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Ranking Data

Set of items JnK := {1, . . . , n}

Definition (Ranking)
A ranking is a strict partial order≺ over JnK, i.e. a binary relation
satisfying the following properties:
Irreflexivity For all i ∈ JnK, i ̸≺ i

Transitivity For all i, j,k ∈ JnK, if i ≺ j and j ≺ k then i ≺ k
Asymmetry For all i, j ∈ JnK, if i ≺ j then j ̸≺ i
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Ranking data arise in a lot of applications

Traditional applications
▶ Elections: JnK= a set of candidates

→ A voter ranks a set of candidates
▶ Competitions: JnK= a set of players

→ Results of a race
▶ Surveys: JnK= political goals

→ A citizen ranks according to its priorities

Modern applications
▶ E-commerce: JnK= items of a catalog

→ A user expresses its preferences (see ”implicit feedback”)
▶ Search engines: JnK= web-pages

→ A search engine ranks by relevance for a given query
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The analysis of ranking data spreads over many fields
of the scientific literature

▶ Social choice theory
▶ Economics
▶ Operational Research
▶ Machine learning

⇒ Over the past 15 years, the statistical analysis of ranking data has
become a subfield of the machine learning literature.
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Many efforts to bring them together
NIPS 2001 NewMethods for Preference Elicitation
NIPS 2002 Beyond Classification and Regression
NIPS 2004 Learning with Structured Outputs
NIPS 2005 Learning to Rank
IJCAI 2005 Advances in Preference Handling
SIGIR 07-10 Learning to Rank for Information Retrieval
ECML/PKDD 08-10 Preference Learning
NIPS 09 Advances in Ranking
NIPS 2011 Choice Models and Preference Learning
EURO 09-16 Special track on Preference Learning
ECAI 2012 Preference Learning
DA2PL 2012,2014,2016 From Decision Analysis to Preference Learning
Dagstuhl 2014 Seminar on Preference Learning
NIPS 2014 Analysis of Rank Data
ICML 2015-2017 Special track on Ranking and Preferences
NIPS 2017 Learning on Functions, Graphs and Groups
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Common types of rankings
Set of items JnK := {1, . . . , n}

▶ Full ranking. All the items are ranked, without ties

a1 ≻ a2 ≻ · · · ≻ an

▶ Partial ranking. All the items are ranked, with ties (”buckets”)

a1,1, . . . , a1,n1 ≻ · · · ≻ ar,1, . . . , ar,nr with
r∑

i=1

ni = n

⇒ Top-k ranking is a particular case: a1, . . . , ak ≻ the rest
▶ Incomplete ranking. Only a subset of items are ranked,

without ties

a1 ≻ · · · ≻ ak with k < n

⇒ Pairwise comparison is a particular case: a1 ≻ a2
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Detailed example: analysis of full rankings

Notation.
▶ A full ranking: a1 ≻ a2 ≻ · · · ≻ an

▶ Also seen as the permutation σ that maps an item to its rank:

a1 ≻ · · · ≻ an ⇔ σ ∈ Sn such that σ(ai) = i

Sn: set of permutations of JnK, the symmetric group.

Probabilistic Modeling. The dataset is a collection of random
permutations drawn IID from a probability distribution P overSn:

DN = (Σ1, . . . ,ΣN ) with Σi ∼ P

P is called a rankingmodel.

9



Detailed example: analysis of full rankings

▶ Ranking data are very natural for human beings
⇒ Statistical modeling should capture some interpretable
structure

Questions
▶ How to analyze a dataset of permutations

DN = (Σ1, . . . ,ΣN )?
▶ How to characterize the variability? What can be inferred?
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Detailed example: analysis of full rankings

Challenges
▶ A random permutationΣ can be seen as a random vector

(Σ(1), . . . ,Σ(n)) ∈ Rn... but

The random variablesΣ(1), . . . ,Σ(n) are highly dependent
and the sumΣ+ Σ′ is not a random permutation!
⇒No natural notion of variance forΣ

▶ The set of permutationsSn is finite... but
Exploding cardinality: |Sn| = n!
⇒ Few statistical relevance

