Intro duction	Variational aproach	Main results	Exa mp les	Referen
			000000000000	

Concentration of tempered posteriors and their variational approximations

James Ridgway Joint work with Pierre Alquier

workshop Statistics/Learning at Paris-Saclay January 2018

化原因 化原因

Int	ro	du	cti	on	

Variational aproach

Main results

Examples

References

= 990

2 Variational aproach

3 Main results

- Gaussian vb
- Matrix completion

J. Ridgway Concentration of tempered posteriors and their variational appro-

Intro duction	Variational aproach	Main results	Exa mp les 000000000000	Reterences
Notations				
A		X ··· I C D		

Assume that we observe X_1, \ldots, X_n i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q: \frac{\mathrm{d}P_{\theta}}{\mathrm{d}Q} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(heta) = \prod_{i=1}^n p_{ heta}(X_i)$$

The posterior

 $\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$

Introduction	Variational aproach	Main results	Exa mp les 0000000000000	Reterences
Notations				
Assume the	t we observe X.	X iid from	Pa in a model	

Assume that we observe $\lambda_1, \ldots, \lambda_n$ i.i.d from P_{θ_0} in a model $\{P_{\theta}, \theta \in \Theta\}$ dominated by $Q: \frac{dP_{\theta}}{dQ} = p_{\theta}$. Prior π on Θ .

The likelihood

$$L_n(heta) = \prod_{i=1}^n p_{ heta}(X_i)$$

The posterior

$$\pi_n(\mathrm{d}\theta) \propto L_n(\theta)\pi(\mathrm{d}\theta).$$

The tempered posterior - 0 $< \alpha < 1$

$$\pi_{n,\boldsymbol{\alpha}}(\mathrm{d}\theta) \propto [L_n(\theta)]^{\boldsymbol{\alpha}} \pi(\mathrm{d}\theta).$$

J. Ridgway Concentration of tempered posteriors and their variational appro-

< 🗇 > < 🖻 >

3 N

Classic way to deal with posteriors: Monte Carlo

• Monte Carlo algorithms are widely used to deal with posteriors or tempered posteriors (e.g. MCMC, SMC)

Classic way to deal with posteriors: Monte Carlo

• Monte Carlo algorithms are widely used to deal with posteriors or tempered posteriors (e.g. MCMC, SMC)

Issues:

- Computational complexity
- Lack of non asymptotic theory, under investigation for behaviour in high dimension etc.

Recent research filling the gap in this direction for log-concave problems:

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651–676, 2017

Introduction	Variational aproach	Main results	Exa mp les
			000000000000

2 Variational aproach

3 Main results

- Gaussian vb
- Matrix completion

・ロト ・日・ ・日・ ・日・

э.

References

Variational Bayes

Variational Bayes is a deterministic approximation of some probability measure.

Let $\mathcal{F} \subset \mathcal{M}_1^+(\Theta)$. We define the VB approximation $\tilde{\pi}_{n,lpha}(\mathrm{d} heta|X_1^n)$ by

$$\tilde{\pi}_{n,\alpha}(\cdot|X_1^n) = \arg\min_{\rho\in\mathcal{F}} \mathcal{K}(\rho, \pi_{n,\alpha}(\cdot|X_1^n)).$$

where the Kullback-Leibler divergence is

$$\mathcal{K}(P,R) = \begin{cases} \int \log\left(\frac{\mathrm{d}P}{\mathrm{d}R}\right) \mathrm{d}P \text{ if } P \ll R \\ +\infty \text{ otherwise.} \end{cases}$$

Variational Bayes is a deterministic approximation of some probability measure.

