
3 Answers for exercise session 3, July 19
3.1 Exercises about Guido Festuccia’s course
Exercise 3.1.

Exercise 3.2. What is the number of DOFs (physical components) in a closed k-form in d
dimensions?

Answer. (Provided by Yale Fan.) First note that the Bianchi identity gives

(# DOFs in closed k-form) = (# DOFs in k-form)− (# DOFs in exact (k + 1)-form).

Equivalently, we have

(# DOFs in exact (k + 1)-form) = (# DOFs in k-form)− (# DOFs in closed k-form)

simply by taking the exterior derivative of a k-form and noting that the resulting exact (k+1)-form
is independent of shifts of the k-form by closed k-forms. For the purpose of counting DOFs, we
note that closed forms are LOCALLY exact, so that we in fact have

(# DOFs in closed k-form) = (# DOFs in k-form)− (# DOFs in closed (k + 1)-form).

Recursively applying this formula and noting that top forms are automatically closed gives

(# DOFs in closed k-form) =
d∑
j=k

(−1)j−k(# DOFs in j-form) =
d∑
j=k

(−1)j−k
(
d

j

)
(this is “inclusion-exclusion”). An alternative (but really, equivalent) method of counting is as
follows. Again, a closed k-form is locally exact: F ck ∼ dFk−1. But in making this identification,
Fk−1 is only defined up to shifts by a closed form F ck−1 where F ck−1 ∼ dFk−2, and so on (these
are “gauge ambiguities”). Thus we can recursively apply the same formula, rewritten as

(# DOFs in closed k-form) = (# DOFs in (k − 1)-form)− (# DOFs in closed (k − 1)-form),

in the other direction. This gives:

(# DOFs in closed k-form) = −
k−1∑
j=0

(−1)j−k(# DOFs in j-form) = −
k−1∑
j=0

(−1)j−k
(
d

j

)
.

The two expressions for (# DOFs in closed k-form) are equal because
∑d
j=0(−1)j

(
d
j

)
= 0.

In fact these formulas simplify further thanks to
∑m
k=0(−1)k

(
n+1
k

)
= (−1)m

(
n
m

)
. The number

of physical degrees of freedom is then
(
d−1
k−1
)
(zero for k = 0).

Exercise 3.3.

Exercise 3.4.

Exercise 3.5 (Special cases of the index).

Answer. (Provided by Jonathan Schulz and co..)

• r = 1:

∏
m,n≥0

1− (pq)− 1
2 pm+1qn+1

1− (pq) 1
2 pmqn

=
∏

m,n≥0

1− (pq) 1
2 pmqn

1− (pq) 1
2 pmqn

=
∏

m,n≥0
1 = 1

For r = 1, the superpotential W = mΦ2 has R-charge 2 and thus preserves supersymmetry.
This potential introduces a mass m for Φ, so Φ freezes out in the IR, thus the IR theory is
the trivial SCFT, consistent with the index 1.
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• r and 2− r:

 ∏
m,n≥0

1− (pq)− r
2 pm+1qn+1

1− (pq) r
2 pmqn

 ∏
a,b≥0

1− (pq)− 2−r
2 pa+1qb+1

1− (pq) 2−r
2 paqb


=

 ∏
m,n≥0

1− (pq)− r
2 pm+1qn+1

1− (pq) r
2 pmqn

 ∏
a,b≥0

1− (pq) r
2 paqb

1− (pq)− r
2 pa+1qb+1

 = 1

The superpotential W = mΦ1Φ2 has R-charge 2 and is thus valid. This introduces a mass
term for both Φ1 and Φ2, so a theory with this superpotential also has a trivial SCFT in
the IR.

• r = 2:

∏
m,n≥0

1− (pq)−1pm+1qn+1

1− (pq)1pmqn
= 1− 1

1− (pq)
∏

m,n≥0
(m,n)6=(0,0)

1− (pq)−1pm+1qn+1

1− (pq)1pmqn
= 0.

The valid superpotential W = λΦ leads to a scalar potential V = |∂W∂φ |
2 = |λ|2, so for λ 6= 0

supersymmetry is spontaneously broken. In this case, no BPS states exist, so the index is
zero.

3.2 Exercises about Francesco Benini’s course
Exercise 3.6.

Answer. (Provided by Jonathan Schulz and co..) We use the following vielbein on S2:

ds2 = r2(dθ2 + sin2 θdφ2) =
∑
a

eaea, ea ≡ eaµdxµ,

e1
θ = r, e1

φ = 0, e2
θ = 0, e2

φ = r cos θ

The spin connection fulfills
dea + ωab ∧ eb = 0,

so ω12 = − cos θdφ.
The covariant derivative on spinors

∇µε = ∂µε− 1
4ω

ab
µ γaγbε

simplifies in two dimensions to

∇µε = ∂µε− 1
4ω

12
µ [γ1, γ2]ε.

Using the vielbein, the right hand side of the equation can be rewritten to

i

2Rγµε = i

2Re
a
µγaε.

With the gamma matrices γa = (σ1, σ2) (which now are just like in flat space, as we have a
vielbein) we get the equations

∂θε = i
2σ

1ε

∂φε− i
2 cos(θ)σ3ε = i

2 sin(θ)σ2ε.
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The ansatz
ε =

(
ε+

ε−

)
, ε+ + ε− = eiθ/2f(φ), ε+ − ε− = e−iθ/2g(φ)

solves the equation in θ and yields the equations

f ′ = i
2g, g′ = i

2f

in φ. These are solved by

f(φ) = aeiφ/2 + be−iφ/2,

g(φ) = aeiφ/2 − be−iφ/2.

These solutions are anti-periodic and thus ε is a valid globally defined spinor on S2 for any values
of a, b ∈ C. The computation in ε̃ is identical and yields two more complex parameters.

Exercise 3.7.
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