1 Exercise session 1, July 16

1.1 Exercises about Guido Festuccia's course

Exercise 1.-1 (Symmetric Energy Momentum Tensor). ${ }^{1}$ A local, translation invariant field theory has a conserved energy momentum tensor $\hat{T}_{\mu \nu}$. It is not necessarily symmetric.

$$
\begin{equation*}
\partial^{\nu} T_{\mu \nu}=0, \quad P_{\mu}=\int d^{3} x T_{\mu}^{0} \tag{1}
\end{equation*}
$$

- Check that $T_{\mu \nu}$ can be improved as follows

$$
\begin{equation*}
T_{\mu \nu} \rightarrow T_{\mu \nu}+\partial^{\rho} I_{\mu \nu \rho}, \quad I_{\mu \nu \rho}=-I_{\mu \rho \nu} \tag{2}
\end{equation*}
$$

If the theory is Lorentz invariant there exists a real conserved current $j_{\mu \nu \rho}=-j_{\nu \mu \rho}$ giving the Lorentz generators

$$
\begin{equation*}
\partial^{\rho} j_{\mu \nu \rho}=0, \quad J_{\mu \nu}=\int d^{3} x j_{\mu \nu}^{0} \tag{3}
\end{equation*}
$$

They satisfy the algebra $\left[P_{\mu}, J_{\nu \rho}\right]=-i\left(\eta_{\mu \nu} P_{\rho}-\eta_{\mu \rho} P_{\nu}\right)$.

- Show that $j_{\mu \nu \rho}$ is then given by

$$
\begin{equation*}
j_{\mu \nu \rho}=x_{\mu} T_{\nu \rho}-x_{\nu} T_{\mu \rho}+s_{\mu \nu \rho}, \quad s_{\mu \nu \rho}=-s_{\nu \mu \rho} \tag{4}
\end{equation*}
$$

where $s_{\mu \nu \rho}$ is a local operator that does not explicitly depend on x .

- Show that using a linear combination of $s_{\mu \nu \rho}$ you can define an improvement $I_{\mu \nu \rho}$ that makes $T_{\mu \nu}$ symmetric.
- Show that in terms of the symmetric energy momentum tensor $j_{\mu \nu \rho}=x_{\mu} T_{\nu \rho}-x_{\nu} T_{\mu \rho}$.

Exercise 1.0 (BPS String). Consider the conserved string current $C_{\mu \nu} \sim \epsilon_{\mu \nu \rho \lambda} F^{\rho \lambda}$ where $F_{\mu \nu}=-F_{\nu \mu}, \quad \partial_{[\mu} F_{\nu \rho]}=0$.

- Suppose the corresponding charge is carried by a string-like object lying along the 3 axis show that the corresponding string charge by unit lenght is

$$
\begin{equation*}
\frac{Z_{3}}{L}= \pm T L, \quad Z_{0,1,2}=0 \tag{5}
\end{equation*}
$$

for some T.

- In the rest frame of the string write down the susy algebra

$$
\begin{equation*}
\left\{\bar{Q}_{\dot{\alpha}}, Q_{\alpha}\right\}=2 \sigma_{\alpha \dot{\alpha}}^{\mu}\left(P_{\mu}+Z_{\mu}\right), \quad\left\{Q_{\alpha}, Q_{\beta}\right\}=0 \tag{6}
\end{equation*}
$$

and obtain that $\frac{M}{L} \geq T$ where M is the mass of the string.

- Check that if the bound is saturated the string object preserves two supercharges.

Exercise 1.1 (Strings in sQED). The Lagrangian for sQED with an FI term in Wess-Zumino gauge is

$$
\begin{equation*}
\mathcal{L}=\frac{1}{4 e^{2}} F_{\mu \nu} F^{\mu \nu}+D_{\mu} \bar{\phi}_{+} D^{\mu} \phi_{+}+D_{\mu} \bar{\phi}_{-} D^{\mu} \phi_{-}-\frac{e^{2}}{2}\left(\bar{\phi}_{+} \phi_{+}-\bar{\phi}_{-} \phi_{-}-\xi\right)^{2}+\text { fermions } \tag{7}
\end{equation*}
$$

Here ξ is the FI parameter which we take to be positive $\xi>0$. The scalar fields $\phi_{ \pm}$have opposite charges so that $D_{\mu} \phi_{ \pm}=\left(\partial_{\mu} \mp i A_{\mu}\right) \phi_{ \pm}$。

Consider a static string-like field configuration where the only fields that are turned on are A_{1}, A_{2}, ϕ_{+}and let these fields depend only on x_{1}, x_{2}.

