Toward a rigorous statistical framework for brain mapping

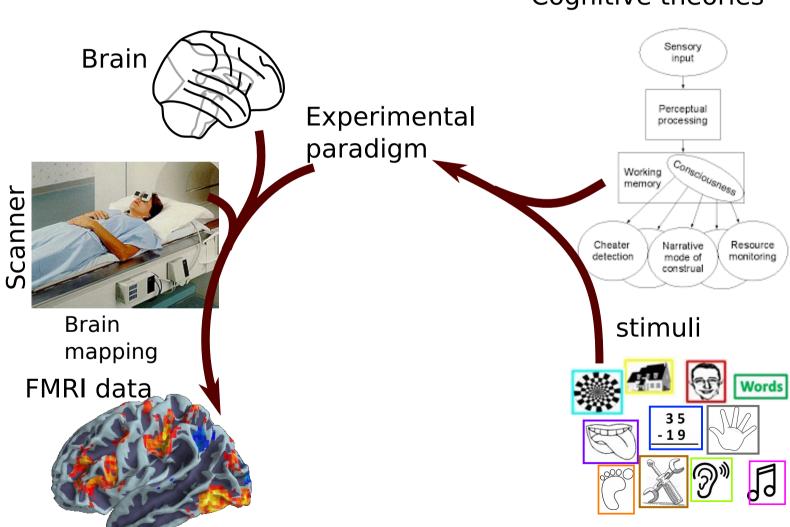
Bertrand Thirion, bertrand.thirion@inria.fr

19/01/2018

Cognitive neuroscience

How are cognitive activities affected or controlled by neural circuits in the brain ?

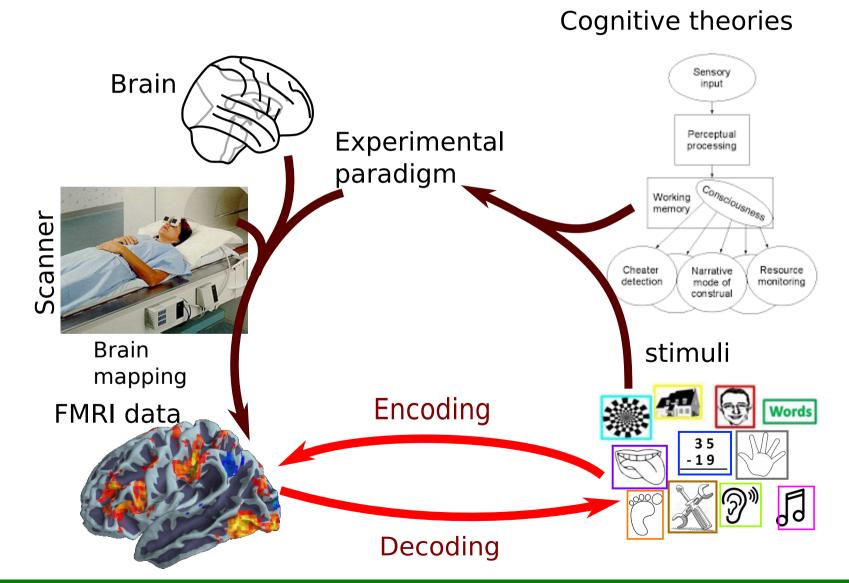
The brain, the mind and the scanner



Cognitive theories

19/01/2018

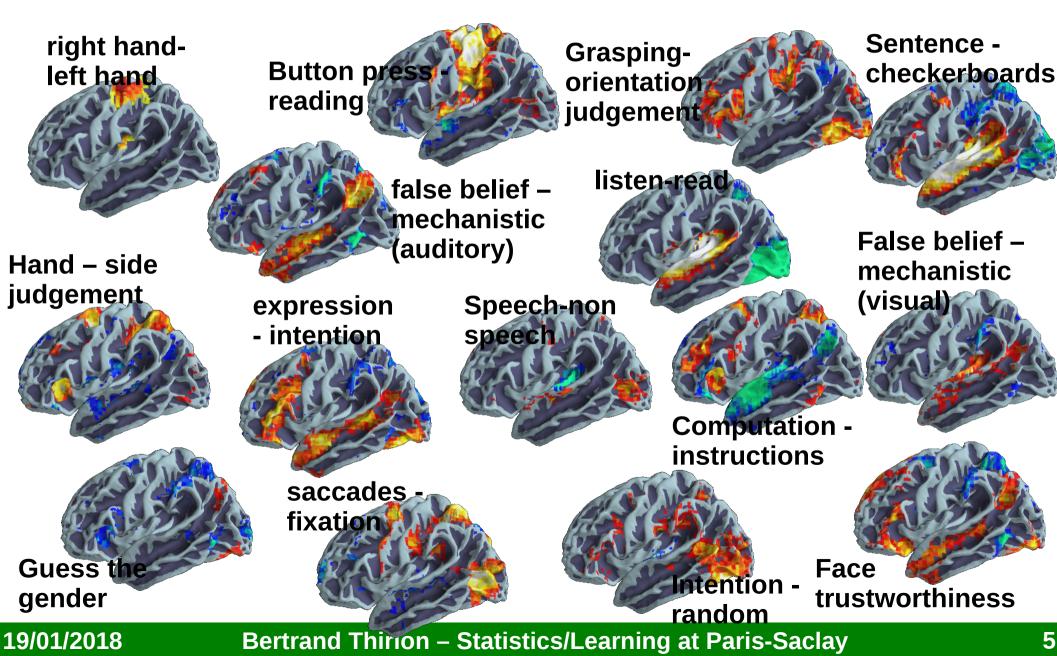
The brain, the mind and the scanner



19/01/2018

Bertrand Thirion – Statistics/Learning at Paris-Saclay

Mapping cognitive functions to brain activity



Resolution increases

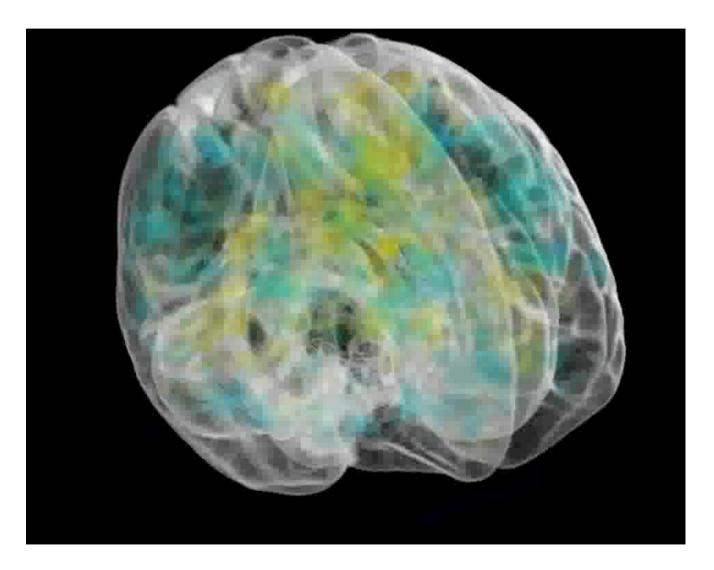
|--|

200 ⁻ 3 mi		2014: 1.5 mm	2020: 0.5 mm ?
p = 50,000		p = 400,000	p = 10 ⁷
19/01/2018 Bertrand Thirion – Statistics/Learning at Paris-Saclay			

