
1 Exercise session 1, July 16
1.1 Exercises about Guido Festuccia’s course
Exercise 1.-1 (Symmetric Energy Momentum Tensor). 1 A local, translation invariant field
theory has a conserved energy momentum tensor T̂µν . It is not necessarily symmetric.

∂νTµν = 0 , Pµ =
∫
d3xTµ

0 (1)

• Check that Tµν can be improved as follows

Tµν → Tµν + ∂ρIµνρ , Iµνρ = −Iµρν (2)

If the theory is Lorentz invariant there exists a real conserved current jµνρ = −jνµρ giving the
Lorentz generators

∂ρjµνρ = 0 , Jµν =
∫
d3xjµν

0 . (3)

They satisfy the algebra [Pµ, Jνρ] = −i(ηµνPρ − ηµρPν).

• Show that jµνρ is then given by

jµνρ = xµTνρ − xνTµρ + sµνρ , sµνρ = −sνµρ , (4)

where sµνρ is a local operator that does not explicitly depend on x.

• Show that using a linear combination of sµνρ you can define an improvement Iµνρ that
makes Tµν symmetric.

• Show that in terms of the symmetric energy momentum tensor jµνρ = xµTνρ − xνTµρ.

Exercise 1.0 (BPS String). Consider the conserved string current Cµν ∼ εµνρλF
ρλ where

Fµν = −Fνµ , ∂[µFνρ] = 0.

• Suppose the corresponding charge is carried by a string-like object lying along the 3 axis
show that the corresponding string charge by unit lenght is

Z3

L
= ±TL , Z0,1,2 = 0 (5)

for some T .

• In the rest frame of the string write down the susy algebra

{Q̄α̇, Qα} = 2σµαα̇(Pµ + Zµ) , {Qα, Qβ} = 0 (6)

and obtain that M
L ≥ T where M is the mass of the string.

• Check that if the bound is saturated the string object preserves two supercharges.

Exercise 1.1 (Strings in sQED). The Lagrangian for sQED with an FI term in Wess-Zumino
gauge is

L = 1
4e2FµνF

µν +Dµφ̄+D
µφ+ +Dµφ̄−D

µφ− −
e2

2 (φ̄+φ+ − φ̄−φ− − ξ)2 + fermions . (7)

Here ξ is the FI parameter which we take to be positive ξ > 0. The scalar fields φ± have opposite
charges so that Dµφ± = (∂µ ∓ iAµ)φ± .

Consider a static string-like field configuration where the only fields that are turned on are
A1 , A2 , φ+ and let these fields depend only on x1, x2.

1Numbering chosen for consistency with earlier versions of the exercise sheet.
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• Check that you can rewrite the energy functional for the theory as

E =
∫
dx1dx2

[∣∣∣ 1√
2e2

F12 + e√
2

(φ̄+φ+ − ξ)
∣∣∣2 + (D1φ+ + iD2φ+)∗(D1φ+ + iD2φ+)

]
+Qtop

(8)
check that Qtop is a topological contribution.

• Show that the energy functional can be saturated by the following ansatz x1 + ix2 = reiα

φ+ =
√
ξn(r)eiα , Ai = a(r) ∂α

∂xi
(9)

with the boundary conditions n(0) = a(0) = 0 and n(∞) = a(∞) = 1 .

• Compute the string charge for this configuration using the string current

Cµν = 1
4ξεµνρλF

ρλ (10)

The configurations found above preserve two supercharges (if you still have energy you can check
it).
Exercise 1.2. Consider a Wess–Zumino model, namely chiral multiplets with values in some
manifold endowed (on each coordinate patch) with a Kähler potential K(Φ,Φ) and superpotential
W (Φ). When changing coordinate patch, K → K+ Λ(Φ) + Λ(Φ) and W →W + constant. Derive
the equation of motion D2

∂iK = 4∂iW by varying Φ→ Φ + δΦ and noting that for C chiral, the
vanishing of

∫
d4x

∫
d2θCδΦ for all chiral δΦ implies C = 0. Then check that

Sαα̇ = 2gij̄DαΦiDα̇Φj̄ χα = D
2
DαK Yα = 4DαW (11)

obey (on-shell) the constraints

D
α̇Sαα̇ = χα + Yα, Dα̇χα = 0, Dαχα = Dα̇χ

α̇,

DαYβ +DβYα = 0, D
2
Yα = 0.