Let $\mathcal{F} \subset \mathcal{M}_1^+(\Theta)$. We define the VB approximation $\tilde{\pi}_{n,\alpha}(\mathrm{d} heta|X_1^n)$ by

$$\tilde{\pi}_{n,\alpha}(\cdot|X_1^n) = \arg\min_{\rho\in\mathcal{F}} \mathcal{K}(\rho, \pi_{n,\alpha}(\cdot|X_1^n)).$$

where the Kullback-Leibler divergence is

$$\mathcal{K}(P,R) = \begin{cases} \int \log\left(\frac{\mathrm{d}P}{\mathrm{d}R}\right) \mathrm{d}P \text{ if } P \ll R \\ +\infty \text{ otherwise.} \end{cases}$$

Main results

Examples

References

What family of distribuion \mathcal{F} ?

Two common choices:

• Parametric family:

$$\mathcal{F} = \{q_artheta(d heta), artheta \in \Theta'\}$$

・ロト ・部ト ・ヨト ・ヨト

э

Main results

Examples

References

What family of distribuion \mathcal{F} ?

Two common choices:

• Parametric family:

$$\mathcal{F} = \{ q_artheta(d heta), artheta \in \Theta' \}$$

Mean field:

$$\mathcal{F}^{\mathsf{mf}} := \left\{ \rho(\mathrm{d}\theta) = \bigotimes_{i=1}^{p} \rho_i(\mathrm{d}\theta_i) \in \mathcal{M}_1^+(\Theta), \\ \forall i = 1, \cdots, p \quad \rho_i \in \mathcal{M}_1^+(\Theta_i), \quad \Theta = \Theta_1 \times \cdots \times \Theta_p \right\},$$

J. Ridgway Concentration of tempered posteriors and their variational appro-

э

Previous results

In a previous paper

P. Alquier, J. R., and N. Chopin. On the properties of variational approximations of Gibbs posterior. Journal of Machine Learning Research, 17(239):1-41, 2016

- We studied variational approximations of Gibbs posteriors with bounded risk. Fractional posteriors do not fall in this category.
- pseudo-posterior of interest are defined for a risk $r_n(\theta)$

 $\pi_{\gamma}(\mathrm{d} heta)\propto\exp\left(-\gamma \textit{r}_{\textit{n}}(heta)
ight)\pi(heta)$

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Previous results

In a previous paper

P. Alquier, J. R., and N. Chopin. On the properties of variational approximations of Gibbs posterior. Journal of Machine Learning Research, 17(239):1-41, 2016

- We studied variational approximations of Gibbs posteriors with bounded risk. Fractional posteriors do not fall in this category.
- pseudo-posterior of interest are defined for a risk $r_n(\theta)$

 $\pi_{\gamma}(\mathrm{d} heta)\propto\exp\left(-\gamma \textit{r_n}(heta)
ight)\pi(heta)$

・ロト ・ 一 ・ ・ ・ ・ ・ ・ ・ ・ ・ ・

Introduction	Variational aproach	Main results	Exa mp les	References
			000000000000	

3 Main results

- Gaussian vb
- Matrix completion

・ロッ ・雪 ・ ・ ヨ ・ ・ ヨ ・

э

Introduction	Variational aproach	Main results	Exa mp les 00000000000000	References
Definition				

The
$$lpha$$
-Rényi divergence for $lpha \in (0,1)$

$$D_{\alpha}(P,R) = \begin{cases} \frac{1}{\alpha-1} \log \int \left(\frac{\mathrm{d}P}{\mathrm{d}R}\right)^{\alpha-1} \mathrm{d}P \text{ if } P \ll R \\ +\infty \text{ otherwise.} \end{cases}$$

Introduction	Variational aproach	Main results	Exa mp les 00000000000000	References
Definition				

The α -Rényi divergence for $\alpha \in (0,1)$

$$D_{\alpha}(P,R) = \begin{cases} \frac{1}{\alpha-1} \log \int \left(\frac{\mathrm{d}P}{\mathrm{d}R}\right)^{\alpha-1} \mathrm{d}P \text{ if } P \ll R \\ +\infty \text{ otherwise.} \end{cases}$$