better estimators for large-scale brain imaging

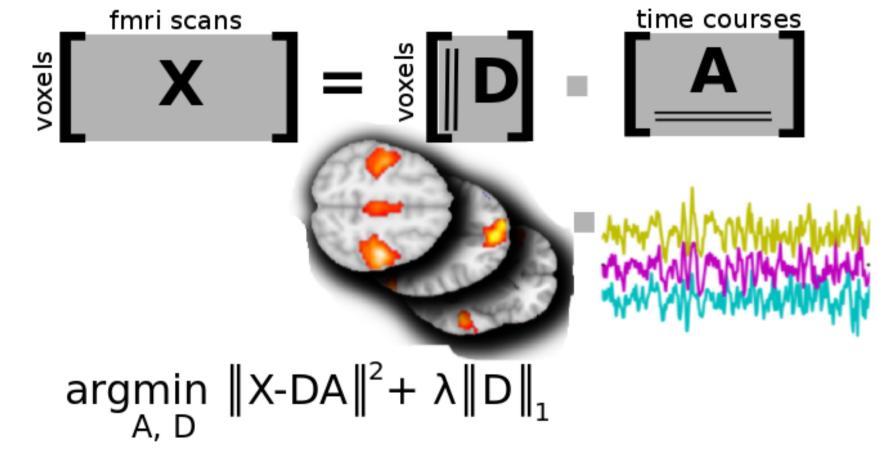
- Massive online dictionary learning
- Dimension reduction for images
- Fast regularized ensembles of models
- Statistical inference for high-dimensional models

fMRI datasets are feature-rich



19/01/2018

Discovering structure in fMRI



Can be captured by dictionary learning / sparse coding [Olshausen Nature 1996]

→ Use of sparse PCA

High-dimensional fMRI

- $n = number of samples, 10^2 to 10^6$
- $p = number of voxels, 10^{5}-10^{6}$

1 am having memory issues when running more than 10 subjects and I was wondering if anyone has a way of getting around the large memory requirements when concatenating in time."

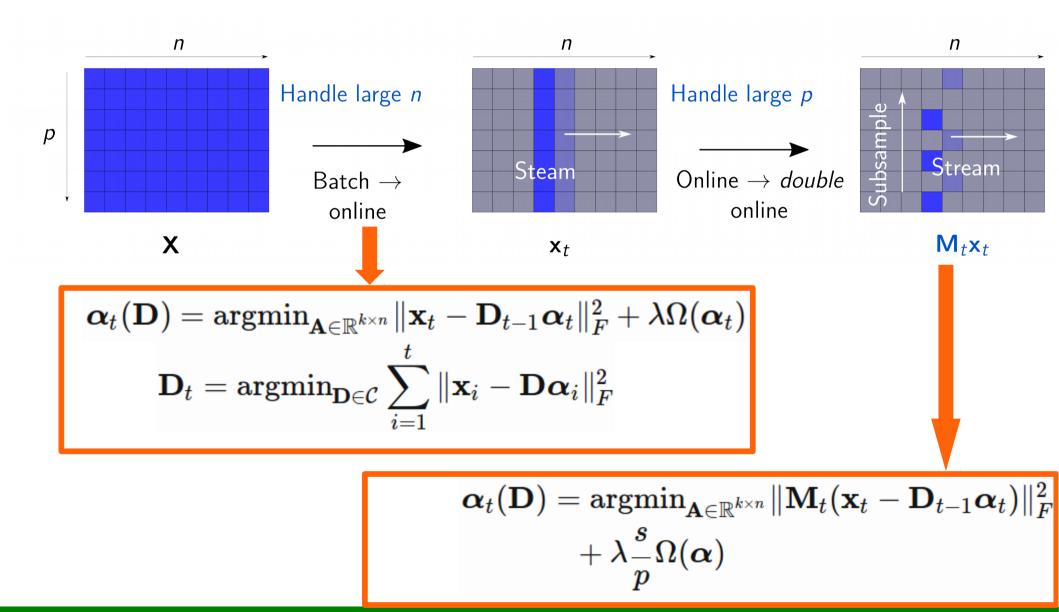
Huge ?

- Human Connectome project n=2.10⁶, p=2.10⁵,
 2TB of data
- Online dictionary learning [Mairal et al. ICML 2009]
- Constrained rather than penalized formulation
- How to go faster ?
 - Work on batches of images **and** voxels
 - Online method in both samples and feature dimensions

[Mensch et al. ICML 2016, IEEE TSP 2018]

Stochastic gradient approaches

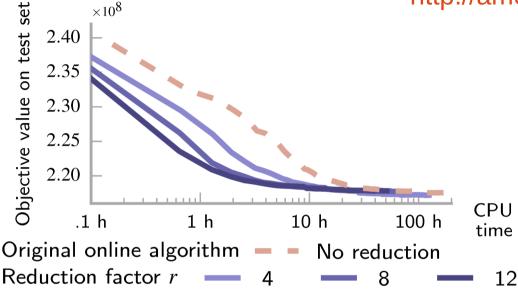
http://amensch.fr/research/2016/06/10/modl.html



19/01/2018

Stochastic gradient approaches

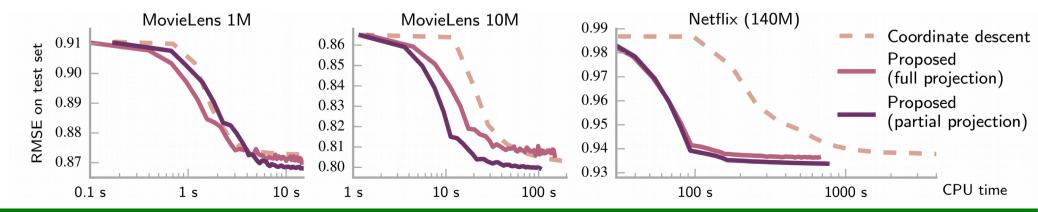
http://amensch.fr/research/2016/06/10/modl.html



10-fold gain in CPU time without loss in accuracy

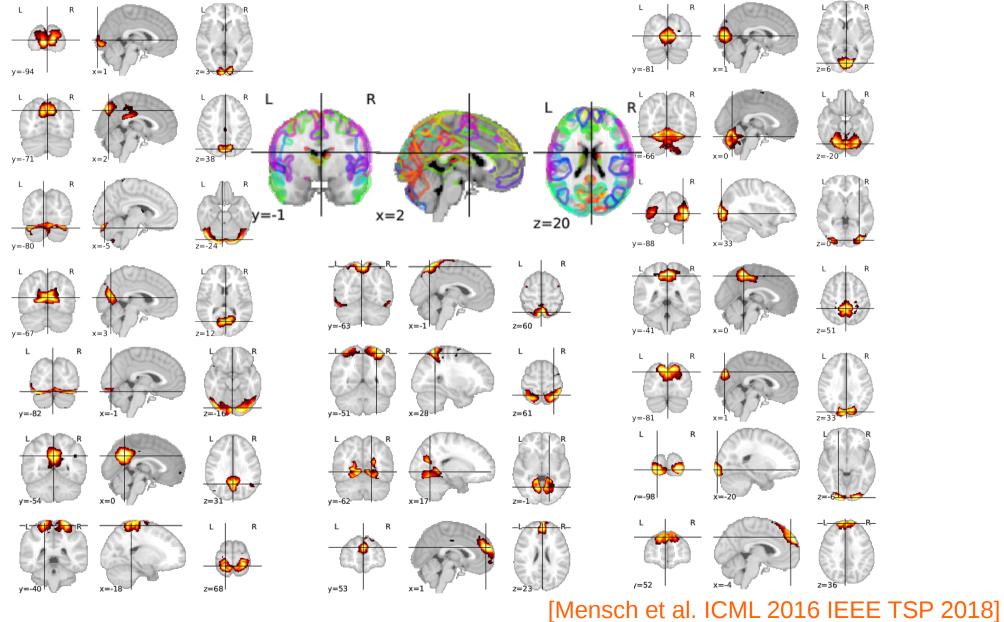
[Mensch et al. ICML 2016, IEEE TSP 2018]