(12)

Exercise 1.3. Given superfields that obey (12) and the component decomposition

Sµ = jµ − iθ
(
Sµ −

i√
2
σµψ

)
+ iθ

(
Sµ −

i√
2
σµψ

)
+ i

2θ
2Y µ −

i

2θ
2
Yµ

+ θσνθ

(
2Tνµ − ηνµA−

1
8ενµρσF

ρσ − 1
2ενµρσ∂

ρjσ
)

+ . . .

(13)

show that Tµν is conserved, Sµα is conserved, Fµν is a closed 2-form and Yµ is a closed 1-form.

1.2 Exercises about Francesco Benini’s course
Exercise 1.4. Compute

∫
S2 e

ic cos θdVol(S2).
Exercise 1.5. Show that {d, iV } = LV hence dV = d− iV squares to −LV .
Exercise 1.6. Let η = g(V, ) and

ΘV = η ∧

(
−1
|V |2

(
1 + dη
|V |2

+ · · ·+ (dη)dimM/2

|V |dimM

))
. (14)

Check that dV ΘV = 1 and deduce that on M \ MV , dV α = 0 implies α = dV β.
Exercise 1.7 (Very hard?). Let A be a Hermitian matrix with eigenvalues λ1(A), . . . , λn(A) and
likewise B. Compute the Harish-Chandra–Itzykson–Zuber integral∫

U(N)
exp(tTr(AUBU†))dU

=
(n−1∏
i=1

i!
) det

(
exp(tλi(A)λj(B))1≤i,j≤n

)
t(n2−n)/2 ∏

1≤i<j≤n
(λj(A)− λi(A))

∏
1≤i<j≤n

(λj(B)− λi(B))

See https://terrytao.wordpress.com/2013/02/08/
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1.3 Exercises about Wolfger Peelaers’ course
Exercise 1.8. Show that k hypermultiplets in the fundamental representation of SU(N) for
N > 2 have U(k) flavour symmetry. What happens for N = 2?

Exercise 1.9. Show that ∇mξ = −iσmξ̃′ is Weyl covariant with ξ → Ω1/2ξ (recall that ∇mξ =
∂mξ + 1

4ωm
abσabξ)

Exercise 1.10 (Somewhat technical, only do some). Verify that transformation rules are Weyl
covariant.

Exercise 1.11 (Easy). The scale parameter and U(1)r parameter are given by

w ∼ ξIξ′I + ξ̃I ξ̃
′I (15)

r ∼ ξIξ′I − ξ̃I ξ̃′I (16)

find/verify the condition for w = r = 0.

1.4 On spinors
Here, Γa, 1 ≤ a ≤ d are Gamma matrices in d-dimensions. They obey {Γa,Γb} = 2gab where gab
is the metric, and they generate a 2d-dimensional Clifford algebra. As a vector space this algebra
is spanned by the antisymmetrized Γa1...ak

= Γ[a1...ak] for all 0 ≤ k ≤ d and all indices ai.

Exercise 1.12. Find all Killing spinors and conformal Killing spinors in flat space. Same question
on Sn.

Exercise 1.13. Let ψ, χ be two Killing spinors or two conformal Killing spinors. Derive a
differential equation obeyed by spinor bilinears χΓa1...ak

ψ. Are they Killing vectors, conformal
Killing vectors?

Exercise 1.14. Let hab = diag(1, . . . , 1,−1, . . . ,−1) have s ‘+1’ and t ‘−1’ (so d = s+ t). Show
that the Clifford algebra is isomorphic to a matrix algebra M2#(•) (for some number #) with

s− t mod 8 0 1 2 3 4 5 6 7
• is R R⊕ R R C H H⊕H H C

In odd dimensions, show that the complexification of the Clifford algebra is a direct sum of two
algebras in which Γ1 . . .Γd = ±1 or ±i. What is its minimal faithful real representation? What
is its minimal faithful complex representation? This is the spinor representation.

Exercise 1.15. The generator of rotations Mab ∈ so(s, t) acts as 1
4ΓaΓb on representations of

the Clifford algebra. How does the spinor representation of the Clifford algebra decompose into
complex/real representations of so(s, t)?

