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Toward a rigorous statistical 
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Cognitive neuroscience 

How are cognitive activities affected or controlled 
by neural circuits in the brain ?
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Mapping cognitive functions to 
brain activity
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Resolution increases

2007: 
3 mm

2014: 
1.5 mm

2020: 
0.5 mm ?

p = 50,000 p = 400,000 p = 107
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better estimators for large-scale  
brain imaging

● Massive online dictionary learning
● Dimension reduction for images
● Fast regularized ensembles of models
● Statistical inference for high-dimensional models
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fMRI datasets are feature-rich
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Discovering structure in fMRI 

Can be captured by dictionary learning / sparse coding 
[Olshausen Nature 1996]
→ Use of sparse PCA
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High-dimensional fMRI

● n = number of samples, 102 to 106

● p = number of voxels, 105-106

“Has anyone on the ML run group-wise analysis on the 
HCP resting state data, and if so what tools did you use? 

I am having memory issues when running more than 
10 subjects and I was wondering if anyone has a way of 
getting around the large memory requirements when 
concatenating in time.”
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Huge ?

● Human Connectome project n=2.106, p=2.105, 
2TB of data

● Online dictionary learning [Mairal et al. ICML 
2009]

● Constrained rather than penalized formulation 
● How to go faster ?

– Work on batches of images and voxels
● Online method in both samples and feature dimensions

[Mensch et al. ICML 2016, IEEE TSP 2018]
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 Stochastic gradient approaches
http://amensch.fr/research/2016/06/10/modl.html

http://amensch.fr/research/2016/06/10/modl.html
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Stochastic gradient approaches

10-fold gain in CPU time 
without loss in accuracy

Can be used for recommender systems

http://amensch.fr/research/2016/06/10/modl.html

[Mensch et al. ICML 2016,

IEEE TSP 2018]

http://amensch.fr/research/2016/06/10/modl.html
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Brain atlases

[Mensch et al. ICML 2016 IEEE TSP 2018]
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Leveraging rest data for brain 
decoding

Different datasets share some common patterns

Different datasets share some common representations
[Bzdok et al. Plos Comp Biol 2016, Mensch et al NIPS 2017]
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Advantage of large-scale analysis

Information transferred from large datasets (HCP) to smaller ones 
increases classification accuracy
[Mensch et al NIPS 2017] 
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Outline

● Massive online dictionary learning
● Dimension reduction for images
● Fast regularized ensembles of Models
● Statistical inference for high-dimensional 

models
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Compression in the image 
domain

● Reduce the complexity of learning algorithms: 
p→k ≪ p

● Random projections = fast generic solution, but 
– Sub-optimal for structured signals

– Not invertible when p and k are large

● Local redundancy → feature grouping 
strategies / clustering: “super-pixels”
– Fast clustering procedures needed (large k regime) 
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Compression by feature grouping
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Crafting good image compression

● Key assumption: signal of interest L-Lipschitz

● Feature grouping matrix

● almost trivially:

● And

● Worst case

Need a fast method to learn balanced clusters
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Denoising properties

● Noisy signal model

● Denoising

● Equal-size clusters
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Recursive nearest neighbor

Based on local decisions = fast (linear time) – avoid percolation

[Thirion et al. Stamlins 2015]
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Effect on data analysis tasks

Impressive speed-up and increased accuracy with 
respect to non-compressed representation

– Clustering has a denoising effect

[Hoyos Idrobo IEEE PAMI under revision]
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More results

[Hoyos Idrobo IEEE PAMI under revision]
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Outline

● Massive online dictionary learning
● Dimension reduction for images
● Fast regularized ensembles of Models
● Statistical inference for high-dimensional 

models
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Brain activity decoding
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Penalized linear regression

> convex optimization
> set hyperparameters by cross-validation

Ridge (shrinkage)

Lasso (very sparse)

Elastic net (sparsity + grouping)

Smooth lasso (sparsity + smoothness)

Total variation (piecewise sparsity)
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Structure-inducing priors

● Large p → redundancy, latent structure
● Brain imaging: spatial regularity → small total 

variation
HCP dataset: 
“shape” versus 
“face” contrast 
across subjects

[Michel et al TMI 2011, Gramfort et al. 2013 Eickenberg et al. MICCAI 2015, Dohmatob et al. 
PRNI 2014, 2015]
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Optimizing TV takes time

[Varoquaux et al. GRETSI 2015]
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Bagging of sparse clustered models
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Computationally efficient structure

State of the art 
solution: not 
very stable, but 
cheap

“fast regularized 
ensembles of models”
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Computationally efficient structure
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Computationally efficient structure

“fast regularized 
ensembles of models”

[Hoyos Idrobo et al PRNI 2015, 
Neuroimage 2017, PAMI under review]
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Computationally efficient structure

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI under review]
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Computationally efficient structure

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI under review]
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Benchmark

HCP dataset: “shape” versus “face” contrast across subjects
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Outline

● Massive online dictionary learning
● Dimension reduction for images
● Fast regularized ensembles of Models
● Statistical inference for high-dimensional 

models
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Statistical inference on w

● Standard solutions for high-dimensional linear 
models (p > n)
– Corrected ridge

– Desparsified Lasso

 

● Adaptation to brain imaging (p≫n)

● Inference: find {j: wj > 0} with some statistical 
guarantees
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Desparsified Lasso

[Zhang & Zhang 2014 Series B Stat Meth]
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Desparsified Lasso
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Desparsified Lasso: which λ

[zhang & zhang 2014 Series B Stat Meth]

● For each j, 

– ηj should be as small as possible

● keep λ small

– τj should be as high as possible

● λ not too small 

Evaluating η and τ for many λ’s is expensive

→ We choose λ = .03 λ
max
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Preliminary assessment
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Preliminary assessment
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Preliminary assessment
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Adaptation to brain imaging

Step 1: clustering

Step 2: inference on compressed representations

Step 3: repeat on different parcellations and aggregate the p-values
(FReM-like approach)
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Some initial results

DL p-values 
from different 
clusterings

aggregation
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Conclusion

● Large-p data bring challenges:
– Computation cost

– Overfit

– Difficulty of statistical inference

● Solutions: online learning, 
subsampling, compression

● Ensembling improves 
estimators

● Open frontiers: statistical 
inference
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From good ideas to good practices: 
software

● Machine learning in Python

● Machine learning for neuroimaging 
http://nilearn.github.io

● BSD, Python, OSS

– Classification of (neuroimaging) data

– Network analysis

http://nilearn.github.io/
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