Can be used for recommender systems



19/01/2018

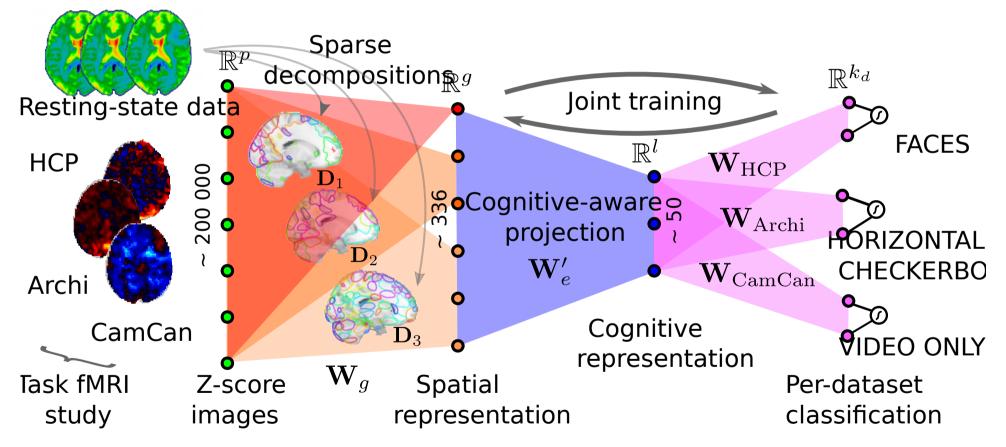
Brain atlases



19/01/2018

Leveraging rest data for brain decoding

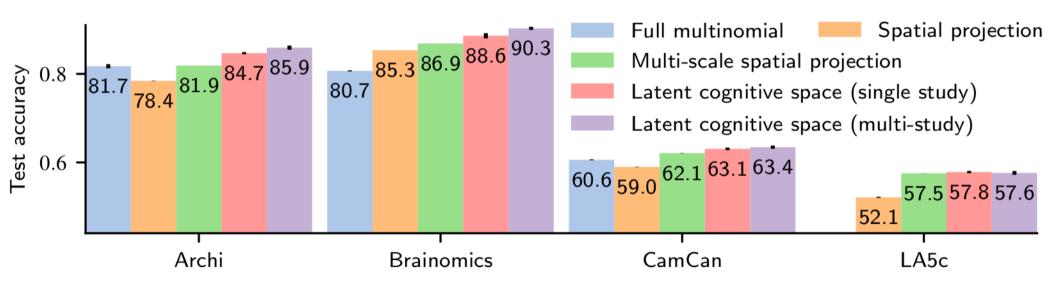
Different datasets share some common patterns



Different datasets share some common representations [Bzdok et al. Plos Comp Biol 2016, Mensch et al NIPS 2017]

19/01/2018

Advantage of large-scale analysis



Information transferred from large datasets (HCP) to smaller ones increases classification accuracy [Mensch et al NIPS 2017]

19/01/2018

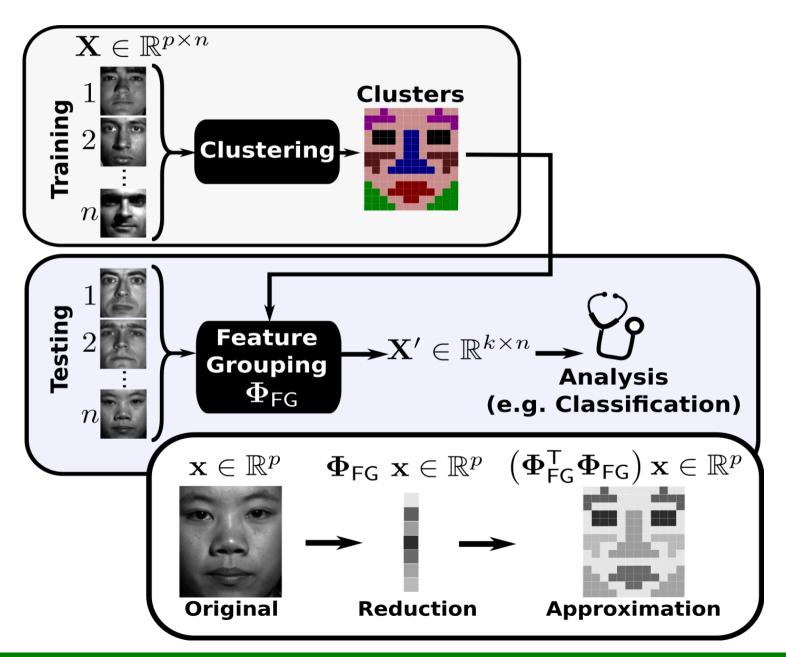
Outline

- Massive online dictionary learning
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Compression in the image domain

- Reduce the complexity of learning algorithms: $p \rightarrow k \ll p$
- Random projections = fast generic solution, but
 - Sub-optimal for structured signals
 - Not invertible when p and k are large
- Local redundancy → feature grouping strategies / clustering: "super-pixels"
 - Fast clustering procedures needed (large k regime)

Compression by feature grouping



19/01/2018

Crafting good image compression

• Key assumption: signal of interest L-Lipschitz

$$|\mathbf{x}_i - \mathbf{x}_j| \le L \operatorname{dist}_{\mathcal{G}}(v_i, v_j), \quad \forall (i, j) \in [p]^2$$

- Feature grouping matrix $\mathbf{\Phi}_{\mathsf{FG}} \in \mathbb{R}^{k imes p}$
- almost trivially: $\|\mathbf{x}\|^2 L^2 \sum_{i=1}^k |\mathcal{C}_q|^3 \le \|\mathbf{\Phi}_{\mathsf{FG}} \mathbf{x}\|^2 \le \|\mathbf{x}\|^2$
- And $\|\mathbf{x}\|^2 p\left(L\frac{p}{k}\right)^2 \le \mathbb{E}_{|\mathcal{P}|} \|\mathbf{\Phi}_{\mathsf{FG}} \mathbf{x}\|^2 \le \|\mathbf{x}\|^2$
- Worst case $\|\mathbf{x}\|_2^2 kL^2 \max_{q \in [k]} \{|\mathcal{C}_q|^3\} \le \|\mathbf{\Phi}_{\mathsf{FG}} \mathbf{x}\|_2^2 \le \|\mathbf{x}\|_2^2$

Need a fast method to learn balanced clusters

19/01/2018

Denoising properties

- Noisy signal model $\mathbf{x} = \mathbf{s} + \mathbf{n}$ $MSE_{approx} \le L^2 \sum_{q=1}^k |\mathcal{C}_q| \operatorname{diam}_{\mathcal{G}}(\mathcal{C}_q)^2 + \frac{k}{p} \operatorname{MSE}_{orig}$
- Denoising

 $MSE_{approx} \leq MSE_{orig}$

$$L^2 \leq \frac{(p-k)}{\sum_{q=1}^k |\mathcal{C}_q| \operatorname{diam}_{\mathcal{G}}(\mathcal{C}_q)^2} \sigma^2$$

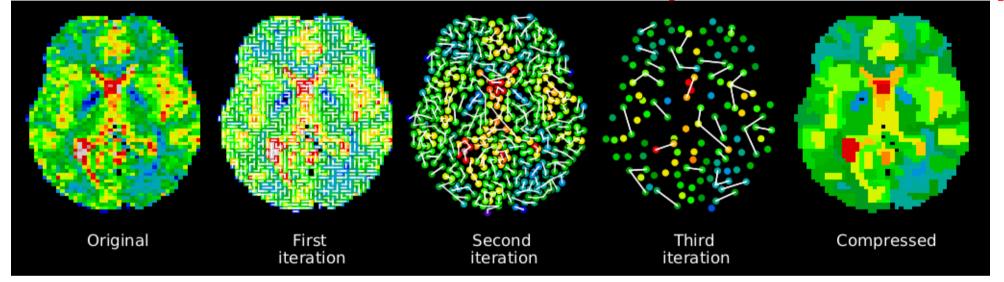
Equal-size clusters

$$MSE_{approx} \le p\left(\frac{L}{k}\right)^2 + \frac{k}{p}MSE_{orig} = O\left(\max\left\{\frac{p}{k^2}, \frac{k}{p}\right\}\right)$$

