1 Exercise session 1, July 16

1.1 Exercises about Guido Festuccia's course

Exercise 1.-1 (Symmetric Energy Momentum Tensor).¹ A local, translation invariant field theory has a conserved energy momentum tensor $\hat{T}_{\mu\nu}$. It is not necessarily symmetric.

$$\partial^{\nu}T_{\mu\nu} = 0 , \qquad P_{\mu} = \int d^3x T_{\mu}^{\ 0}$$
 (1)

• Check that $T_{\mu\nu}$ can be improved as follows

$$T_{\mu\nu} \to T_{\mu\nu} + \partial^{\rho} I_{\mu\nu\rho} , \qquad I_{\mu\nu\rho} = -I_{\mu\rho\nu}$$
 (2)

If the theory is Lorentz invariant there exists a real conserved current $j_{\mu\nu\rho} = -j_{\nu\mu\rho}$ giving the Lorentz generators

$$\partial^{\rho} j_{\mu\nu\rho} = 0 , \qquad J_{\mu\nu} = \int d^3x j_{\mu\nu}{}^0 .$$
 (3)

They satisfy the algebra $[P_{\mu}, J_{\nu\rho}] = -i(\eta_{\mu\nu}P_{\rho} - \eta_{\mu\rho}P_{\nu}).$

• Show that $j_{\mu\nu\rho}$ is then given by

$$j_{\mu\nu\rho} = x_{\mu}T_{\nu\rho} - x_{\nu}T_{\mu\rho} + s_{\mu\nu\rho} , \qquad s_{\mu\nu\rho} = -s_{\nu\mu\rho} , \qquad (4)$$

where $s_{\mu\nu\rho}$ is a local operator that does not *explicitly* depend on x.

- Show that using a linear combination of $s_{\mu\nu\rho}$ you can define an improvement $I_{\mu\nu\rho}$ that makes $T_{\mu\nu}$ symmetric.
- Show that in terms of the symmetric energy momentum tensor $j_{\mu\nu\rho} = x_{\mu}T_{\nu\rho} x_{\nu}T_{\mu\rho}$.

Exercise 1.0 (BPS String). Consider the conserved string current $C_{\mu\nu} \sim \epsilon_{\mu\nu\rho\lambda} F^{\rho\lambda}$ where $F_{\mu\nu} = -F_{\nu\mu}$, $\partial_{[\mu}F_{\nu\rho]} = 0$.

• Suppose the corresponding charge is carried by a string-like object lying along the 3 axis show that the corresponding string charge by unit lenght is

$$\frac{Z_3}{L} = \pm TL , \qquad Z_{0,1,2} = 0 \tag{5}$$

for some T.

• In the rest frame of the string write down the susy algebra

$$\{\bar{Q}_{\dot{\alpha}}, Q_{\alpha}\} = 2\sigma^{\mu}_{\alpha\dot{\alpha}}(P_{\mu} + Z_{\mu}) , \quad \{Q_{\alpha}, Q_{\beta}\} = 0$$
(6)

and obtain that $\frac{M}{L} \geq T$ where M is the mass of the string.

• Check that if the bound is saturated the string object preserves two supercharges.

Exercise 1.1 (Strings in sQED). The Lagrangian for sQED with an FI term in Wess-Zumino gauge is

$$\mathcal{L} = \frac{1}{4e^2} F_{\mu\nu} F^{\mu\nu} + D_{\mu} \bar{\phi}_{+} D^{\mu} \phi_{+} + D_{\mu} \bar{\phi}_{-} D^{\mu} \phi_{-} - \frac{e^2}{2} (\bar{\phi}_{+} \phi_{+} - \bar{\phi}_{-} \phi_{-} - \xi)^2 + \text{fermions} .$$
(7)

Here ξ is the FI parameter which we take to be positive $\xi > 0$. The scalar fields ϕ_{\pm} have opposite charges so that $D_{\mu}\phi_{\pm} = (\partial_{\mu} \mp iA_{\mu})\phi_{\pm}$.

