1 Exercise session 1, July 16

1.1 Exercises about Guido Festuccia’s course

Exercise 1.-1 (Symmetric Energy Momentum Tensor).ﬂ A local, translation invariant field
theory has a conserved energy momentum tensor 7),,. It is not necessarily symmetric.

T, =0, P,= /d?’xT,ﬂ (1)

e Check that T}, can be improved as follows

Ty = Ty + 01y Livp = —Iupw (2)
If the theory is Lorentz invariant there exists a real conserved current j,,, = —j,u, giving the
Lorentz generators

OGwp =0, o = /d%j,wo . (3)

They satisfy the algebra [P, J,,] = —i(n, Py — nupPy).

e Show that j,,, is then given by

Juwp = TpTvp — 2 Tpp + Spvp Spvp = “Svpp (4)
where s, is a local operator that does not explicitly depend on x.

e Show that using a linear combination of s,,, you can define an improvement I,,,, that
makes T}, symmetric.

e Show that in terms of the symmetric energy momentum tensor j,., = .1y, — £, p-

Exercise 1.0 (BPS String). Consider the conserved string current C, ~ El“,p)\Fp)‘ where
Fuo=—=F,, 0F,,)=0.

e Suppose the corresponding charge is carried by a string-like object lying along the 3 axis
show that the corresponding string charge by unit lenght is

7
f —+TL,  Zy12=0 (5)

for some T.

e In the rest frame of the string write down the susy algebra

{Qa: Qa} =200, (Pu+Z,) . {Qa;Qs} =0 (6)
and obtain that % > T where M is the mass of the string.

e Check that if the bound is saturated the string object preserves two supercharges.
Exercise 1.1 (Strings in sSQED). The Lagrangian for sSQED with an FI term in Wess-Zumino
gauge is
2
2

1 _ _ _ _
L= @FWFW + Duo D éy + Dy D¢ — —(¢104 — p_¢— —§)* + fermions . (7)

Here ¢ is the FI parameter which we take to be positive £ > 0. The scalar fields ¢+ have opposite
charges so that D ¢+ = (0, F 1A,)d+ .

Consider a static string-like field configuration where the only fields that are turned on are
A1, Ay , ¢4+ and let these fields depend only on x4, zs.

INumbering chosen for consistency with earlier versions of the exercise sheet.



e Check that you can rewrite the energy functional for the theory as

E= /dwldwz U V2e 5otz t \f(¢+¢+ §)‘2 + (D1¢4 +iD2¢4 )" (D194 + iD2¢+)] +Qtop
(8)

check that Qyop is a topological contribution.

e Show that the energy functional can be saturated by the following ansatz x; + iz = re®

br = VBRI, A= alr) oo ©

with the boundary conditions n(0) = a(0) = 0 and n(c0) = a(o0) =1 .

e Compute the string charge for this configuration using the string current
1
Coy = Zggu,,,ﬂFPA (10)
The configurations found above preserve two supercharges (if you still have energy you can check
it).
Exercise 1.2. Consider a Wess—Zumino model, namely chiral multiplets with values in some

manifold endowed (on each coordinate patch) with a Kahler potential /K (®, ®) and superpotential
W(®). When changing coordinate patch, K — K + A(®)+ A(P) and W — W + constant. Derive

the equation of motion ﬁz@-K = 40;W by varying & — & + §® and noting that for C' chiral, the
vanishing of [d*z [ d?0C§® for all chiral 6@ implies C = 0. Then check that

Saa = 20;;Da®' D’ Xo = D' Do K Y, = 4D, W (11)
obey (on-shell) the constraints

ﬁagad = Xa + Yo, ﬁdon =0, DaXa = ﬁaYd,

— (12)
D.Yg+DgY, =0, DY,=0.
Exercise 1.3. Given superfields that obey (12]) and the component decomposition
. . i _ ) =)
Sy‘ = ]M — ’69 (S \/70”@&) —+ z@( \/§JH”¢J> —+ 592}/# 59 (13)

_ 1 1 .
+ GJVH(QTW — MopA — S€ppe 7 — 2ewpgaf{7”> + ...

8

show that T),, is conserved, S, is conserved, F},, is a closed 2-form and Y, is a closed 1-form.

1.2 Exercises about Francesco Benini’s course

Exercise 1.4. Compute [, e’*“5¢dVol(5?).

Exercise 1.5. Show that {d,iy} = Ly hence dy = d — iy squares to —Ly .
Exercise 1.6. Let n = ¢g(V, ) and

1 d77 (dn)dimM/2

Check that dy©y =1 and deduce that on M \ My, dya = 0 implies o = dy .

Exercise 1.7 (Very hard?). Let A be a Hermitian matrix with eigenvalues A1 (A), ..., A, (A) and
likewise B. Compute the Harish-Chandra—Itzykson—Zuber integral

/ exp(t Te(AUBUT))dU
U(N)

B (’ﬁ .,) det (exp(tAi(A)A; (B))1<i j<n)
U= @ - Ay I S (B) = a(B)

1<i<j<n 1<i<j<n

See https://terrytao.wordpress.com/2013/02/08/

i=1


https://terrytao.wordpress.com/2013/02/08/

1.3 Exercises about Wolfger Peelaers’ course

Exercise 1.8. Show that & hypermultiplets in the fundamental representation of SU(N) for
N > 2 have U(k) flavour symmetry. What happens for N = 27

Exercise 1.9. Show that V,,& = fz'amg’ is Weyl covariant with & — Q'/2¢ (recall that V,,§ =
8m£ + %wmabo—abg)

Exercise 1.10 (Somewhat technical, only do some). Verify that transformation rules are Weyl
covariant.