[^0]- Check that you can rewrite the energy functional for the theory as
$E=\int d x_{1} d x_{2}\left[\left|\frac{1}{\sqrt{2} e^{2}} F_{12}+\frac{e}{\sqrt{2}}\left(\bar{\phi}_{+} \phi_{+}-\xi\right)\right|^{2}+\left(D_{1} \phi_{+}+i D_{2} \phi_{+}\right)^{*}\left(D_{1} \phi_{+}+i D_{2} \phi_{+}\right)\right]+Q_{\text {top }}$
check that $Q_{\text {top }}$ is a topological contribution.
- Show that the energy functional can be saturated by the following ansatz $x_{1}+i x_{2}=r e^{i \alpha}$

$$
\begin{equation*}
\phi_{+}=\sqrt{\xi} n(r) e^{i \alpha}, \quad A_{i}=a(r) \frac{\partial \alpha}{\partial x^{i}} \tag{9}
\end{equation*}
$$

with the boundary conditions $n(0)=a(0)=0$ and $n(\infty)=a(\infty)=1$.

- Compute the string charge for this configuration using the string current

$$
\begin{equation*}
C_{\mu \nu}=\frac{1}{4} \xi \epsilon_{\mu \nu \rho \lambda} F^{\rho \lambda} \tag{10}
\end{equation*}
$$

The configurations found above preserve two supercharges (if you still have energy you can check it).

Exercise 1.2. Consider a Wess-Zumino model, namely chiral multiplets with values in some manifold endowed (on each coordinate patch) with a Kähler potential $K(\Phi, \bar{\Phi})$ and superpotential $W(\Phi)$. When changing coordinate patch, $K \rightarrow K+\Lambda(\Phi)+\bar{\Lambda}(\bar{\Phi})$ and $W \rightarrow W+$ constant. Derive the equation of motion $\bar{D}^{2} \partial_{i} K=4 \partial_{i} W$ by varying $\Phi \rightarrow \Phi+\delta \Phi$ and noting that for C chiral, the vanishing of $\int \mathrm{d}^{4} x \int \mathrm{~d}^{2} \theta C \delta \Phi$ for all chiral $\delta \Phi$ implies $C=0$. Then check that

$$
\begin{equation*}
\mathbb{S}_{\alpha \dot{\alpha}}=2 g_{i \bar{j}} D_{\alpha} \Phi^{i} \bar{D}_{\dot{\alpha}} \bar{\Phi}^{\bar{j}} \quad \chi_{\alpha}=\bar{D}^{2} D_{\alpha} K \quad Y_{\alpha}=4 D_{\alpha} W \tag{11}
\end{equation*}
$$

obey (on-shell) the constraints

$$
\begin{gather*}
\bar{D}^{\dot{\alpha}} \mathbb{S}_{\alpha \dot{\alpha}}=\chi_{\alpha}+Y_{\alpha}, \quad \bar{D}_{\dot{\alpha}} \chi_{\alpha}=0, \quad D^{\alpha} \chi_{\alpha}=\bar{D}_{\dot{\alpha}} \bar{\chi}^{\dot{\alpha}}, \tag{12}\\
D_{\alpha} Y_{\beta}+D_{\beta} Y_{\alpha}=0, \quad \bar{D}^{2} Y_{\alpha}=0 .
\end{gather*}
$$

Exercise 1.3. Given superfields that obey (12) and the component decomposition

$$
\begin{gather*}
\mathbb{S}_{\mu}=j_{\mu}-i \theta\left(S_{\mu}-\frac{i}{\sqrt{2}} \sigma_{\mu} \psi\right)+i \bar{\theta}\left(\bar{S}_{\mu}-\frac{i}{\sqrt{2}} \bar{\sigma}_{\mu} \psi\right)+\frac{i}{2} \theta^{2} \bar{Y}_{\mu}-\frac{i}{2} \bar{\theta}^{2} Y_{\mu} \tag{13}\\
+\theta \sigma^{\nu} \bar{\theta}\left(2 T_{\nu \mu}-\eta_{\nu \mu} A-\frac{1}{8} \epsilon_{\nu \mu \rho \sigma} F^{\rho \sigma}-\frac{1}{2} \epsilon_{\nu \mu \rho \sigma} \partial^{\rho} j^{\sigma}\right)+\ldots
\end{gather*}
$$

show that $T_{\mu \nu}$ is conserved, $S_{\mu \alpha}$ is conserved, $F_{\mu \nu}$ is a closed 2-form and Y_{μ} is a closed 1-form.