In particular, for $1/2 \leq \alpha$, link with Hellinger and Kullback:

$$\mathcal{H}^2(P,R) \leq D_{\alpha}(P,R) \xrightarrow[\alpha \nearrow 1]{} \mathcal{K}(P,R).$$

・ロト ・四ト ・ヨト ・ヨト … ヨ

Concentration of tempered posterior

$$\mathcal{B}(r) = \left\{ \theta \in \Theta : \mathcal{K}(P_{\theta_0}, P_{\theta}) \leq r \text{ and } \operatorname{Var}\left[\log \frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)} \right] \leq r. \right\}$$

Theorem A. Bhattacharya, D. Pati, and Y. Yang. Bayesian fractional posteriors. arXiv preprint arXiv:1611.01125, 2016

For any sequence (r_n) such that

 $-\log \pi[B(r_n)] \leq nr_n$

we have

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{\mathbf{0}}})\pi_{n,\alpha}(\mathrm{d}\theta) \leq \frac{2(1+\alpha)}{1-\alpha}r_{n}\right] \geq 1-\frac{2}{nr_{n}}.$$

General result for VB approximation

Theorem (P. Alquier and J. R. Concentration of tempered posterior and their variational approximations. arXiv:1706.09293, pages 1-24, 2017)

Fix $\mathcal{F} \subset \mathcal{M}_1^+(\Theta)$. Assume that $r_n > 0$ is such that there is distribution $\rho_n \in \mathcal{F}$ such that

$$\int \mathcal{K}(P_{\theta_{0}}, P_{\theta})\rho_{n}(\mathrm{d}\theta) \leq r_{n}, \ \int \mathbb{E}\left[\log^{2}\left(\frac{p_{\theta}(X_{i})}{p_{\theta_{0}}(X_{i})}\right)\right]\rho_{n}(\mathrm{d}\theta) \leq r_{n}$$
(1)

and

$$\mathcal{K}(\rho_n, \pi) \le nr_n. \tag{2}$$

Then, for any $lpha\in(0,1)$, for any $(arepsilon,\eta)\in(0,1)^2$,

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta|X_{1}^{n}) \leq \frac{(\alpha+1)r_{n} + \alpha\sqrt{\frac{r_{n}}{n\eta}} + \frac{\log\left(\frac{1}{\varepsilon}\right)}{n}}{1-\alpha}\right] \geq 1-\varepsilon-\eta.$$

J. Ridgway

Concentration of tempered posteriors and their variational appro-

Remark and connection to Bayesian statistics

Put $\mathcal{F}=\mathcal{M}_1^+$,

• Define B(r), for r > 0, as

$$B(r) = \left\{ \theta \in \Theta : \mathcal{K}(P_{\theta_0}, P_{\theta}) \leq r, \operatorname{Var}\left[\log \frac{p_{\theta}(X_i)}{p_{\theta_0}(X_i)} \right] \leq r \right\}.$$

• Taking ρ_n as π restricted to $B(r_n)$, $\rho_n = \pi_{|B(r_n)}$: (1) is satisfied and (2) can be written

$$-\log \pi(B(r_n)) \leq r_n n$$

イロト 不得 トイヨト イヨト ヨー シタウ

Main results

Examples

References

A simpler result in expectation

Theorem

If we only require that there is $ho_n \in \mathcal{F}$ such that

$$\int \mathcal{K}(P_{\theta_{\mathbf{0}}}, P_{\theta})\rho_{n}(\mathrm{d}\theta) \leq r_{n}$$

and

$$\mathcal{K}(\rho_n, \pi) \leq nr_n,$$

then, for any $\alpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{\mathbf{0}}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{1+\alpha}{1-\alpha}r_{n}.$$

J. Ridgway Concentration of tempered posteriors and their variational approx

Introduction	Variational aproach	Main results	Exa mp les	Reterences
Misspecifie	d case			

Assume now that X_1, \ldots, X_n i.i.d from $Q \notin \{P_{\theta}, \theta \in \Theta\}$. Put:

 $\theta^* := \arg\min_{\theta\in\Theta} \mathcal{K}(Q, P_{\theta}).$

Theorem

Assume that there is $\rho_n \in \mathcal{F}$ such that

$$\int \mathcal{K}(P_{\theta^*}, P_{\theta})\rho_n(\mathrm{d}\theta) \leq r_n \text{ and } \mathcal{K}(\rho_n, \pi) \leq nr_n,$$

then, for any $lpha \in (0,1)$,

$$\mathbb{E}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{\mathbf{0}}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta)\right] \leq \frac{\alpha}{1-\alpha}\mathcal{K}(Q, P_{\theta^*}) + \frac{1+\alpha}{1-\alpha}r_n.$$

ヘロト ヘボト ヘヨト ヘヨト

Introduction	Variational aproach	Main results	Exa mp les	References
			•00000000000	
Gaussian vb				

2 Variational aproach

3 Main results

- Gaussian vb
- Matrix completion

・ 回 ト ・ ヨ ト ・ ヨ ト

э

Introduction	Variational aproach	Main results	Exa mp les 0 • 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	References
Gaussian vb				
Gaussian VI	В			

• Let $\Theta = \mathbb{R}^p$.

J. Ridgway Concentration of tempered posteriors and their variational appro-

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Intro duction	Variational aproach	Main results	Exa mp les	References
			000000000000000000000000000000000000000	
Gaussian vb				
Gaussian	VB			

- Let $\Theta = \mathbb{R}^{p}$.
- We start with the family of approximations

$$\mathcal{F}_{\mathcal{G}}^{\Phi} := \left\{ \Phi(d heta; m, \Sigma), \quad m \in \mathbb{R}^{d}, \Sigma \in \mathcal{G} \subset \mathcal{S}^{d}_{+}(\mathbb{R})
ight\},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Introduction	Variational aproach	Main results	Exa mples	References
Constants			000000000000000000000000000000000000000	
Gaussian vo				
Gaussian	VB			

- Let $\Theta = \mathbb{R}^p$.
- We start with the family of approximations

$$\mathcal{F}^{\Phi}_{\mathcal{G}} := \left\{ \Phi(d heta; m, \Sigma), \quad m \in \mathbb{R}^d, \Sigma \in \mathcal{G} \subset \mathcal{S}^d_+(\mathbb{R})
ight\},$$

• We assume that for a model $\{p_{\theta}, \theta \in \Theta\}$ there exists a measurable real valued function $M(\cdot)$ and $p \in \mathbb{N}^* \cup \{\frac{1}{2}\}$

$$\left|\log p_{ heta}(X_1) - \log p_{ heta'}(X_1)
ight| \leq M(X_1) \left\| heta - heta'
ight\|_2^{2p}$$

Furthermore we assume that $\mathbb{E}M(X_1) =: B_1, \quad \mathbb{E}M^2(X_1) =: B_2 < \infty.$

Main results

Examples

References

Gaussian vb

Application of the result

Theorem

Let the family of approximation be \mathcal{F} with $\mathcal{F}^{\Phi}_{\sigma^2 I} \subset \mathcal{F}$ as defined above. We put

$$r_n = \frac{B_1}{n} \vee \frac{B_2}{n^2} \vee C\frac{d}{n} \log n$$

Then for any $\alpha \in (0,1)$, for any η,ϵ

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta|X_{1}^{n}) \leq \frac{(\alpha+1)r_{n} + \alpha\sqrt{\frac{r_{n}}{n\eta}} + \frac{\log\left(\frac{1}{\varepsilon}\right)}{n}}{1-\alpha}\right] \geq 1-\varepsilon-\eta$$

J. Ridgway Concentration of tempered posteriors and their variational appro-

イロト イポト イヨト イヨト

Variational aproach

Main results

Examples

References

Gaussian vb

Stochastic Variational Bayes

• To implement the idea we write

$$\mathcal{F}_{B}^{\Phi} = \left\{ \Phi(d\theta; m, CC^{t}), \quad (m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d} \right\}.$$
$$F : x = (m, C) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}\left[f(x, \xi)\right] = \mathcal{K}(\rho_{m, C}, \pi_{n})$$
where $\xi \sim \mathcal{N}(0, I_{d})$