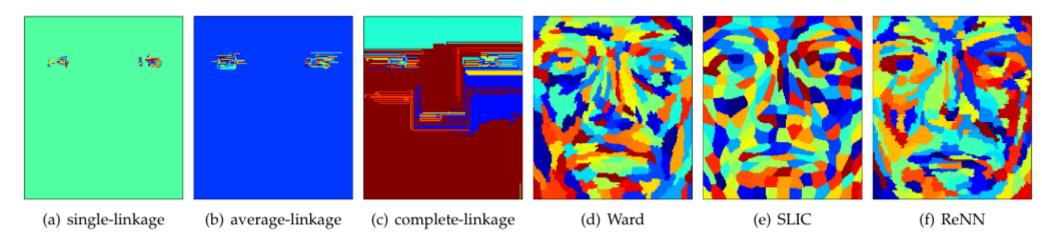
19/01/2018

Recursive nearest neighbor

[Thirion et al. Stamlins 2015]

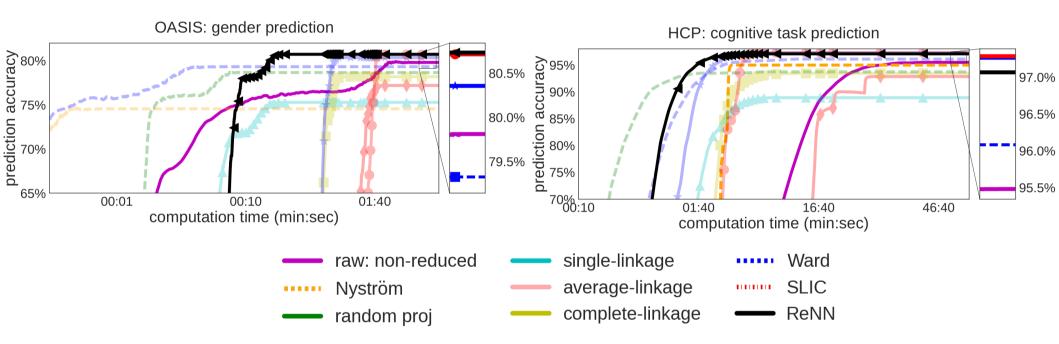


Based on local decisions = fast (linear time) – avoid percolation



19/01/2018

Effect on data analysis tasks



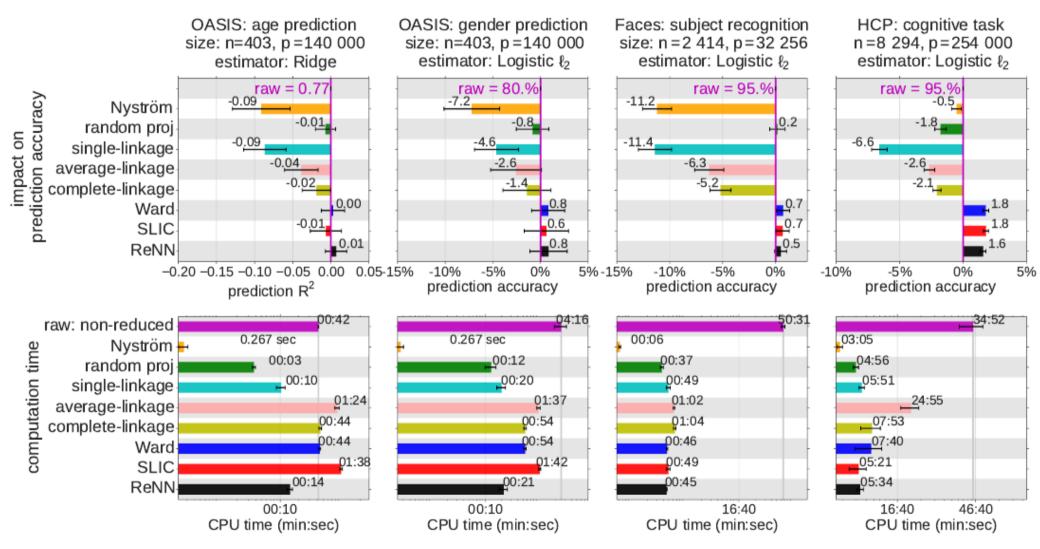
Impressive speed-up and increased accuracy with respect to non-compressed representation

- Clustering has a denoising effect

[Hoyos Idrobo IEEE PAMI under revision]

19/01/2018

More results



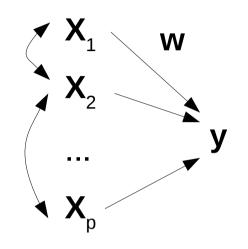
[Hoyos Idrobo IEEE PAMI under revision]

19/01/2018

Outline

- Massive online dictionary learning
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Brain activity decoding



• behavior = f (brain activity)

$$\mathbf{y} = \mathbf{X} \mathbf{w}^* + \sigma_* \boldsymbol{\varepsilon}$$
 • error vector: $\boldsymbol{\varepsilon} \sim \mathcal{N}(\mathbf{0}, \mathbf{I}_n)$
• noise magnitude: $\sigma_* > 0$

- prediction: find $\hat{\boldsymbol{w}}$ that minimizes $\|\boldsymbol{X}\hat{\boldsymbol{w}} \boldsymbol{X}\boldsymbol{w}^*\|_2$
- estimation: find \hat{w} with control on $|\hat{w}_j w_j^*|$ for all $j \in [p]$

Penalized linear regression

Minimize the empirical regularized risk

$$\hat{\mathbf{w}} = \underset{w}{\operatorname{argmin}} \{ \underbrace{\mathcal{L}(\mathbf{X}, \mathbf{y}; \mathbf{w})}_{\text{Data fidelity}} + \underbrace{\lambda \Omega(\mathbf{w})}_{\text{Regularizer}} \}$$

> convex optimization

> set hyperparameters by cross-validation

$$\begin{aligned} \lambda \Omega(\mathbf{w}) &= \lambda \|\mathbf{w}\|_2^2 \\ \lambda \Omega(\mathbf{w}) &= \lambda \|\mathbf{w}\|_1 \\ \lambda \Omega(\mathbf{w}) &= \lambda \left(\alpha \|\mathbf{w}\|_1 + (1-\alpha) \|\mathbf{w}\|_2^2\right) \end{aligned}$$

$$\lambda \Omega(\mathbf{w}) = \lambda \left(\alpha \|\mathbf{w}\|_1 + (1-\alpha) \|\nabla \mathbf{w}\|_2^2 \right)$$

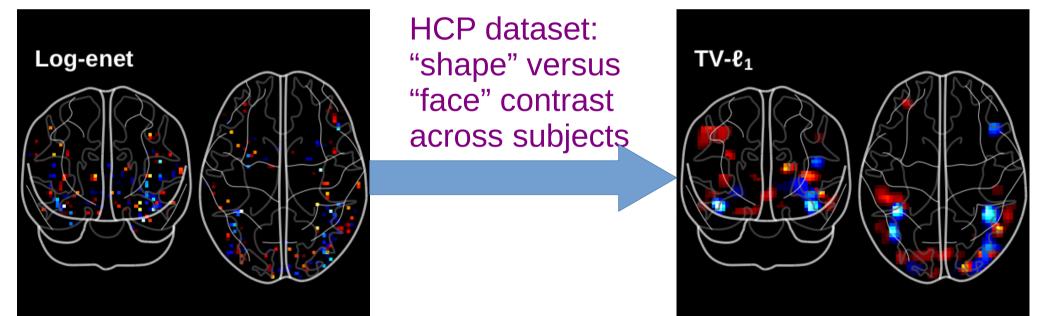
Ridge (shrinkage)