Consider a static string-like field configuration where the only fields that are turned on are A_1 , A_2 , ϕ_+ and let these fields depend only on x_1, x_2 .

 $^{^1\}mathrm{Numbering}$ chosen for consistency with earlier versions of the exercise sheet.

• Check that you can rewrite the energy functional for the theory as

$$E = \int dx_1 dx_2 \left[\left| \frac{1}{\sqrt{2}e^2} F_{12} + \frac{e}{\sqrt{2}} (\bar{\phi}_+ \phi_+ - \xi) \right|^2 + (D_1 \phi_+ + iD_2 \phi_+)^* (D_1 \phi_+ + iD_2 \phi_+) \right] + Q_{\text{top}}$$
(8)

check that Q_{top} is a topological contribution.

• Show that the energy functional can be saturated by the following ansatz $x_1 + ix_2 = re^{i\alpha}$

$$\phi_{+} = \sqrt{\xi} n(r) e^{i\alpha} , \qquad A_{i} = a(r) \frac{\partial \alpha}{\partial x^{i}}$$
(9)

with the boundary conditions n(0)=a(0)=0 and $n(\infty)=a(\infty)=1$.

• Compute the string charge for this configuration using the string current

$$C_{\mu\nu} = \frac{1}{4} \xi \epsilon_{\mu\nu\rho\lambda} F^{\rho\lambda} \tag{10}$$

The configurations found above preserve two supercharges (if you still have energy you can check it).

Exercise 1.2. Consider a Wess–Zumino model, namely chiral multiplets with values in some manifold endowed (on each coordinate patch) with a Kähler potential $K(\Phi, \overline{\Phi})$ and superpotential $W(\Phi)$. When changing coordinate patch, $K \to K + \Lambda(\Phi) + \overline{\Lambda}(\overline{\Phi})$ and $W \to W + \text{constant}$. Derive the equation of motion $\overline{D}^2 \partial_i K = 4 \partial_i W$ by varying $\Phi \to \Phi + \delta \Phi$ and noting that for C chiral, the vanishing of $\int d^4x \int d^2\theta C \delta \Phi$ for all chiral $\delta \Phi$ implies C = 0. Then check that

$$\mathbb{S}_{\alpha\dot{\alpha}} = 2g_{i\bar{j}}D_{\alpha}\Phi^{i}\overline{D}_{\dot{\alpha}}\overline{\Phi}^{j} \qquad \qquad \chi_{\alpha} = \overline{D}^{2}D_{\alpha}K \qquad \qquad Y_{\alpha} = 4D_{\alpha}W \qquad (11)$$

obey (on-shell) the constraints

$$\overline{D}^{\dot{\alpha}} \mathbb{S}_{\alpha \dot{\alpha}} = \chi_{\alpha} + Y_{\alpha}, \quad \overline{D}_{\dot{\alpha}} \chi_{\alpha} = 0, \quad D^{\alpha} \chi_{\alpha} = \overline{D}_{\dot{\alpha}} \overline{\chi}^{\dot{\alpha}}, \\ D_{\alpha} Y_{\beta} + D_{\beta} Y_{\alpha} = 0, \quad \overline{D}^{2} Y_{\alpha} = 0.$$
(12)

Exercise 1.3. Given superfields that obey (12) and the component decomposition

$$S_{\mu} = j_{\mu} - i\theta \left(S_{\mu} - \frac{i}{\sqrt{2}} \sigma_{\mu} \psi \right) + i\overline{\theta} \left(\overline{S}_{\mu} - \frac{i}{\sqrt{2}} \overline{\sigma}_{\mu} \psi \right) + \frac{i}{2} \theta^{2} \overline{Y}_{\mu} - \frac{i}{2} \overline{\theta}^{2} Y_{\mu} + \theta \sigma^{\nu} \overline{\theta} \left(2T_{\nu\mu} - \eta_{\nu\mu} A - \frac{1}{8} \epsilon_{\nu\mu\rho\sigma} F^{\rho\sigma} - \frac{1}{2} \epsilon_{\nu\mu\rho\sigma} \partial^{\rho} j^{\sigma} \right) + \dots$$
(13)

show that $T_{\mu\nu}$ is conserved, $S_{\mu\alpha}$ is conserved, $F_{\mu\nu}$ is a closed 2-form and Y_{μ} is a closed 1-form.