・ロト ・団ト ・ヨト ・ヨト ・ ヨー ・ つへで

Variational aproach

Main results

Examples

References

Gaussian vb

Stochastic Variational Bayes

To implement the idea we write

 $\mathcal{F}^{\Phi}_{B} = \left\{ \Phi(d\theta; m, CC^{t}), \quad (m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}^{d}_{+} \right\}.$

 $F: x = (m, C) \in \mathbb{R}^d \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}[f(x, \xi)] = \mathcal{K}(\rho_{m, C}, \pi_n)$

where $\xi \sim \mathcal{N}(\mathbf{0}, \mathit{I_d})$

• The optimization problem can be written

$$\min_{x\in\mathbb{B}\cap\mathbb{R}^d\times\mathcal{S}^d_+}\mathbb{E}\left[f(x,\xi)\right],$$

where

$$f((m,C),\xi) := \log p_{m+C\xi}(Y_1^n) + \log \frac{\mathrm{d}\Phi_{m,CC^t}}{\mathrm{d}\pi}(m+C\xi)$$

▲□▶ ▲圖▶ ★≣▶ ▲≣▶ ■ めんの

Concentration of tempered posteriors and their variational appro-

Introduction	Variational aproach	Main results	Exa mples	References
			000000000000	
Gaussian vb				

We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input:
$$x_0$$
, X_1^n , γ_T
For $i \in \{1, \dots, T\}$,
a. Sample $\xi_t \sim \mathcal{N}(0, I_d)$
b. Update $x_t \leftarrow \mathcal{P}_{\mathbb{B}}(x_{t-1} - \gamma_T \nabla f(x_{t-1}, \xi_t))$
End For .
Output: $\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t$

where ∇f is the gradient of the integrand in the objective function

Introduction	Variational aproach	Main results	Exa mp les	References
			000000000000	
Gaussian vb				

- Assume that f is convex in its first component x and that it has L-Lipschitz gradients.
- Define $\tilde{\pi}_{n,\alpha}^k(\mathrm{d}\theta|X_1^n)$ to be the k-th iterate of the algorithm

Theorem

For some C,

$$r_{n} = \frac{B_{1}}{n} \vee \frac{B_{2}}{n^{2}} \vee \left\{ \frac{d}{n} \left[\frac{1}{2} \log \left(\vartheta^{2} n^{2} C \right) + \frac{1}{n \vartheta^{2}} \right] + \frac{\|\theta_{0}\|^{2}}{n \vartheta^{2}} - \frac{d}{2n} \right\}$$

with $\gamma_{k} = \frac{B}{L\sqrt{2k}}$, we get
 $\mathbb{E} \left[\int D_{\alpha} (P_{\theta}, P_{\theta_{0}}) \tilde{\pi}_{n,\alpha}^{k} (\mathrm{d}\theta | X_{1}^{n}) \right] \leq \frac{1+\alpha}{1-\alpha} r_{n} + \frac{1}{n(1-\alpha)} \sqrt{\frac{2BL}{k}}.$

э

Introduction	Variational aproach	Main results	Exa mp les
			00000000000000
Matrix completion			

2 Variational aproach

- Gaussian vb
- Matrix completion

References

∃ 990

Variational aproach

Main results

Examples

References

Matrix completion

Matrix completion: notations

- The parameter heta is a matrix $M \in \mathbb{R}^{m imes p}$, with $m, p \geq 1$.
- Under P_M,

$$Y_k = M_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$. The noise ε_k is i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known.