1.2 Exercises about Francesco Benini's course

Exercise 1.4. Compute $\int_{S^{2}} e^{i c \cos \theta} \mathrm{~d} \operatorname{Vol}\left(S^{2}\right)$.
Exercise 1.5. Show that $\left\{\mathrm{d}, i_{V}\right\}=\mathcal{L}_{V}$ hence $\mathrm{d}_{V}=\mathrm{d}-i_{V}$ squares to $-\mathcal{L}_{V}$.
Exercise 1.6. Let $\eta=g(V$,$) and$

$$
\begin{equation*}
\Theta_{V}=\eta \wedge\left(\frac{-1}{|V|^{2}}\left(1+\frac{\mathrm{d} \eta}{|V|^{2}}+\cdots+\frac{(\mathrm{d} \eta)^{\operatorname{dim} M / 2}}{|V|^{\operatorname{dim} M}}\right)\right) . \tag{14}
\end{equation*}
$$

Check that $\mathrm{d}_{V} \Theta_{V}=1$ and deduce that on $\boldsymbol{M} \backslash \boldsymbol{M}_{\boldsymbol{V}}, \mathrm{d}_{V} \alpha=0$ implies $\alpha=\mathrm{d}_{V} \beta$.
Exercise 1.7 (Very hard?). Let A be a Hermitian matrix with eigenvalues $\lambda_{1}(A), \ldots, \lambda_{n}(A)$ and likewise B. Compute the Harish-Chandra-Itzykson-Zuber integral

$$
\begin{aligned}
& \int_{U(N)} \exp \left(t \operatorname{Tr}\left(A U B U^{\dagger}\right)\right) \mathrm{d} U \\
& =\left(\prod_{i=1}^{n-1} i!\right) \frac{\operatorname{det}\left(\exp \left(t \lambda_{i}(A) \lambda_{j}(B)\right)_{1 \leq i, j \leq n}\right)}{t^{\left(n^{2}-n\right) / 2} \prod_{1 \leq i<j \leq n}\left(\lambda_{j}(A)-\lambda_{i}(A)\right) \prod_{1 \leq i<j \leq n}\left(\lambda_{j}(B)-\lambda_{i}(B)\right)}
\end{aligned}
$$

See https://terrytao.wordpress.com/2013/02/08/

1.3 Exercises about Wolfger Peelaers' course

Exercise 1.8. Show that k hypermultiplets in the fundamental representation of $S U(N)$ for $N>2$ have $U(k)$ flavour symmetry. What happens for $N=2$?
Exercise 1.9. Show that $\nabla_{m} \xi=-i \sigma_{m} \widetilde{\xi}^{\prime}$ is Weyl covariant with $\xi \rightarrow \Omega^{1 / 2} \xi$ (recall that $\nabla_{m} \xi=$ $\left.\partial_{m} \xi+\frac{1}{4} \omega_{m}{ }^{a b} \sigma_{a b} \xi\right)$
Exercise 1.10 (Somewhat technical, only do some). Verify that transformation rules are Weyl covariant.

Exercise 1.11 (Easy). The scale parameter and $U(1)_{r}$ parameter are given by

$$
\begin{align*}
w & \sim \xi^{I} \xi_{I}^{\prime}+\widetilde{\xi}_{I} \widetilde{\xi}^{I} \tag{15}\\
r & \sim \xi^{I} \xi_{I}^{\prime}-\widetilde{\xi}_{I} \widetilde{\xi}^{I} \tag{16}
\end{align*}
$$

find/verify the condition for $w=r=0$.

1.4 On spinors

Here, $\Gamma_{a}, 1 \leq a \leq d$ are Gamma matrices in d-dimensions. They obey $\left\{\Gamma_{a}, \Gamma_{b}\right\}=2 g_{a b}$ where $g_{a b}$ is the metric, and they generate a 2^{d}-dimensional Clifford algebra. As a vector space this algebra is spanned by the antisymmetrized $\Gamma_{a_{1} \ldots a_{k}}=\Gamma_{\left[a_{1} \ldots a_{k}\right]}$ for all $0 \leq k \leq d$ and all indices a_{i}.

Exercise 1.12. Find all Killing spinors and conformal Killing spinors in flat space. Same question on S^{n}.