Exercise 1.11 (Easy). The scale parameter and U(1), parameter are given by
w6+ &8 (15)
r~gle - 6! (16)

find /verify the condition for w = r = 0.

1.4 On spinors

Here, I'y, 1 < a < d are Gamma matrices in d-dimensions. They obey {T'y, Ty} = 2gqp where gap
is the metric, and they generate a 2%-dimensional Clifford algebra. As a vector space this algebra
is spanned by the antisymmetrized 'y, a, = I'[4,...q;) for all 0 < k < d and all indices a;.

Exercise 1.12. Find all Killing spinors and conformal Killing spinors in flat space. Same question
on S™.

Exercise 1.13. Let v, x be two Killing spinors or two conformal Killing spinors. Derive a
differential equation obeyed by spinor bilinears xI'y,...q, 9. Are they Killing vectors, conformal
Killing vectors?

Exercise 1.14. Let hy, = diag(1,...,1,—1,...,—1) have s ‘41" and ¢ ‘=1’ (so d = s+ t). Show
that the Clifford algebra is isomorphic to a matrix algebra My« (e) (for some number #) with

s—tmod8 O 1 2 3 4 5 6 7
e is R RepR R C H HeH H C

In odd dimensions, show that the complexification of the Clifford algebra is a direct sum of two
algebras in which I'y ... Ty = £1 or +4. What is its minimal faithful real representation? What
is its minimal faithful complex representation? This is the spinor representation.

Exercise 1.15. The generator of rotations My, € so(s,t) acts as %FQFZ, on representations of
the Clifford algebra. How does the spinor representation of the Clifford algebra decompose into
complex/real representations of so(s,t)?

This table lists for each d the complex dimension of the minimal complex spinor (Dirac or Weyl),
then for each (d,t) the real dimension of the minimal real spinor (Majorana, Majorana—Weyl,
symplectic, symplectic Majorana—Weyl). Did whomever typed it make a mistake?

wi6) MW 8 M~ 16 sW 16 M* 16
D32) M 16 M 16 S 32 S 32
W32) M~ 32 MW 16 M* 32 sW 32
D 64) s 64 M 32 M 32 S 64
we6d) sW 64 Mt 64 MW32 M~ 64

d t=0 1 2 3 mod 4
1 (D 2)M 1 M 1

2 (W2)M~ 2 MW 1 M+t 2

3 (D 4)s 4 M 2 M 2 S 4
4 WaHsW 4 Mt 4 MW 2 M- 4
5 (D 8)s 8 S 8 M 4 M 4
6 (W) MT 8 sW 8 M- 8 MW 4
7 (D16) M 8 S 16 S 16 M 8
8 (

9 (

10 (

11 (

12 (



Exercise 1.16. The conformal algebra in d = s + ¢t dimensional flat space is so(s + 1,¢ + 1).
The superconformal algebra contains the conformal algebra, an R-symmetry algebra, and some
fermionic generators that transform in a spinor representation of the conformal algebra. Using the
following table of (complex) simple Lie superalgebras, show that the (complexified) superconformal
algebras exist for d < 6 but not d > 7. In this table, m,n > 1 and we do not list purely bosonic
Lie algebras. The factor C of sl{(m|n) must be removed if m = n.

Bosonic algebra Fermionic generators in representation

sl(m|n, C) sl(m,C) @ sl(n,C)dC (m ) (m,n)
osp(m|2n,C)  so(m,C) & sp(2n,C) (m, 2n)
D(2,1,a,C) sl(2,C)3 (2, 2 ,2)
5(4,0) s0(7,C) & sl(2,C) (8, )

(3,C) &y B sl(2,C) (7,2)
PB(m,C) sl(m+1,C) sym @ antisym

(m,C) sl(m+1,C) adjoint

As a refinement, find the superconformal algebra in signature (s,t) in the table of real forms.
Here, m,n > 1,0 <p <m/2,0 < g <n/2. The forms su*, osp*, Q* only exist for even rank; sl’
only if m = n.

Real form Bosonic algebra

su(m —p,pln—q,q)  su(m—p,p) ®su(n—q,q) ®u(1)*
sl(m|n) sl(m,R) @ sl(n,R) @ so(1,1)}
sl'(njn)  (m=n) sl(n,C)

su*(m|n) (m,n even) su*(m) @ su*(n) @ so(1,1)*

Usp(m_pap|2n) 50(m_pap)@5p(2n?R)
osp*(m|2n — 2q,2q) (m even) so0*(m) @ usp(2n — 2q, 2q)
07(2,1,a) 8 so(4—p,p) &@sl(2,R) (p=0,1,2)
P(4) for p=10,3 s0(7 —p,p) ®sl(2,R)
FP(4) for p=1,2 s0(7—p,p) 695u(2)
(3) for s = —14,2 &y, D sl(2,R)
B(m) sl(m + 1,R)
UQ(m —p,p) su(m+1—p,p)
Q(m) sl(m+ 1, R)
Q*(m) (m odd) su*(m+ 1)

1.5 Special functions

Exercise 1.17. The Stirling formula states that logI'(z) = zlogz — z — % logz + O(1). Which
of these coefficients can be fixed using I'(x 4+ 1) = a'(x)?

Exercise 1.18. The Barnes double gamma function I'y(z) is such that T'y(z + b)/Ty(x) =
V2rb™=1/2 T (2b) and T, = Ty jp. If b is real, the function T, is analytic away from {z < 0} C R.
Find its poles and their order. Find the large-x expansion of log I'y.

This is related to the Upsilon function by Y(z) = 1/(T(2)T(b+b~* — x)). Check that the
zeros of T are consistent with the product formula Wolfger gave during the lecture.
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