Variational aproach

Main results

Examples

References

Matrix completion

Matrix completion: notations

- The parameter heta is a matrix $M \in \mathbb{R}^{m imes p}$, with $m, p \geq 1$.
- Under P_M ,

$$Y_k = M_{i_k, j_k} + \varepsilon_k$$

where the (i_k, j_k) are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times \{1, \ldots, p\})$. The noise ε_k is i.i.d $\mathcal{N}(0, \sigma^2)$, σ^2 known.

• Usual assumption: *M* is low-rank.

Variational aproach

Main results

Examples

References

Matrix completion

Prior specification - main idea

Define:

◆□ > ◆□ > ◆臣 > ◆臣 > ○ = ○ ○ ○ ○

Variational aproach

Main results

Examples

References

Matrix completion

Prior specification - main idea

Define:

$$M = \sum_{\ell=1}^{k} U_{\cdot,\ell} (V_{\cdot,\ell})^{T}$$

with k large - e.g. $k = \min(p, m)$.

◆□ > ◆□ > ◆三 > ◆三 > ● ● ● ●

Variational aproach

Main results

Examples

References

Matrix completion

Prior specification - main idea

Define:

$$M = \sum_{\ell=1}^{k} U_{\cdot,\ell} (V_{\cdot,\ell})^{T}$$

with k large - e.g. $k = \min(p, m)$. Definition of π :

- $U_{\cdot,\ell}, V_{\cdot,\ell} \sim \mathcal{N}(0, \gamma_{\ell} I)$,
- γ_ℓ is itself random, such that most of the $\gamma_\ell\simeq 0$

$$rac{1}{\gamma_\ell} \sim \operatorname{Gamma}(a, b).$$

J. Ridgway Concentration of tempered posteriors and their variational appro-

イロト 不得 トイヨト イヨト ヨー シタウ

Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating prediction.

In Proceedings of KDD Cup and Workshop, 2007 Mean-field

approximation, \mathcal{F} given by:

$$\rho(\mathrm{d} U, \mathrm{d} V, \mathrm{d} \gamma) = \bigotimes_{i=1}^{m} \rho_{U_i}(\mathrm{d} U_{i,\cdot}) \bigotimes_{j=1}^{p} \rho_{V_j}(\mathrm{d} V_{j,\cdot}) \bigotimes_{k=1}^{K} \rho_{\gamma_k}(\gamma_k).$$

Introduction Variational aproach Main results Examples References
0000000000000
Matrix completion

Variational approximation

Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating prediction.

In Proceedings of KDD Cup and Workshop, 2007 Mean-field

approximation, \mathcal{F} given by:

$$\rho(\mathrm{d} U, \mathrm{d} V, \mathrm{d} \gamma) = \bigotimes_{i=1}^{m} \rho_{U_i}(\mathrm{d} U_{i,\cdot}) \bigotimes_{j=1}^{p} \rho_{V_j}(\mathrm{d} V_{j,\cdot}) \bigotimes_{k=1}^{K} \rho_{\gamma_k}(\gamma_k).$$

It can be shown that

- ρ_{U_i} is $\mathcal{N}(\mathbf{m}_{i,\cdot}^T, \mathcal{V}_i)$,
- 2 ρ_{V_j} is $\mathcal{N}(\mathbf{n}_{j,\cdot}^T, \mathcal{W}_j)$,
- ρ_{γ_k} is $\Gamma(a+(m_1+m_2)/2,\beta_k)$,

for some $m \times K$ matrix **m** whose rows are denoted by $\mathbf{m}_{i,\cdot}$, some $p \times K$ matrix **n** and some vector $\beta = (\beta_1, \ldots, \beta_K)$.