Lasso (very sparse)

- Elastic net (sparsity + grouping)
- Smooth lasso (sparsity + smoothness)
- $\lambda \Omega(\mathbf{w}) = \lambda \left(\alpha \| \mathbf{w} \|_1 + (1 \alpha) \| \nabla \mathbf{w} \|_{2,1} \right)$ Total variation (piecewise sparsity)

Structure-inducing priors

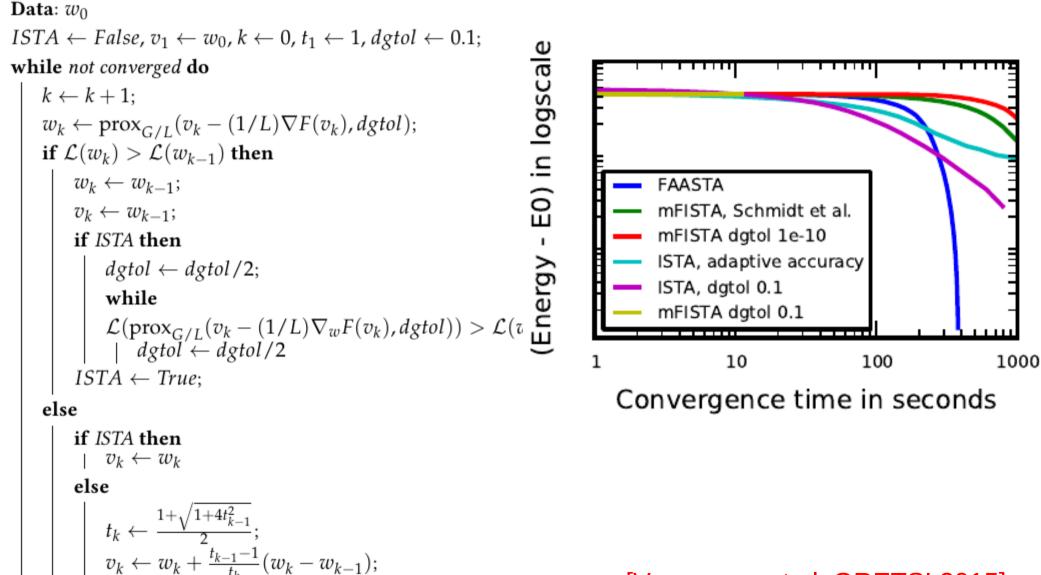
- Large $p \rightarrow$ redundancy, latent structure
- Brain imaging: spatial regularity \rightarrow small total variation



[Michel et al TMI 2011, Gramfort et al. 2013 Eickenberg et al. MICCAI 2015, Dohmatob et al. PRNI 2014, 2015]

19/01/2018

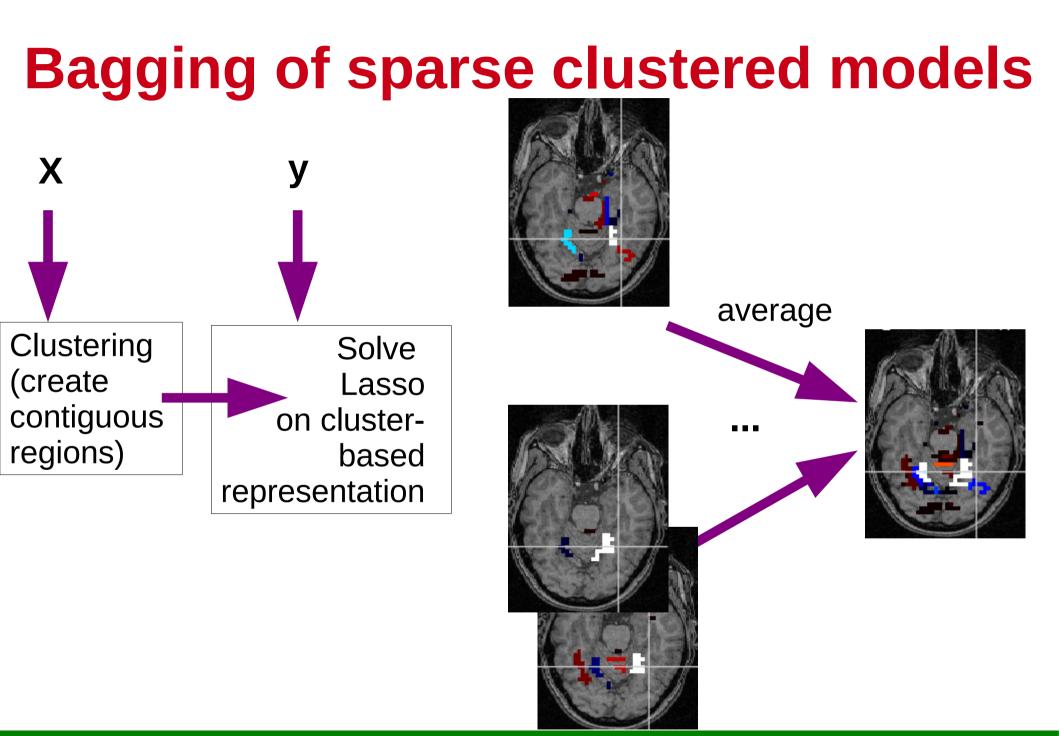
Optimizing TV takes time



[Varoquaux et al. GRETSI 2015]