▶ Apply a method from p.d.f. estimation (e.g. kernel density
estimation)... but
No canonical ordering of the rankings!
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Main approaches

“Parametric” approach
▶ Fit a predefined generative model on the data
▶ Analyze the data through that model
▶ Infer knowledge with respect to that model

“Nonparametric” approach
▶ Choose a structure onSn

▶ Analyze the data with respect to that structure
▶ Infer knowledge through a “regularity” assumption

12



Parametric Approach - Classic Models
▶ Thurstonemodel [Thurstone, 1927]

Let {X1, X2, . . . , Xn} r.v with a continuous joint distribution
F (x1, . . . , xn):

P (σ) = P(Xσ−1(1) < Xσ−1(2) < · · · < Xσ−1(n))

▶ Plackett-Luce model [Luce, 1959], [Plackett, 1975]
Each item i is parameterized bywi withwi ∈ R+:

P (σ) =
n∏

i=1

wσi∑n
j=iwσj

Ex: 2 ≻ 1 ≻ 3 = w2
w1+w2+w3

w1
w1+w3

▶ Mallowsmodel [Mallows, 1957]
Parameterized by a central ranking σ0 ∈ Sn and a dispersion
parameter γ ∈ R+

P (σ) = Ce−γd(σ0,σ) with d a distance onSn. 13



Nonparametric approaches - Examples 1
▶ Embeddings

Permutation matrices [Plis et al., 2011]

Sn → Rn×n, σ 7→ Pσ with Pσ(i, j) = I{σ(i) = j}

Kemeny embedding [Jiao et al., 2016]

Sn → Rn(n−1)/2, σ 7→ ϕσ with ϕσ =


...

sign(σ(i)− σ(j))
...


i<j

▶ Harmonic analysis
Fourier analysis [Clémençon et al., 2011], [Kondor and Barbosa, 2010]

ĥλ =
∑

σ∈Sn

h(σ)ρλ(σ) où ρλ(σ) ∈ Cdλ×dλ for all λ ⊢ n.

Multiresolution analysis for incomplete rankings [Sibony et al., 2015]
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Nonparametric approaches - Examples 2

Modeling of pairwise comparisons as a graph:

i

j

k

l

i ≻
j

i ≻ k

i ≻
l

k
≻
j

l
≻
k

HodgeRank exploits the topology of the graph
[Jiang et al., 2011]
Approximation of pairwise comparisonmatrices
[Shah and Wainwright, 2015]
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Some ranking problems

Perform some task on a dataset ofN rankingsDN = (≺1, . . . ,≺N ).

Examples
▶ Top-1 recovery: Find the “most preferred” item inDN

e.g. Output of an election
▶ Aggregation: Find a full ranking that “best summarizes”DN

e.g. Ranking of a competition
▶ Clustering: SplitDN into clusters

e.g. Segment customers based on their answers to a survey
▶ Prediction: Predict the outcome of a missing pairwise

comparison in a ranking≺
e.g. In a recommendation setting
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The Ranking Aggregation Problem

Framework
▶ n items: {1, . . . , n}.
▶ N rankings/permutations : Σ1, . . . ,ΣN .

Consensus Ranking
Suppose we have a dataset of rankings/permutations
DN = (Σ1, . . . ,ΣN ) ∈ SN

n . We want to find a global order
(”consensus”) σ∗ on the n items that best represents the dataset.

Main methods (Non parametric)
▶ Scoring methods: Copeland, Borda
▶ Metric-basedmethod: Kemeny’s rule

18



Methods for Ranking Aggregation
Copeland method
Sort the items according to their Copeland score, defined for each
item i by:

sC(i) =
1

N

N∑
t=1

n∑
j=1
j ̸=i

I[Σt(i) < Σt(j)]

which counts the number of pairwise victories of item i over the
other items j ̸= i.
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Methods for Ranking Aggregation
Borda Count
Sort the items according to their Borda score, defined for each item
i by:

sB(i) =
1

N

N∑
t=1

(n+ 1− Σt(i))

which is ”the average” rank of item i.
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Methods for Ranking Aggregation

Kemeny’s rule (1959)
Find the solution of :

min
σ∈Sn

N∑
t=1

d(σ,Σt)

where d is the Kendall’s tau distance:

dτ (σ,Σ) =
∑
i<j

I{(σ(i)− σ(j))(Σ(i)− Σ(j)) < 0},

which counts the number of pairwise disagreements (or minimal
number of adjacent transpositions to convert σ intoΣ).