Introduction	Variational aproach	Main results	Exa mp les	References
			000000000000000000	
Matrix completion				
The VB alg	orithm			

The parameters are updated iteratively through the formulae moments of U:

$$\mathbf{m}_{i,\cdot}^{T} := \frac{2\alpha}{n} \mathcal{V}_{i} \sum_{k:i_{k}=i} Y_{i_{k},j_{k}} \mathbf{n}_{j_{k},\cdot}^{T}.$$

$$\boldsymbol{\mathcal{V}}_{\boldsymbol{j}}^{-1} \mathrel{\mathop:}= \frac{2\alpha}{n} \sum_{\boldsymbol{k}: \boldsymbol{i}_{\boldsymbol{k}} = \boldsymbol{i}} \left[\boldsymbol{\mathcal{W}}_{\boldsymbol{j}_{\boldsymbol{k}}} + \boldsymbol{n}_{\boldsymbol{j}_{\boldsymbol{k}}, \cdot} \boldsymbol{n}_{\boldsymbol{j}_{\boldsymbol{k}}, \cdot}^{\mathsf{T}} \right] + \left(\boldsymbol{a} + \frac{\boldsymbol{m}_{1} + \boldsymbol{m}_{2}}{2} \right) \mathsf{diag}(\boldsymbol{\beta})^{-1}$$

$$\mathbf{n}_{j,\cdot}^T := \frac{\mathbf{2}\alpha}{n} \mathcal{W}_j \sum_{k:j_k=j} \mathbf{Y}_{i_k,j_k} \mathbf{m}_{i_k,\cdot}^T.$$

$$\mathcal{W}_{j}^{-1} := \frac{2\alpha}{n} \sum_{k: j_{k} = j} \left[\mathcal{V}_{j_{k}} + \mathsf{m}_{j_{k}}, \cdot \mathsf{m}_{i_{k}}^{\mathsf{T}}, \right] + \left(\mathsf{a} + \frac{m_{1} + m_{2}}{2} \right) \mathsf{diag}(\beta)^{-1}$$

$$\bigcirc$$
 moments of γ

$$\beta_k := \frac{1}{2} \left[\sum_{i=1}^{m_1} \left(\mathfrak{m}_{i,k}^2 + (\mathcal{V}_i)_{k,k} \right) + \sum_{j=1}^{m_2} \left(\mathfrak{n}_{j,k}^2 + (\mathcal{V}_j)_{k,k} \right) \right].$$

A = A = A = A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A
 A

-

Main results

Examples

References

Matrix completion

Application of our theorem

Theorem

Assume $M = \bar{U}\bar{V}^T$ where

$$ar{U} = (ar{U}_{1,\cdot}|\dots|ar{U}_{r,\cdot}|0|\dots|0)$$
 and $ar{V} = (ar{V}_{1,\cdot}|\dots|ar{V}_{r,\cdot}|0|\dots|0)$

and $\sup_{i,k} |U_{i,k}|, \sup_{j,k} |V_{j,k}| \le B$. Take a > 0 as any constant and $b = \frac{B^2}{512(nmp)^4 [(m \lor p)K]^2}$. Then

$$\mathbb{P}\left[\int D_{\alpha}(P_{\theta}, P_{\theta_{0}})\tilde{\pi}_{n,\alpha}(\mathrm{d}\theta|X_{1}^{n}) \leq \frac{2(\alpha+1)}{1-\alpha}r_{n}\right] \geq 1 - \frac{2}{nr_{n}}$$
where $r_{n} = \frac{\mathcal{C}(a, \sigma^{2}, B)r\max(m, p)\log(nmp)}{n}$.

Introduction	Variational aproach	Main results	Exa mp les	References
			00000000000	
Matrix completion				

Thank you!

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Matrix completion

- P. Alquier and J R. Concentration of tempered posterior and their variational approximations. *arXiv:1706.09293*, pages 1–24, 2017.
- P. Alquier, J. R., and N. Chopin. On the properties of variational approximations of Gibbs posterior. *Journal of Machine Learning Research*, 17(239):1–41, 2016.
- A. Bhattacharya, D. Pati, and Y. Yang. Bayesian fractional posteriors. arXiv preprint arXiv:1611.01125, 2016.
- Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, 79(3):651–676, 2017.
- Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating prediction. In *Proceedings of KDD Cup and Workshop*, 2007.