1.2 Exercises about Francesco Benini's course

Exercise 1.4. Compute $\int_{S^2} e^{ic\cos\theta} d\text{Vol}(S^2)$.

Exercise 1.5. Show that $\{d, i_V\} = \mathcal{L}_V$ hence $d_V = d - i_V$ squares to $-\mathcal{L}_V$.

Exercise 1.6. Let $\eta = g(V, \cdot)$ and

$$\Theta_V = \eta \wedge \left(\frac{-1}{|V|^2} \left(1 + \frac{\mathrm{d}\eta}{|V|^2} + \dots + \frac{(\mathrm{d}\eta)^{\dim M/2}}{|V|^{\dim M}} \right) \right).$$
(14)

Check that $d_V \Theta_V = 1$ and deduce that on $M \setminus M_V$, $d_V \alpha = 0$ implies $\alpha = d_V \beta$.

Exercise 1.7 (Very hard?). Let A be a Hermitian matrix with eigenvalues $\lambda_1(A), \ldots, \lambda_n(A)$ and likewise B. Compute the Harish-Chandra–Itzykson–Zuber integral

$$\int_{U(N)} \exp(t \operatorname{Tr}(AUBU^{\dagger})) dU$$

= $\left(\prod_{i=1}^{n-1} i!\right) \frac{\det(\exp(t\lambda_i(A)\lambda_j(B))_{1 \le i,j \le n})}{t^{(n^2-n)/2} \prod_{1 \le i < j \le n} (\lambda_j(A) - \lambda_i(A)) \prod_{1 \le i < j \le n} (\lambda_j(B) - \lambda_i(B))}$

See https://terrytao.wordpress.com/2013/02/08/

1.3 Exercises about Wolfger Peelaers' course

Exercise 1.8. Show that k hypermultiplets in the fundamental representation of SU(N) for N > 2 have U(k) flavour symmetry. What happens for N = 2?

Exercise 1.9. Show that $\nabla_m \xi = -i\sigma_m \tilde{\xi}'$ is Weyl covariant with $\xi \to \Omega^{1/2} \xi$ (recall that $\nabla_m \xi = \partial_m \xi + \frac{1}{4} \omega_m{}^{ab} \sigma_{ab} \xi$)

Exercise 1.10 (Somewhat technical, only do some). Verify that transformation rules are Weyl covariant.

Exercise 1.11 (Easy). The scale parameter and $U(1)_r$ parameter are given by

$$w \sim \xi^I \xi'_I + \tilde{\xi}_I \tilde{\xi}'^I \tag{15}$$

$$r \sim \xi^I \xi'_I - \tilde{\xi}_I \tilde{\xi}'^I \tag{16}$$

find/verify the condition for w = r = 0.

1.4 On spinors

Here, Γ_a , $1 \leq a \leq d$ are Gamma matrices in *d*-dimensions. They obey $\{\Gamma_a, \Gamma_b\} = 2g_{ab}$ where g_{ab} is the metric, and they generate a 2^d -dimensional Clifford algebra. As a vector space this algebra is spanned by the antisymmetrized $\Gamma_{a_1...a_k} = \Gamma_{[a_1...a_k]}$ for all $0 \leq k \leq d$ and all indices a_i .

Exercise 1.12. Find all Killing spinors and conformal Killing spinors in flat space. Same question on S^n .

Exercise 1.13. Let ψ , χ be two Killing spinors or two conformal Killing spinors. Derive a differential equation obeyed by spinor bilinears $\chi \Gamma_{a_1...a_k} \psi$. Are they Killing vectors, conformal Killing vectors?