Ex: σ= 1234,Σ= 2413⇒ dτ (σ,Σ) = 3 (disagree on 12,14,34).
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Kemeny’s rule
Kemeny’s consensus has a lot of interesting properties:

▶ Social choice justification: Satisfies many voting properties,
such as the Condorcet criterion: if an alternative is preferred
to all others in pairwise comparisons then it is the winner
[Young and Levenglick, 1978]

▶ Statistical justification: Outputs the maximum likelihood
estimator under the Mallowsmodel [Young, 1988]

▶ Main drawback: NP-hard in the number of items n
[Bartholdi et al., 1989] even forN = 4 votes
[Dwork et al., 2001].

Our contribution: we give conditions for the exact Kemeny
aggregation to become tractable [Korba et al., 2017].
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Statistical Ranking Aggregation
Kemeny’s rule:

min
σ∈Sn

N∑
t=1

d(σ,Σt) (1)

Probabilistic Modeling:

DN = (Σ1, . . . ,ΣN ) with Σt ∼ P

Definition
A Kemenymedian of P is solution of:

min
σ∈Sn

LP (σ),

whereLP (σ) = EΣ∼P [d(Σ, σ)] is the risk of σ.
Notations:
Let σ∗

P = argminσ∈Sn
LP (σ) and σ∗

P̂N
= argminσ∈Sn

L
P̂N

(σ) (1)

where P̂N = 1
N

∑N
k=1 δΣi .
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Risk of Ranking Aggregation
The risk of a median σ isL(σ) = EΣ∼P [d(Σ, σ)], where d is:

d(σ, σ′) =
∑

{i,j}⊂JnK{(σ(i)− σ(j))(σ′(i)− σ′(j)) < 0}

Let pi,j = P[Σ(i) < Σ(j)] the probability that item i is preferred to
item j.

The risk can be rewritten:

L(σ) =
∑
i<j

pi,jI{σ(i) > σ(j)} +
∑
i<j

(1 − pi,j)I{σ(i) < σ(j)}.

So if there exists a permutation σ verifying: ∀i < j s.t. pi,j ̸= 1/2,

(σ(j)− σ(i)) · (pi,j − 1/2) > 0,

it would be necessary a median σ∗
P = argminσ∈Sn

LP (σ) for P .
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Conditions for Optimality
▶ the Stochastic Transitivity condition:

pi,j ≥ 1/2 and pj,k ≥ 1/2 ⇒ pi,k ≥ 1/2.

In addition, if pi,j ̸= 1/2 for all i < j, P is said to be
”strictly stochastically transitive”” (SST)
⇒ prevents cycles:

1

2 3

p 1
,2
>
1/
2

p2,3 > 1/2

p
3,1 >

1/2

⇒ includes Plackett-Luce, Mallows...
▶ the Low-Noise condition NA(h) for some h > 0:

min
i<j

|pi,j − 1/2| ≥ h.
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Main Results [Korba et al., 2017]
▶ Optimality. If P satisfies SST, its Kemenymedian is unique

and is given by its Copeland ranking:

σ∗
P (i) = 1 +

∑
j ̸=i

I{pi,j <
1

2
}

▶ Generalization. Then, if P satisfies SST and NA(h) for a given
h > 0, the empirical Copeland ranking:

ŝN (i) = 1 +
∑
j ̸=i

I{p̂i,j <
1

2
} for 1 ≤ i ≤ n

is inSn and ŝN = σ∗
P̂N

= σ∗
P with overwhelming probability

1− n(n−1)
4 e−αhN with αh = 1

2 log
(
1/(1− 4h2)

)
.

⇒ Under the needed conditions, empirical Copelandmethod
(O(N

(
n
2

)
)) outputs the true Kemeny consensus (NP-hard) with high

probability!
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Our Problem
Suppose we observe (X1,Σ1), . . . , (XN ,ΣN ) i.i.d. copies of the
pair (X, Σ), where

▶ X ∼ µ, where µ is a distribution on some feature spaceX
▶ Σ ∼ PX , where PX is the conditional probability distribution

(onSn): PX(σ) = P[Σ = σ|X]

Ex: Users iwith characteristicsXi order items by preference resulting
inΣi.