Exercise 1.13. Let ψ, χ be two Killing spinors or two conformal Killing spinors. Derive a differential equation obeyed by spinor bilinears $\chi \Gamma_{a_{1} \ldots a_{k}} \psi$. Are they Killing vectors, conformal Killing vectors?

Exercise 1.14. Let $h_{a b}=\operatorname{diag}(1, \ldots, 1,-1, \ldots,-1)$ have $s^{\prime}+1^{\prime}$ and $t^{\prime}-1$ ' (so $\left.d=s+t\right)$. Show that the Clifford algebra is isomorphic to a matrix algebra $M_{2 \#}(\bullet)$ (for some number $\#$) with

$$
\left.\begin{array}{rcccccccc}
\hline s-t \bmod 8 & 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 \\
\bullet & \text { is } & \mathbb{R} & \mathbb{R} \oplus \mathbb{R} & \mathbb{R} & \mathbb{C} & \mathbb{H} & \mathbb{H} \oplus \mathbb{H} & \mathbb{H}
\end{array}\right) \mathbb{C} .
$$

In odd dimensions, show that the complexification of the Clifford algebra is a direct sum of two algebras in which $\Gamma_{1} \ldots \Gamma_{d}= \pm 1$ or $\pm i$. What is its minimal faithful real representation? What is its minimal faithful complex representation? This is the spinor representation.
Exercise 1.15. The generator of rotations $M_{a b} \in \mathfrak{s o}(s, t)$ acts as $\frac{1}{4} \Gamma_{a} \Gamma_{b}$ on representations of the Clifford algebra. How does the spinor representation of the Clifford algebra decompose into complex/real representations of $\mathfrak{s o}(s, t)$?

This table lists for each d the complex dimension of the minimal complex spinor ($\underline{\text { Dirac or Weyl) }}$, then for each (d, t) the real dimension of the minimal real spinor (Majorana, Majorana-Weyl, symplectic, symplectic Majorana-Weyl). Did whomever typed it make a mistake?

d		$t \equiv 0$		1		2		$3 \bmod 4$	
	(D 2)	M	1	M	1				
2	(W 2)		2	MW	1	M^{+}	2		
3	(D 4)		4	M	2	M	2	S	4
4	(W 4)	sW	4	M^{+}	4	MW	2	M^{-}	4
5	(D 8)		8	S	8	M	4	M	4
6	(W 8)	M^{+}	8	sW	8	M^{-}	8	MW	4
7	(D 16)	M	8	s	16	S	16	M	8
8	(W16)	MW	8	M^{-}	16	sW	16	M^{+}	16
9	(D 32)	M	16	M	16	S	32	s 3	32
	(W32)	M^{-}	32	MW	16	M ${ }^{+}$	32	sW	32
	(D 64)		64	M	32	M	32	S 6	64
	(W64)	sW	64	M^{+}	64	MW		M^{-}	64

Exercise 1.16. The conformal algebra in $d=s+t$ dimensional flat space is $\mathfrak{s o}(s+1, t+1)$. The superconformal algebra contains the conformal algebra, an R-symmetry algebra, and some fermionic generators that transform in a spinor representation of the conformal algebra. Using the following table of (complex) simple Lie superalgebras, show that the (complexified) superconformal algebras exist for $d \leq 6$ but not $d \geq 7$. In this table, $m, n \geq 1$ and we do not list purely bosonic Lie algebras. The factor \mathbb{C} of $\mathfrak{s l}(m \mid n)$ must be removed if $m=n$.

	Bosonic algebra	Fermionic generators in representation
$\mathfrak{s l}(m \mid n, \mathbb{C})$	$\mathfrak{s l}(m, \mathbb{C}) \oplus \mathfrak{s l}(n, \mathbb{C}) \oplus \mathbb{C}$	$(m, \bar{n}) \oplus(\bar{m}, n)$
$\mathfrak{o s p}(m \mid 2 n, \mathbb{C})$	$\mathfrak{s o}(m, \mathbb{C}) \oplus \mathfrak{s p}(2 n, \mathbb{C})$	$(m, 2 n)$
$\mathfrak{D}(2,1, \alpha, \mathbb{C})$	$\mathfrak{s l}(2, \mathbb{C})^{3}$	$(2,2,2)$
$\mathfrak{F}(4, \mathbb{C})$	$\mathfrak{s o}(7, \mathbb{C}) \oplus \mathfrak{s l}(2, \mathbb{C})$	$(8,2)$
$\mathfrak{G}(3, \mathbb{C})$	$\mathfrak{G}_{2} \oplus \mathfrak{s l}(2, \mathbb{C})$	$(7,2)$
$\mathfrak{P}(m, \mathbb{C})$	$\mathfrak{s l}(m+1, \mathbb{C})$	sym \oplus antisym
$\mathfrak{Q}(m, \mathbb{C})$	$\mathfrak{s l}(m+1, \mathbb{C})$	adjoint