Exercise 1.14. Let $h_{ab} = \text{diag}(1, \ldots, 1, -1, \ldots, -1)$ have s + 1 and t - 1 (so d = s + t). Show that the Clifford algebra is isomorphic to a matrix algebra $M_{2\#}(\bullet)$ (for some number #) with

$s-t \mod$	8	0	1	2	3	4	5	6	7
•	is	\mathbb{R}	$\mathbb{R}\oplus\mathbb{R}$	\mathbb{R}	\mathbb{C}	\mathbb{H}	$\mathbb{H}\oplus\mathbb{H}$	\mathbb{H}	\mathbb{C}

In odd dimensions, show that the complexification of the Clifford algebra is a direct sum of two algebras in which $\Gamma_1 \dots \Gamma_d = \pm 1$ or $\pm i$. What is its minimal faithful real representation? What is its minimal faithful complex representation? This is the spinor representation.

Exercise 1.15. The generator of rotations $M_{ab} \in \mathfrak{so}(s,t)$ acts as $\frac{1}{4}\Gamma_a\Gamma_b$ on representations of the Clifford algebra. How does the spinor representation of the Clifford algebra decompose into complex/real representations of $\mathfrak{so}(s,t)$?

This table lists for each d the complex dimension of the minimal complex spinor (<u>Dirac or Weyl</u>), then for each (d, t) the real dimension of the minimal real spinor (<u>Majorana, Majorana–Weyl</u>, symplectic, symplectic Majorana–<u>Weyl</u>). Did whomever typed it make a mistake?

d t	$\equiv 0$	1	2	$3 \bmod 4$
1 (D 2) M	1	M 1		
$2 (W 2) M^{-}$	2	MW 1	M^{+} 2	
3 (D 4) s	4	M 2	M 2	s 4
4 (W 4) sW	4	M^+ 4	MW 2	M^- 4
5 (D 8) s	8	s 8	M 4	M 4
$6 (W 8) M^+$	8	sW = 8	M^- 8	MW = 4
7 (D 16) M	8	s 16	s 16	M 8
8 (W16) MW	78	M^{-} 16	sW 16	M^{+} 16
9 (D 32) M	16	M 16	s 32	s 32
$10 (W32) M^{-}$	32	MW 16	M^{+} 32	sW 32
11 (D 64) s	64	M 32	M 32	s 64
$12 (W64) \mathrm{sW}$	64	M^{+} 64	MW 32	M^{-} 64

Exercise 1.16. The conformal algebra in d = s + t dimensional flat space is $\mathfrak{so}(s + 1, t + 1)$. The superconformal algebra contains the conformal algebra, an R-symmetry algebra, and some fermionic generators that transform in a spinor representation of the conformal algebra. Using the following table of (complex) simple Lie superalgebras, show that the (complexified) superconformal algebras exist for $d \leq 6$ but not $d \geq 7$. In this table, $m, n \geq 1$ and we do not list purely bosonic Lie algebras. The factor \mathbb{C} of $\mathfrak{sl}(m|n)$ must be removed if m = n.

	Bosonic algebra	Fermionic generators in representation
$\mathfrak{sl}(m n,\mathbb{C})$	$\mathfrak{sl}(m,\mathbb{C})\oplus\mathfrak{sl}(n,\mathbb{C})\oplus\mathbb{C}$	$(m,\overline{n})\oplus(\overline{m},n)$
$\mathfrak{osp}(m 2n,\mathbb{C})$	$\mathfrak{so}(m,\mathbb{C})\oplus\mathfrak{sp}(2n,\mathbb{C})$	(m,2n)
$\mathfrak{D}(2,1,lpha,\mathbb{C})$	$\mathfrak{sl}(2,\mathbb{C})^3$	(2, 2, 2)
$\mathfrak{F}(4,\mathbb{C})$	$\mathfrak{so}(7,\mathbb{C})\oplus\mathfrak{sl}(2,\mathbb{C})$	(8,2)
$\mathfrak{G}(3,\mathbb{C})$	$\mathfrak{G}_2\oplus\mathfrak{sl}(2,\mathbb{C})$	(7,2)
$\mathfrak{P}(m,\mathbb{C})$	$\mathfrak{sl}(m+1,\mathbb{C})$	$\mathrm{sym} \oplus \overline{\mathrm{antisym}}$
$\mathfrak{Q}(m,\mathbb{C})$	$\mathfrak{sl}(m+1,\mathbb{C})$	adjoint