Goal: Learn a predictive ranking rule :
s : X → Sn

x 7→ s(x)
which given a random vectorX , predicts the permutationΣ on the
n items.

Performance: Measured by the risk:

R(s) = EX ∼ µ,Σ ∼ PX
[dτ (s(X),Σ)]
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Related Work

▶ Has been referred to as label ranking in the literature
[Tsoumakas et al., 2009], [Vembu and Gärtner, 2010]
→ Related to multiclass andmultilabel classification
→ A lot of applications (bioinformatics, meta-learning...)

▶ A lot of approaches rely on parametric modelling
[Cheng and Hüllermeier, 2009], [Cheng et al., 2009],
[Cheng et al., 2010]

▶ MLE or Bayesian Techniques
[Rendle et al., 2009],[Lu and Negahban, 2015]

⇒We develop an approach free of any parametric assumptions.
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Ranking Median Regression Approach

R(s) = EX∼µ [EΣ∼PX
[dτ (s(X),Σ)]] = EX∼µ [LPX

(s(X))] (2)

Assumption
ForX ∈ X , PX is SST:⇒ σ∗

PX
= argminσ∈Sn

LPX
(σ) is unique.

Optimal elements
The predictors sminimizing (2) are the ones that maps any point
X ∈ X to any conditional Kemenymedian of PX :

s∗ = argmin
s∈S

R(s) ⇔ s∗(X) = σ∗
PX

Ranking Median Regression
Tominimize (2) approximately, instead of computing σ∗

PX
for any

X = x, we relax it to Kemenymedians within a cell C containing x.
⇒We develop Local consensus methods.
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Statistical Framework- ERM
Consider a statistical version of the theoretical risk based on the
training data (Xt,Σt)’s:

R̂N (s) =
1

N

N∑
k=1

dτ (s(Xk), Σk)

and solutions of the optimization problem:

min
s∈S

R̂N (s),

where S is the set of measurable mappings.

⇒Wewill consider a subset SP ⊂ S :
▶ supposed to be rich enough to contain approximate versions

of s∗ = argmins∈S R(s) (i.e. so that infs∈SP R(s)−R(s∗) is
’small’)

▶ ideally appropriate for continuous or greedy optimization.
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Piecewise Constant Ranking Rules
LetP = {C1, . . . , CK} be a partition of the feature spaceX .
Let SP be the collection of all ranking rules that are constant on
each cell ofP . Any s ∈ SP can be written as:

sP,σ̄(x) =

K∑
k=1

σk · I{x ∈ Ck}where σ̄ = (σ1, . . . , σK)

Local Learning
Let PC the cond. distr. ofΣ givenX ∈ C: PC(σ) = P[Σ = σ|X ∈ C]
Recall: PX is SST for anyX ∈ X .
Idea: PC is still SST and σ∗

PC
= σ∗

PX
provided the Ck’s are small

enough.
Theoretical guarantees: Suppose ∃M < ∞ s.t. ∀(x, x′) ∈ X 2,∑

i<j |pi,j(x)− pi,j(x
′)| ≤ ·||x− x′||, then:

R(sP)−R∗ ≤ M.δP

where δP is the max. diameter ofP ’s cells.
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Partitioning Methods

Goal: Generate partitionsPN in a data-driven fashion.
Twomethods tailored to ranking regression are investigated:

▶ k-nearest neighbor (Voronoi partitioning)
▶ decision tree (Recursive partitioning)

Local Kemeny Medians
In practice, for a cell C inPN , consider P̂C = 1

NC

∑
k:Xk∈C δΣk

,
whereNC =

∑N
k=1 I {Xk ∈ C}

▶ If P̂C is SST, compute σ∗
P̂C

with Copelandmethod based on
p̂i,j(C)

▶ Else, compute σ̃∗
P̂C

with empirical Borda count (breaking ties
arbitrarily if any)
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K-Nearest Neigbors Algorithm
1. Fix k ∈ {1, . . . , N} and a query point x ∈ X
2. Sort the training data (X1,Σ1), . . . , (XN ,ΣN ) by increasing

order of the distance to x : ∥X(1,N)−x∥ ≤ . . . ≤ ∥X(N,N)−x∥
3. Consider next the empirical distribution calculated using the k

training points closest to x

P̂ (x) =
1

k

k∑
l=1

δΣ(l,N)

and compute the pseudo-empirical Kemenymedian, yielding
the k-NN prediction at x:

sk,N (x)
def
= σ̃∗

P̂ (x)
.