As a refinement, find the superconformal algebra in signature (s, t) in the table of real forms. Here, $m, n \geq 1,0 \leq p \leq m / 2,0 \leq q \leq n / 2$. The forms $\mathfrak{s u}^{*}, \mathfrak{o s p}^{*}, \mathfrak{Q}^{*}$ only exist for even rank; $\mathfrak{s l}^{\prime}$ only if $m=n$.

Real form	Bosonic algebra
$\mathfrak{s u}(m-p, p \mid n-q, q)$	$\mathfrak{s u}(m-p, p) \oplus \mathfrak{s u}(n-q, q) \oplus \mathfrak{u}(1)^{\ddagger}$
$\mathfrak{s l}(m \mid n)$	$\mathfrak{s l}(m, \mathbb{R}) \oplus \mathfrak{s l}(n, \mathbb{R}) \oplus \mathfrak{s o}(1,1)^{\ddagger}$
$\mathfrak{s l}^{\prime}(n \mid n) \quad(m=n)$	$\mathfrak{s l}(n, \mathbb{C})$
$\mathfrak{s u}^{*}(m \mid n)(m, n$ even $)$	$\mathfrak{s u}{ }^{*}(m) \oplus \mathfrak{s u}^{*}(n) \oplus \mathfrak{s o}(1,1)^{\ddagger}$
$\mathfrak{o s p}^{\ddagger}(m-p, p \mid 2 n)$	$\mathfrak{s o}(m-p, p) \oplus \mathfrak{s p}(2 n, \mathbb{R})$
$\mathfrak{o s p}^{*}(m \mid 2 n-2 q, 2 q)$	$(m$ even $) \quad \mathfrak{s o}^{*}(m) \oplus \mathfrak{u s p}(2 n-2 q, 2 q)$
$\mathfrak{D}^{p}(2,1, \alpha)^{\S}$	$\mathfrak{s o}(4-p, p) \oplus \mathfrak{s l}(2, \mathbb{R})(p=0,1,2)$
$\mathfrak{F}^{p}(4)$ for $p=0,3$	$\mathfrak{s o}(7-p, p) \oplus \mathfrak{s l}(2, \mathbb{R})$
$\mathfrak{F}^{p}(4)$ for $p=1,2$	$\mathfrak{s o}(7-p, p) \oplus \mathfrak{s u}(2)$
$\mathfrak{G}_{s}(3)$ for $s=-14,2$	$\mathfrak{G}_{2(s)} \oplus \mathfrak{s l}(2, \mathbb{R})$
$\mathfrak{P}(m)$	$\mathfrak{s l}(m+1, \mathbb{R})$
$\mathfrak{U}(m(m-p, p)$	$\mathfrak{s u}(m+1-p, p)$
$\mathfrak{Q}(m)$	$\mathfrak{s l l}(m+1, \mathbb{R})$
$\mathfrak{Q}^{*}(m) \quad(m$ odd $)$	$\mathfrak{s u}(m+1)$

1.5 Special functions

Exercise 1.17. The Stirling formula states that $\log \Gamma(x)=x \log x-x-\frac{1}{2} \log x+O(1)$. Which of these coefficients can be fixed using $\Gamma(x+1)=x \Gamma(x)$?

Exercise 1.18. The Barnes double gamma function $\Gamma_{b}(x)$ is such that $\Gamma_{b}(x+b) / \Gamma_{b}(x)=$ $\sqrt{2 \pi} b^{x b-1 / 2} / \Gamma(x b)$ and $\Gamma_{b}=\Gamma_{1 / b}$. If b is real, the function Γ_{b} is analytic away from $\{x \leq 0\} \subset \mathbb{R}$. Find its poles and their order. Find the large- x expansion of $\log \Gamma_{b}$.

This is related to the Upsilon function by $\Upsilon(x)=1 /\left(\Gamma_{b}(x) \Gamma_{b}\left(b+b^{-1}-x\right)\right)$. Check that the zeros of Υ are consistent with the product formula Wolfger gave during the lecture.

[^0]: ${ }^{1}$ Numbering chosen for consistency with earlier versions of the exercise sheet.