As a refinement, find the superconformal algebra in signature (s,t) in the table of real forms. Here, $m, n \ge 1, 0 \le p \le m/2, 0 \le q \le n/2$. The forms \mathfrak{su}^* , \mathfrak{osp}^* , \mathfrak{Q}^* only exist for even rank; \mathfrak{sl}' only if m = n.

Real form	Bosonic algebra
	$\begin{split} &\mathfrak{su}(m-p,p)\oplus\mathfrak{su}(n-q,q)\oplus\mathfrak{u}(1)^{\ddagger} \\ &\mathfrak{sl}(m,\mathbb{R})\oplus\mathfrak{sl}(n,\mathbb{R})\oplus\mathfrak{so}(1,1)^{\ddagger} \\ &\mathfrak{sl}(n,\mathbb{C}) \\ &\mathfrak{su}^{*}(m)\oplus\mathfrak{su}^{*}(n)\oplus\mathfrak{so}(1,1)^{\ddagger} \end{split}$
$\mathfrak{osp}(m-p,p 2n)$ $\mathfrak{osp}^*(m 2n-2q,2q)$ (n	$\mathfrak{so}(m-p,p)\oplus\mathfrak{sp}(2n,\mathbb{R})$ $\mathfrak{so}^*(m)\oplus\mathfrak{usp}(2n-2q,2q)$
$\mathfrak{D}^p(2,1,lpha)$ §	$\mathfrak{so}(4-p,p)\oplus\mathfrak{sl}(2,\mathbb{R})\ (p=0,1,2)$
$\mathfrak{F}^p(4)$ for $p = 0, 3$ $\mathfrak{F}^p(4)$ for $p = 1, 2$	$\mathfrak{so}(7-p,p)\oplus\mathfrak{sl}(2,\mathbb{R})\ \mathfrak{so}(7-p,p)\oplus\mathfrak{su}(2)$
$\mathfrak{G}_{s}(3)$ for $s = -14, 2$	$\mathfrak{G}_{2(s)}\oplus\mathfrak{sl}(2,\mathbb{R})$
$\mathfrak{P}(m)$	$\mathfrak{sl}(m+1,\mathbb{R})$
$\begin{array}{c} \mathfrak{UQ}(m-p,p)\\ \mathfrak{Q}(m)\\ \mathfrak{Q}^{*}(m) (m \text{ odd}) \end{array}$	$ \begin{aligned} &\mathfrak{su}(m+1-p,p) \\ &\mathfrak{sl}(m+1,\mathbb{R}) \\ &\mathfrak{su}^*(m+1) \end{aligned} $

1.5 Special functions

Exercise 1.17. The Stirling formula states that $\log \Gamma(x) = x \log x - x - \frac{1}{2} \log x + O(1)$. Which of these coefficients can be fixed using $\Gamma(x+1) = x\Gamma(x)$?

Exercise 1.18. The Barnes double gamma function $\Gamma_b(x)$ is such that $\Gamma_b(x+b)/\Gamma_b(x) = \sqrt{2\pi}b^{xb-1/2}/\Gamma(xb)$ and $\Gamma_b = \Gamma_{1/b}$. If b is real, the function Γ_b is analytic away from $\{x \leq 0\} \subset \mathbb{R}$. Find its poles and their order. Find the large-x expansion of $\log \Gamma_b$.

This is related to the Upsilon function by $\Upsilon(x) = 1/(\Gamma_b(x)\Gamma_b(b+b^{-1}-x))$. Check that the zeros of Υ are consistent with the product formula Wolfger gave during the lecture.