# \text { DOFs in closed } k \text {-form })=(\# \text { DOFs in } k \text {-form })-(\# \text { DOFs in exact }(k+1) \text {-form }) .
$$

Equivalently, we have
$(\#$ DOFs in exact $(k+1)$-form $)=(\#$ DOFs in k-form $)-(\#$ DOFs in closed k-form $)$
simply by taking the exterior derivative of a k-form and noting that the resulting exact ($k+1$)-form is independent of shifts of the k-form by closed k-forms. For the purpose of counting DOFs, we note that closed forms are LOCALLY exact, so that we in fact have
$(\#$ DOFs in closed k-form $)=(\#$ DOFs in k-form $)-(\#$ DOFs in closed $(k+1)$-form $)$.
Recursively applying this formula and noting that top forms are automatically closed gives

$$
(\# \text { DOFs in closed } k \text {-form })=\sum_{j=k}^{d}(-1)^{j-k}(\# \text { DOFs in } j \text {-form })=\sum_{j=k}^{d}(-1)^{j-k}\binom{d}{j}
$$

(this is "inclusion-exclusion"). An alternative (but really, equivalent) method of counting is as follows. Again, a closed k-form is locally exact: $F_{k}^{c} \sim d F_{k-1}$. But in making this identification, F_{k-1} is only defined up to shifts by a closed form F_{k-1}^{c} where $F_{k-1}^{c} \sim d F_{k-2}$, and so on (these are "gauge ambiguities"). Thus we can recursively apply the same formula, rewritten as
$(\#$ DOFs in closed k-form $)=(\#$ DOFs in $(k-1)$-form $)-(\#$ DOFs in closed $(k-1)$-form $)$, in the other direction. This gives:

$$
(\# \text { DOFs in closed } k \text {-form })=-\sum_{j=0}^{k-1}(-1)^{j-k}(\# \text { DOFs in } j \text {-form })=-\sum_{j=0}^{k-1}(-1)^{j-k}\binom{d}{j} .
$$

The two expressions for (\# DOFs in closed k-form) are equal because $\sum_{j=0}^{d}(-1)^{j}\binom{d}{j}=0$.
In fact these formulas simplify further thanks to $\sum_{k=0}^{m}(-1)^{k}\binom{n+1}{k}=(-1)^{m}\binom{n}{m}$. The number of physical degrees of freedom is then $\binom{d-1}{k-1}$ (zero for $k=0$).

Exercise 3.3.

Exercise 3.4.

Exercise 3.5 (Special cases of the index).
Answer. (Provided by Jonathan Schulz and co..)

- $r=1$:

$$
\prod_{m, n \geq 0} \frac{1-(p q)^{-\frac{1}{2}} p^{m+1} q^{n+1}}{1-(p q)^{\frac{1}{2}} p^{m} q^{n}}=\prod_{m, n \geq 0} \frac{1-(p q)^{\frac{1}{2}} p^{m} q^{n}}{1-(p q)^{\frac{1}{2}} p^{m} q^{n}}=\prod_{m, n \geq 0} 1=1
$$

For $r=1$, the superpotential $W=m \Phi^{2}$ has R-charge 2 and thus preserves supersymmetry. This potential introduces a mass m for Φ, so Φ freezes out in the IR, thus the IR theory is the trivial SCFT, consistent with the index 1 .

- r and $2-r$:

$$
\begin{aligned}
& \left(\prod_{m, n \geq 0} \frac{1-(p q)^{-\frac{r}{2}} p^{m+1} q^{n+1}}{1-(p q)^{\frac{r}{2}} p^{m} q^{n}}\right)\left(\prod_{a, b \geq 0} \frac{1-(p q)^{-\frac{2-r}{2}} p^{a+1} q^{b+1}}{1-(p q)^{\frac{2-r}{2}} p^{a} q^{b}}\right) \\
= & \left(\prod_{m, n \geq 0} \frac{1-(p q)^{-\frac{r}{2}} p^{m+1} q^{n+1}}{1-(p q)^{\frac{r}{2}} p^{m} q^{n}}\right)\left(\prod_{a, b \geq 0} \frac{1-(p q)^{\frac{r}{2}} p^{a} q^{b}}{1-(p q)^{-\frac{r}{2}} p^{a+1} q^{b+1}}\right)=1
\end{aligned}
$$

The superpotential $W=m \Phi_{1} \Phi_{2}$ has R-charge 2 and is thus valid. This introduces a mass term for both Φ_{1} and Φ_{2}, so a theory with this superpotential also has a trivial SCFT in the IR.