⇒We recover the classical boundR(sk,N )−R∗ = O( 1√
k
+ k

N )
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Decision Tree
Split recursively the feature spaceX to minimize some impurity
criterion. In each final cell, compute the terminal value based on
the data in the cell. Here, for a cell C ∈ PN :

▶ Impurity:

γ
P̂C

=
1

2

∑
i<j

p̂i,j(C) (1− p̂i,j(C))

which is tractable and satisfies the double inequality

γ̂
P̂C

≤ min
σ∈Sn

L
P̂C
(σ) ≤ 2γ̂

P̂C
.

Analog to Gini criterion in classification: m classes, fi
proportion of class i→ IG(f) =

∑m
i=1 fi(1− fi)

▶ Terminal value : Compute the pseudo-empirical median of a
cell C:

sC(x)
def
= σ̃∗

P̂C
.
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Simulated Data
▶ We generate two explanatory variables, varying their nature

(numerical, categorical)⇒ Setting 1/2/3
▶ We generate a partition of the feature space
▶ On each cell of the partition, a dataset of full rankings is

generated, varying the distribution (constant, Mallows with ̸=
dispersion): D0/D1/D2

Di
Setting 1 Setting 2 Setting 3

n=3 n=5 n=8 n=3 n=5 n=8 n=3 n=5 n=8

D0

0.0698* 0.1290* 0.2670* 0.0173* 0.0405* 0.110* 0.0112* 0.0372* 0.0862*
0.0473** 0.136** 0.324** 0.0568** 0.145** 0.2695** 0.099** 0.1331** 0.2188**
(0.578) (1.147) (2.347) (0.596) (1.475) (3.223) (0.5012) (1.104) (2.332)

D1

0.3475 * 0.569* 0.9405 * 0.306* 0.494* 0.784* 0.289* 0.457* 0.668*
0.307** 0.529** 0.921** 0.308** 0.536** 0.862** 0.3374** 0.5714** 0.8544**
(0.719) (1.349) (2.606) (0.727) (1.634) (3.424) (0.5254) (1.138) (2.287)

D2

0.8656* 1.522* 2.503* 0.8305 * 1.447 * 2.359* 0.8105* 1.437* 2.189*
0.7228** 1.322** 2.226** 0.723** 1.3305** 2.163** 0.7312** 1.3237** 2.252**
(0.981) (1.865) (3.443) (1.014) (2.0945) (4.086) (0.8504) (1.709) (3.005)

Table: Empirical risk averaged on 50 trials on simulated data.

(): Clustering +PL, *: K-NN, **: Decision Tree
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US General Social Survey

Participants were asked to rank 5 aspects about a job: ”high
income”, ”no danger of being fired”, ”short working hours”,
”chances for advancement”, ”work important and gives a feeling of
accomplishment”.

▶ 18544 samples collected between 1973 and 2014.
▶ 8 individual attributes are considered: sex, race, birth cohort,

highest educational degree attained, family income, marital
status, number of children, household size

▶ plus 3 attributes of work conditions: working status,
employment status, and occupation.

Results:
Risk of decision tree: 2,763→ Splitting variables:
1) occupation 2) race 3) degree
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Conclusion

Ranking data is fun!

Its analysis presents great and interesting challenges:
▶ Most of the maths from euclidean spaces cannot be applied
▶ But our intuitions still hold
▶ Based on our results on ranking aggregation, we develop a

novel approach to ranking regression/label ranking
Openings: Extension to pairwise comparisons

Big challenges
▶ How to extend to incomplete rankings (+with ties)?
▶ How to extend to items with features?
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