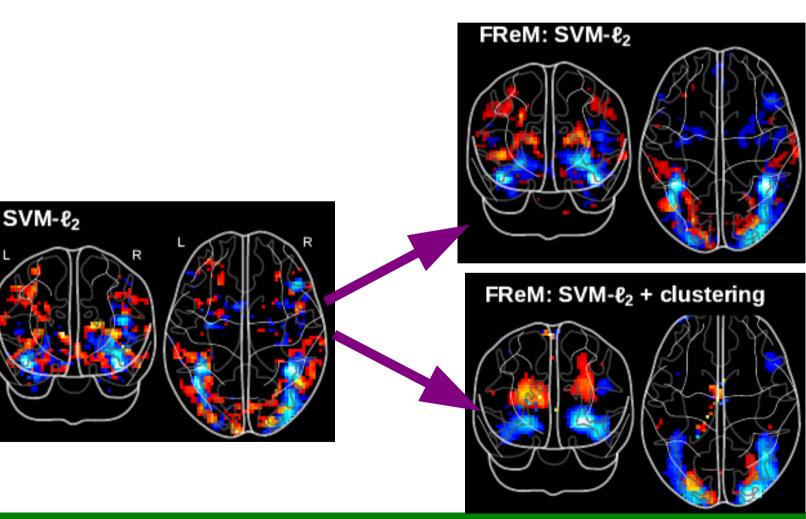
19/01/2018

 $ISTA \leftarrow False$



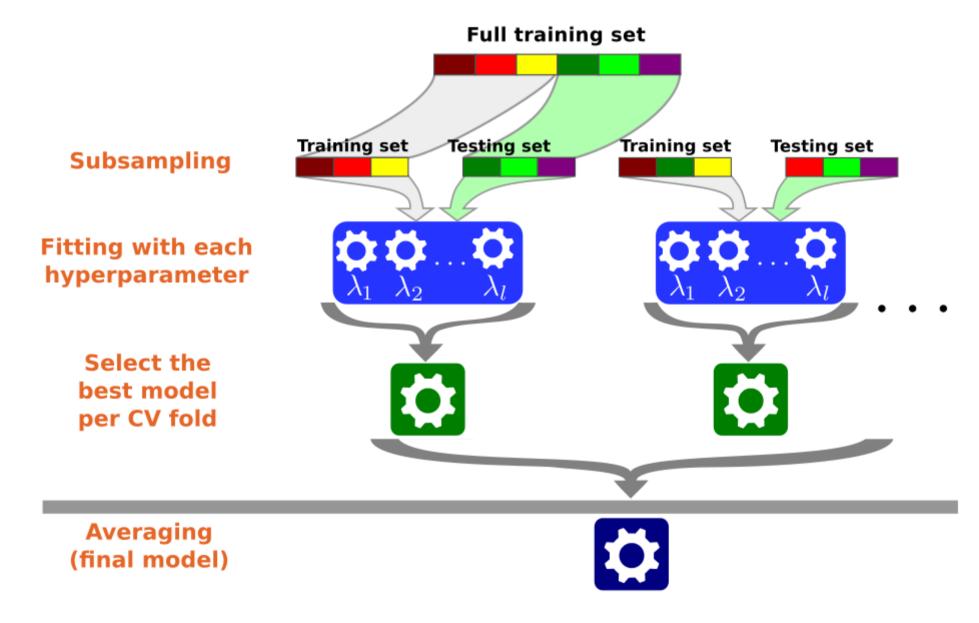
19/01/2018

"fast regularized ensembles of models"

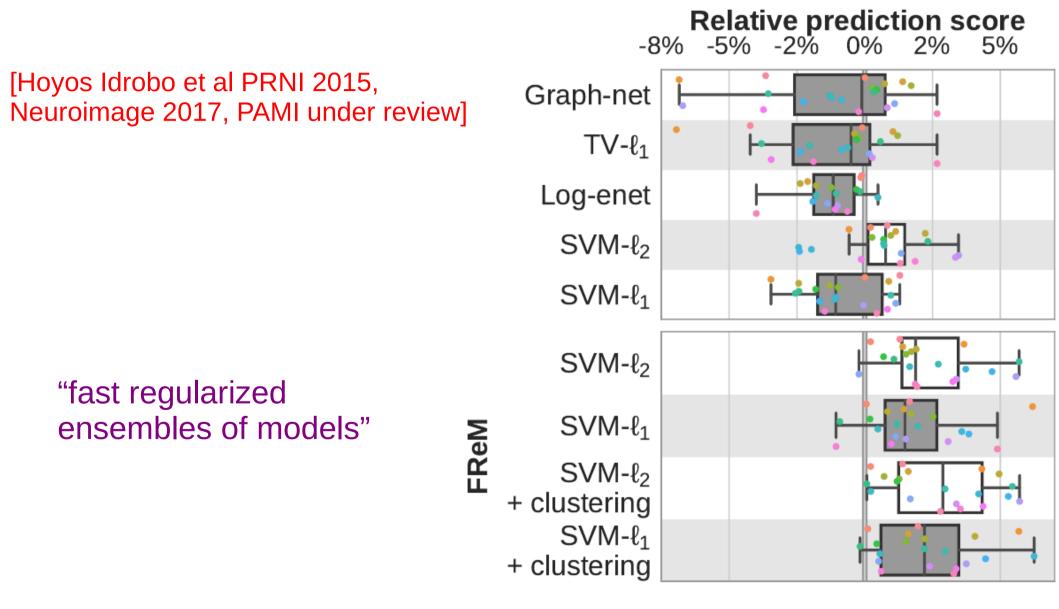


State of the art solution: not very stable, but cheap

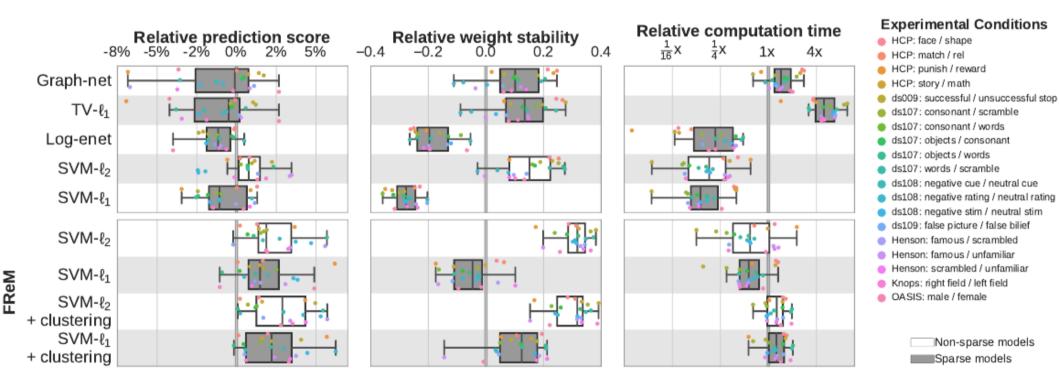
19/01/2018



19/01/2018

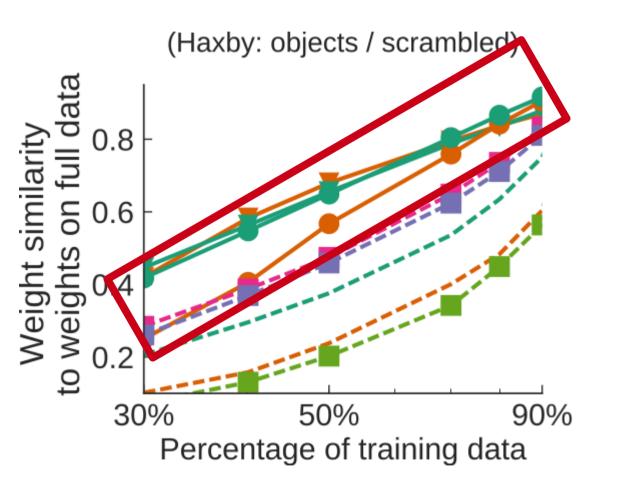


19/01/2018



[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI under review]

19/01/2018



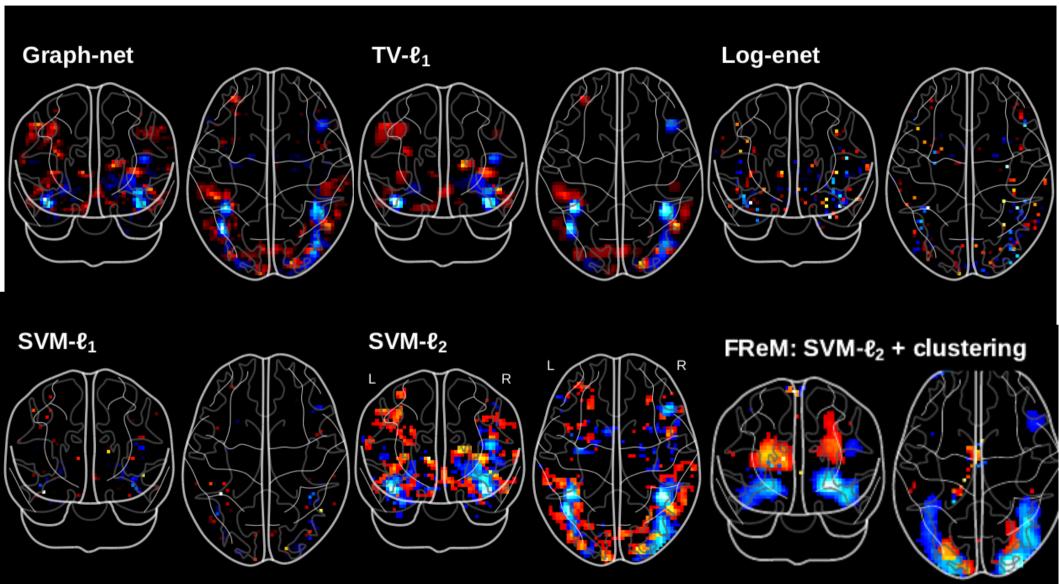
Classifiers

- Graph-net
- -- TV-ℓ₁
- Log-enet
- --- SVM-l₂
- --- SVM-l₁
- --- FReM: SVM-l₂
- FReM: SVM-l₁
- FReM: SVM-l₂ + clustering
- FReM: SVM- ℓ_1 + clustering