- $r=2$:

$$
\prod_{m, n \geq 0} \frac{1-(p q)^{-1} p^{m+1} q^{n+1}}{1-(p q)^{1} p^{m} q^{n}}=\frac{1-1}{1-(p q)} \prod_{\substack{m, n \geq 0 \\(m, n) \neq(0,0)}} \frac{1-(p q)^{-1} p^{m+1} q^{n+1}}{1-(p q)^{1} p^{m} q^{n}}=0
$$

The valid superpotential $W=\lambda \Phi$ leads to a scalar potential $V=\left|\frac{\partial W}{\partial \phi}\right|^{2}=|\lambda|^{2}$, so for $\lambda \neq 0$ supersymmetry is spontaneously broken. In this case, no BPS states exist, so the index is zero.

3.2 Exercises about Francesco Benini's course

Exercise 3.6.

Answer. (Provided by Jonathan Schulz and co..) We use the following vielbein on S_{2} :

$$
\begin{gathered}
d s^{2}=r^{2}\left(d \theta^{2}+\sin ^{2} \theta d \phi^{2}\right)=\sum_{a} e^{a} e^{a}, \quad e^{a} \equiv e_{\mu}^{a} d x^{\mu} \\
e_{\theta}^{1}=r, \quad e_{\phi}^{1}=0, \quad e_{\theta}^{2}=0, \quad e_{\phi}^{2}=r \cos \theta
\end{gathered}
$$

The spin connection fulfills

$$
d e^{a}+\omega^{a b} \wedge e^{b}=0
$$

so $\omega^{12}=-\cos \theta d \phi$.
The covariant derivative on spinors

$$
\nabla_{\mu} \varepsilon=\partial_{\mu} \varepsilon-\frac{1}{4} \omega_{\mu}^{a b} \gamma_{a} \gamma_{b} \varepsilon
$$

simplifies in two dimensions to

$$
\nabla_{\mu} \varepsilon=\partial_{\mu} \varepsilon-\frac{1}{4} \omega_{\mu}^{12}\left[\gamma_{1}, \gamma_{2}\right] \varepsilon
$$

Using the vielbein, the right hand side of the equation can be rewritten to

$$
\frac{i}{2 R} \gamma_{\mu} \varepsilon=\frac{i}{2 R} e_{\mu}^{a} \gamma_{a} \varepsilon
$$

With the gamma matrices $\gamma_{a}=\left(\sigma^{1}, \sigma^{2}\right)$ (which now are just like in flat space, as we have a vielbein) we get the equations

$$
\begin{aligned}
\partial_{\theta} \varepsilon & =\frac{i}{2} \sigma^{1} \varepsilon \\
\partial_{\phi} \varepsilon-\frac{i}{2} \cos (\theta) \sigma^{3} \varepsilon & =\frac{i}{2} \sin (\theta) \sigma^{2} \varepsilon
\end{aligned}
$$

The ansatz

$$
\varepsilon=\binom{\varepsilon^{+}}{\varepsilon^{-}}, \quad \varepsilon^{+}+\varepsilon^{-}=e^{i \theta / 2} f(\phi), \quad \varepsilon^{+}-\varepsilon^{-}=e^{-i \theta / 2} g(\phi)
$$

solves the equation in θ and yields the equations

$$
f^{\prime}=\frac{i}{2} g, \quad g^{\prime}=\frac{i}{2} f
$$

in ϕ. These are solved by

$$
\begin{aligned}
& f(\phi)=a e^{i \phi / 2}+b e^{-i \phi / 2} \\
& g(\phi)=a e^{i \phi / 2}-b e^{-i \phi / 2}
\end{aligned}
$$

These solutions are anti-periodic and thus ε is a valid globally defined spinor on S_{2} for any values of $a, b \in \mathbb{C}$. The computation in $\tilde{\varepsilon}$ is identical and yields two more complex parameters.

Exercise 3.7.