This table lists for each d the complex dimension of the minimal complex spinor (Dirac or Weyl),
then for each (d, t) the real dimension of the minimal real spinor (Majorana, Majorana–Weyl,
symplectic, symplectic Majorana–Weyl). Did whomever typed it make a mistake?

d t ≡ 0 1 2 3 mod 4
1 (D 2) M 1 M 1
2 (W 2) M− 2 MW 1 M+ 2
3 (D 4) s 4 M 2 M 2 s 4
4 (W 4) sW 4 M+ 4 MW 2 M− 4
5 (D 8) s 8 s 8 M 4 M 4
6 (W 8) M+ 8 sW 8 M− 8 MW 4
7 (D 16) M 8 s 16 s 16 M 8
8 (W16) MW 8 M− 16 sW 16 M+ 16
9 (D 32) M 16 M 16 s 32 s 32
10 (W32) M− 32 MW 16 M+ 32 sW 32
11 (D 64) s 64 M 32 M 32 s 64
12 (W64) sW 64 M+ 64 MW 32 M− 64
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Exercise 1.16. The conformal algebra in d = s + t dimensional flat space is so(s + 1, t + 1).
The superconformal algebra contains the conformal algebra, an R-symmetry algebra, and some
fermionic generators that transform in a spinor representation of the conformal algebra. Using the
following table of (complex) simple Lie superalgebras, show that the (complexified) superconformal
algebras exist for d ≤ 6 but not d ≥ 7. In this table, m,n ≥ 1 and we do not list purely bosonic
Lie algebras. The factor C of sl(m|n) must be removed if m = n.

Bosonic algebra Fermionic generators in representation
sl(m|n,C) sl(m,C)⊕ sl(n,C)⊕ C (m,n)⊕ (m,n)
osp(m|2n,C) so(m,C)⊕ sp(2n,C) (m, 2n)
D(2, 1, α,C) sl(2,C)3 (2, 2, 2)
F(4,C) so(7,C)⊕ sl(2,C) (8, 2)
G(3,C) G2 ⊕ sl(2,C) (7, 2)
P(m,C) sl(m+ 1,C) sym⊕ antisym
Q(m,C) sl(m+ 1,C) adjoint

As a refinement, find the superconformal algebra in signature (s, t) in the table of real forms.
Here, m,n ≥ 1, 0 ≤ p ≤ m/2, 0 ≤ q ≤ n/2. The forms su∗, osp∗, Q∗ only exist for even rank; sl′
only if m = n.

Real form Bosonic algebra
su(m− p, p|n− q, q) su(m− p, p)⊕ su(n− q, q)⊕ u(1)‡
sl(m|n) sl(m,R)⊕ sl(n,R)⊕ so(1, 1)‡
sl′(n|n) (m = n) sl(n,C)
su∗(m|n) (m,n even) su∗(m)⊕ su∗(n)⊕ so(1, 1)‡

osp(m− p, p|2n) so(m− p, p)⊕ sp(2n,R)
osp∗(m|2n− 2q, 2q) (m even) so∗(m)⊕ usp(2n− 2q, 2q)
Dp(2, 1, α) § so(4− p, p)⊕ sl(2,R) (p = 0, 1, 2)
Fp(4) for p = 0, 3 so(7− p, p)⊕ sl(2,R)
Fp(4) for p = 1, 2 so(7− p, p)⊕ su(2)
Gs(3) for s = −14, 2 G2(s) ⊕ sl(2,R)
P(m) sl(m+ 1,R)
UQ(m− p, p) su(m+ 1− p, p)
Q(m) sl(m+ 1,R)
Q∗(m) (m odd) su∗(m+ 1)

1.5 Special functions
Exercise 1.17. The Stirling formula states that log Γ(x) = x log x− x− 1

2 log x+O(1). Which
of these coefficients can be fixed using Γ(x+ 1) = xΓ(x)?

Exercise 1.18. The Barnes double gamma function Γb(x) is such that Γb(x + b)/Γb(x) =√
2πbxb−1/2/Γ(xb) and Γb = Γ1/b. If b is real, the function Γb is analytic away from {x ≤ 0} ⊂ R.

Find its poles and their order. Find the large-x expansion of log Γb.
This is related to the Upsilon function by Υ(x) = 1/

(
Γb(x)Γb(b+ b−1 − x)

)
. Check that the

zeros of Υ are consistent with the product formula Wolfger gave during the lecture.
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