[Hoyos Idrobo et al PRNI 2015, Neuroimage 2017, PAMI under review]

19/01/2018

Benchmark



HCP dataset: "shape" versus "face" contrast across subjects

19/01/2018

Outline

- Massive online dictionary learning
- Dimension reduction for images
- Fast regularized ensembles of Models
- Statistical inference for high-dimensional models

Statistical inference on w

- Inference: find {j: w_j > 0} with some statistical guarantees
- Standard solutions for high-dimensional linear models (p > n)
 - Corrected ridge
 - Desparsified Lasso
- Adaptation to brain imaging $(p \gg n)$

Desparsified Lasso

- Objective: construct confidence bounds on the coefficients of w^*
- Principle:

[Zhang & Zhang 2014 Series B Stat Meth]

- construct an unbiased estimator of \boldsymbol{w}^* (generalization of $\hat{\boldsymbol{w}}^{\mathsf{OLS}}$)
- compute its covariance matrix

• Heuristic argument: in low dimension we can prove that:

$$\hat{w}_j^{\mathsf{OLS}} = rac{\mathbf{z}_j^{ op} \mathbf{y}}{\mathbf{z}_j^{ op} \mathbf{x}_j} \;\;,$$

where z_j is the residual of the OLS regression of x_j versus $X^{(-j)}$:

$$\mathbf{z}_j = \mathbf{x}_j - \mathbf{P}_{\mathbf{X}^{(-j)}}\mathbf{x}_j$$
 ,

where $P_{\mathbf{X}^{(-j)}}$ is the projection onto $\text{Span}(\mathbf{X}^{(-j)}) \subset \mathbb{R}^{p-1}$

19/01/2018

Desparsified Lasso

• **Desparsified Lasso estimator:** when n < p, z_j is the residual of a Lasso-CV regression of x_j vs $X^{(-j)}$ and the debiased estimator is:

$$\hat{w}_j = \frac{\mathbf{z}_j^{\top} \mathbf{y}}{\mathbf{z}_j^{\top} \mathbf{x}_j} - \sum_{k \neq j} \frac{\mathbf{z}_j^{\top} \mathbf{x}_k \hat{w}_k^{(init)}}{\mathbf{z}_j^{\top} \mathbf{x}_j} ,$$

where $\hat{w}^{(init)}$ is an initial non linear estimator of w^* (*e.g.*, Lasso)

• **Covariance:** the covariance matrix of this estimator is:

$$\Omega_{jk} = \frac{n\mathbf{z}_j^{\top}\mathbf{z}_k}{(\mathbf{z}_j^{\top}\mathbf{x}_j)(\mathbf{z}_k^{\top}\mathbf{x}_k)}$$

• Confidence bounds: under few assumptions (Dezeure et al. [2015]):

$$\sigma_*^{-1}(\Omega_{jj})^{-1/2}(\hat{w}_j - w_j^*) \sim \mathcal{N}(0, 1)$$

19/01/2018

Desparsified Lasso: which λ

[zhang & zhang 2014 Series B Stat Meth]

• For each j,

$$\eta_j(\lambda) = \max_{k \neq j} |\boldsymbol{x}_k^T \boldsymbol{z}_j(\lambda)| / \|\boldsymbol{z}_j(\lambda)\|_2,$$

$$au_j(\lambda) = \|\boldsymbol{z}_j(\lambda)\|_2 / |\boldsymbol{x}_j^T \boldsymbol{z}_j(\lambda)|,$$

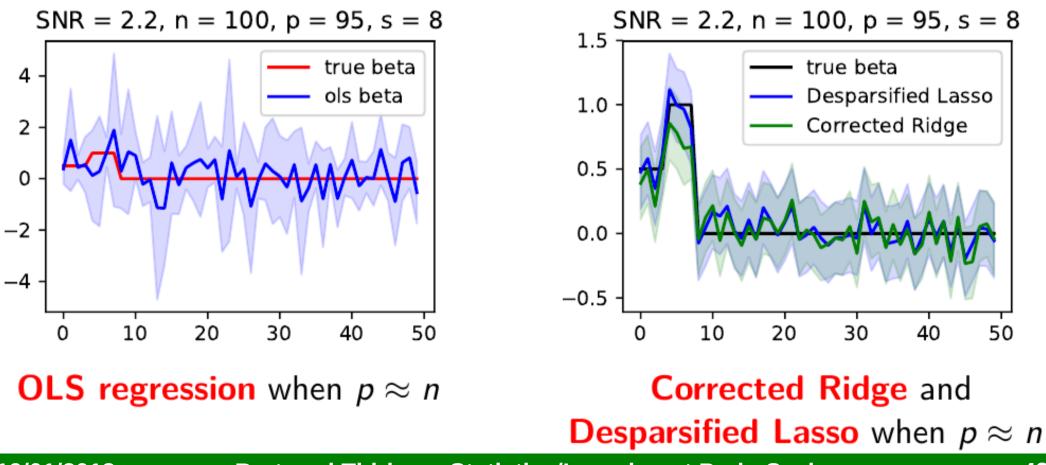
- η_j should be as small as possible
 - keep λ small
- τ_j should be as high as possible
 - λ not too small

Evaluating η and τ for many λ 's is expensive

→ We choose λ = .03 λ_{max}

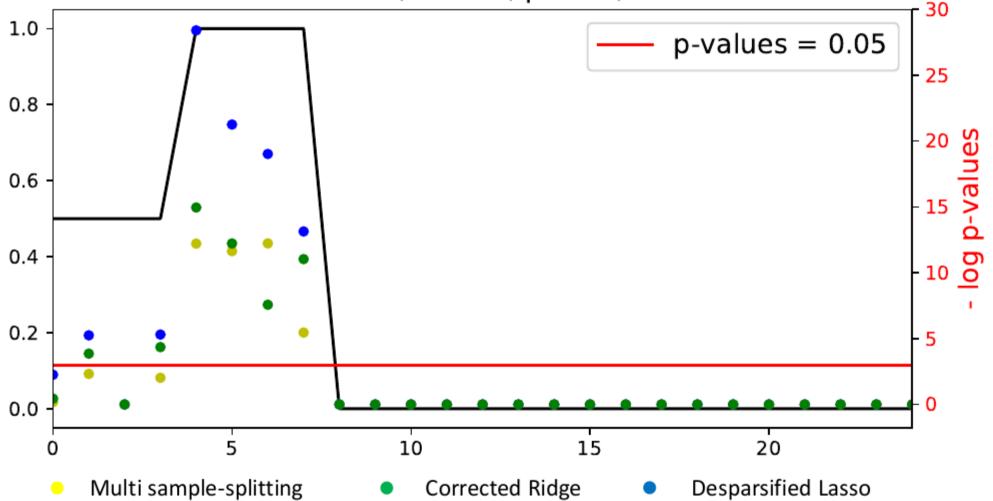
Preliminary assessment

- Low dimension: n = 100 and p = 95
- OLS versus corrected Ridge and desparsified Lasso:



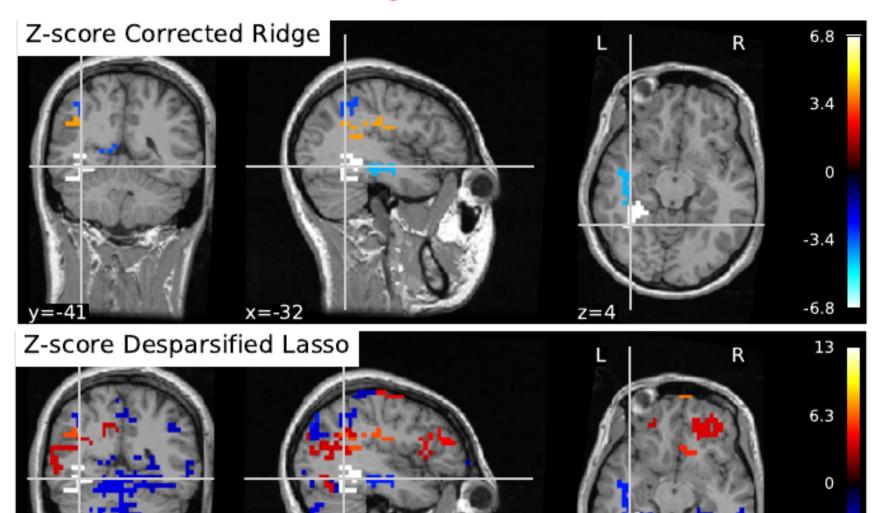
Preliminary assessment

SNR = 2.2, n=100, p = 95, s = 8



19/01/2018

Preliminary assessment



19/01/2018

y=-41

Bertrand Thirion – Statistics/Learning at Paris-Saclay

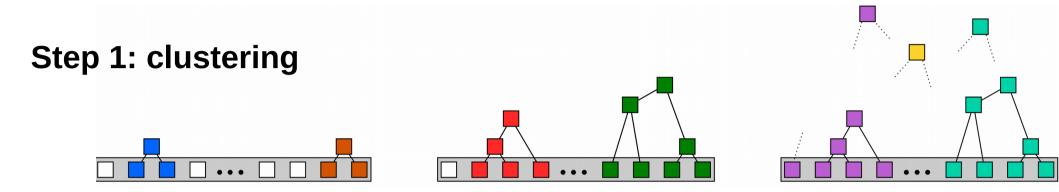
z=4

x=-32

-6.3

-13

Adaptation to brain imaging



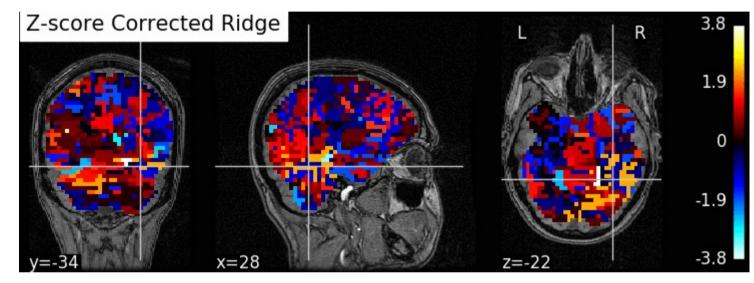
Step 2: inference on compressed representations

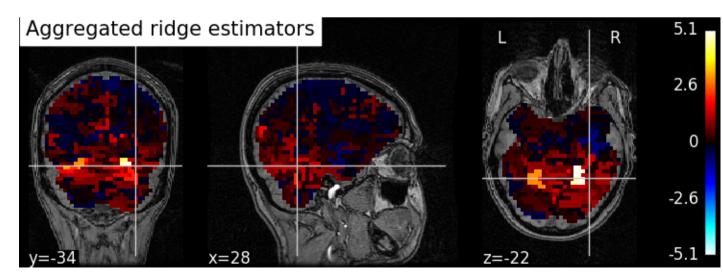
$$\sigma_*^{-1}(\Omega_{jj})^{-1/2}(\hat{w}_j - w_j^*) \sim \mathcal{N}(0, 1)$$

Step 3: repeat on different parcellations and aggregate the p-values (FReM-like approach)

Some initial results

DL p-values from different clusterings



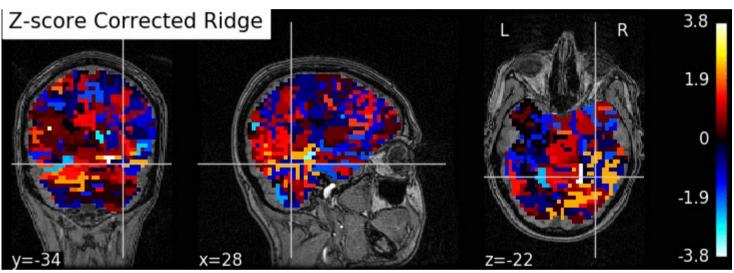


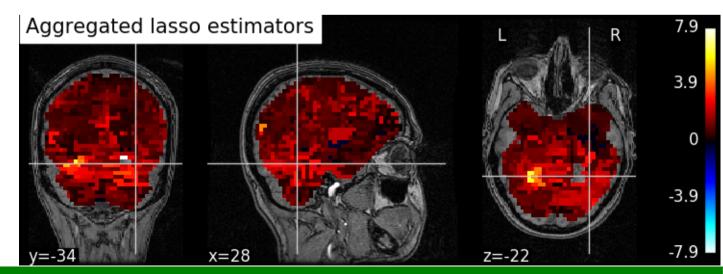
aggregation

19/01/2018

Some initial results

DL p-values from different clusterings





19/01/2018

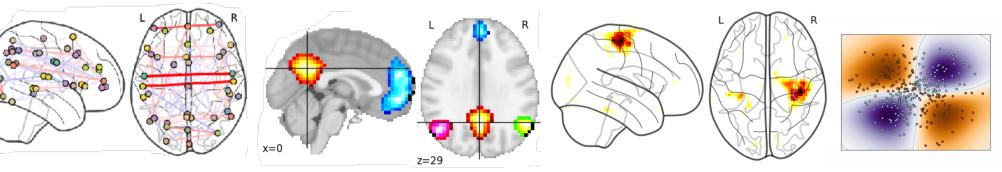
Conclusion

- Large-p data bring challenges:
 - Computation cost
 - Overfit
 - Difficulty of statistical inference
- Solutions: online learning, subsampling, compression
- Ensembling improves estimators
- Open frontiers: statistical inference

From good ideas to good practices: software

MEG + EEG ANALYSIS & VISUALIZATION

- Machine learning in Python
- Machine learning for neuroimaging http://nilearn.github.io
- BSD, Python, OSS
 - Classification of (neuroimaging) data
 - Network analysis



19/01/2018

Parietal

- G. Varoquaux,
- A. Gramfort,
- P. Ciuciu,
- D. Wassermann,
- D. Engemann,
- A. Manoel,
- D. Chyzhyk
- A.L. Grilo Pinho,
- E. Dohmatob,
- A. Mensch,
- J.A. Chevalier,
- A. Hoyos idrobo,
- D. Bzdok,
- J. Dockès,
- P. Cerda,
- C. Lazarus
- D. La Rocca
- G. Lemaitre
- L. El Gueddari
- O. Grisel
- M. Massias
- P. Ablin
- H. Janati
- J. Massich
- K. Dadi
- C. Petitot

19/01/2018

HP

Acknowledgements

UNU

CARO

Other collaborators (thanks for the data) S. Dehaene R. Poldrack, J. Haxby C. F. Gorgolevski J. Salmon

Human Brain Project UNIVERSITE PARIS-SACLAY Bertrand Thirion – Statistics/Learning at Paris-Saclay

50