Concentration of tempered posteriors and their variational approximations

James Ridgway
Joint work with Pierre Alquier

workshop Statistics/Learning at Paris-Saclay January 2018

(1) Introduction
(2) Variational aproach
(3) Main results
(4) Examples

- Gaussian vb
- Matrix completion

Notations

Assume that we observe X_{1}, \ldots, X_{n} i.i.d from $P_{\theta_{0}}$ in a model $\left\{P_{\theta}, \theta \in \Theta\right\}$ dominated by $Q: \frac{d P_{\theta}}{\mathrm{d} Q}=p_{\theta}$. Prior π on Θ.

The likelihood

$$
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(X_{i}\right)
$$

The posterior

$$
\pi_{n}(\mathrm{~d} \theta) \propto L_{n}(\theta) \pi(\mathrm{d} \theta)
$$

Notations

Assume that we observe X_{1}, \ldots, X_{n} i.i.d from $P_{\theta_{0}}$ in a model $\left\{P_{\theta}, \theta \in \Theta\right\}$ dominated by $Q: \frac{\mathrm{d} P_{\theta}}{\mathrm{d} Q}=p_{\theta}$. Prior π on Θ.

The likelihood

$$
L_{n}(\theta)=\prod_{i=1}^{n} p_{\theta}\left(X_{i}\right)
$$

The posterior

$$
\pi_{n}(\mathrm{~d} \theta) \propto L_{n}(\theta) \pi(\mathrm{d} \theta)
$$

The tempered posterior - $0<\alpha<1$

$$
\pi_{n, \alpha}(\mathrm{~d} \theta) \propto\left[L_{n}(\theta)\right]^{\alpha} \pi(\mathrm{d} \theta)
$$

Classic way to deal with posteriors: Monte Carlo

- Monte Carlo algorithms are widely used to deal with posteriors or tempered posteriors (e.g. MCMC, SMC)

Classic way to deal with posteriors: Monte Carlo

- Monte Carlo algorithms are widely used to deal with posteriors or tempered posteriors (e.g. MCMC, SMC)
- Issues:
- Computational complexity
- Lack of non asymptotic theory, under investigation for behaviour in high dimension etc.
Recent research filling the gap in this direction for log-concave problems:

Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities.
Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651-676, 2017
(2) Variational aproach

(3) Main results

(4) Examples

- Gaussian vb
- Matrix completion

Variational Bayes

Variational Bayes is a deterministic approximation of some probability measure.

Let $\mathcal{F} \subset \mathcal{M}_{1}^{+}(\Theta)$. We define the VB approximation $\tilde{\pi}_{n, \alpha}\left(\mathrm{~d} \theta \mid X_{1}^{n}\right)$ by

$$
\tilde{\pi}_{n, \alpha}\left(\cdot \mid X_{1}^{n}\right)=\underset{\rho \in \mathcal{F}}{\arg \min } \mathcal{K}\left(\rho, \pi_{n, \alpha}\left(\cdot \mid X_{1}^{n}\right)\right) .
$$

where the Kullback-Leibler divergence is

$$
\mathcal{K}(P, R)=\left\{\begin{array}{l}
\int \log \left(\frac{\mathrm{d} P}{\mathrm{~d} R}\right) \mathrm{d} P \text { if } P \ll R \\
+\infty \text { otherwise } .
\end{array}\right.
$$

Variational Bayes

Variational Bayes is a deterministic approximation of some probability measure.

Let $\mathcal{F} \subset \mathcal{M}_{1}^{+}(\Theta)$. We define the VB approximation $\tilde{\pi}_{n, \alpha}\left(\mathrm{~d} \theta \mid X_{1}^{n}\right)$ by

$$
\tilde{\pi}_{n, \alpha}\left(\cdot \mid X_{1}^{n}\right)=\underset{\rho \in \mathcal{F}}{\arg \min } \mathcal{K}\left(\rho, \pi_{n, \alpha}\left(\cdot \mid X_{1}^{n}\right)\right) .
$$

where the Kullback-Leibler divergence is

$$
\mathcal{K}(P, R)=\left\{\begin{array}{l}
\int \log \left(\frac{\mathrm{d} P}{\mathrm{~d} R}\right) \mathrm{d} P \text { if } P \ll R \\
+\infty \text { otherwise }
\end{array}\right.
$$

What family of distribtion \mathcal{F} ?

Two common choices:

- Parametric family:

$$
\mathcal{F}=\left\{q_{\vartheta}(d \theta), \vartheta \in \Theta^{\prime}\right\}
$$

What family of distribtion \mathcal{F} ?

Two common choices:

- Parametric family:

$$
\mathcal{F}=\left\{q_{\vartheta}(d \theta), \vartheta \in \Theta^{\prime}\right\}
$$

- Mean field:

$$
\begin{aligned}
\mathcal{F}^{\mathrm{mf}}:= & \left\{\rho(\mathrm{d} \theta)=\bigotimes_{i=1}^{p} \rho_{i}\left(\mathrm{~d} \theta_{i}\right) \in \mathcal{M}_{1}^{+}(\Theta),\right. \\
& \left.\forall i=1, \cdots, p \quad \rho_{i} \in \mathcal{M}_{1}^{+}\left(\Theta_{i}\right), \quad \Theta=\Theta_{1} \times \cdots \times \Theta_{p}\right\},
\end{aligned}
$$

Previous results

In a previous paper
P. Alquier, J. R., and N. Chopin. On the properties of variational approximations of Gibbs posterior.
Journal of Machine Learning Research, 17(239):1-41, 2016

- We studied variational approximations of Gibbs posteriors with bounded risk. Fractional posteriors do not fall in this category.
- pseudo-posterior of interest are defined for a risk $r_{n}(\theta)$

$$
\pi_{\gamma}(\mathrm{d} \theta) \propto \exp \left(-\gamma r_{n}(\theta)\right) \pi(\theta)
$$

Previous results

In a previous paper
P. Alquier, J. R., and N. Chopin. On the properties of variational approximations of Gibbs posterior.
Journal of Machine Learning Research, 17(239):1-41, 2016

- We studied variational approximations of Gibbs posteriors with bounded risk. Fractional posteriors do not fall in this category.
- pseudo-posterior of interest are defined for a risk $r_{n}(\theta)$

$$
\pi_{\gamma}(\mathrm{d} \theta) \propto \exp \left(-\gamma r_{n}(\theta)\right) \pi(\theta)
$$

(2) Variational aproach
(3) Main results

4 Examples

- Gaussian vb
- Matrix completion

Definition

The α-Rényi divergence for $\alpha \in(0,1)$

$$
D_{\alpha}(P, R)=\left\{\begin{array}{l}
\frac{1}{\alpha-1} \log \int\left(\frac{\mathrm{~d} P}{\mathrm{~d} R}\right)^{\alpha-1} \mathrm{~d} P \text { if } P \ll R \\
+\infty \text { otherwise. }
\end{array}\right.
$$

Definition

The α-Rényi divergence for $\alpha \in(0,1)$

$$
D_{\alpha}(P, R)=\left\{\begin{array}{l}
\frac{1}{\alpha-1} \log \int\left(\frac{\mathrm{~d} P}{\mathrm{~d} R}\right)^{\alpha-1} \mathrm{~d} P \text { if } P \ll R \\
+\infty \text { otherwise } .
\end{array}\right.
$$

In particular, for $1 / 2 \leq \alpha$, link with Hellinger and Kullback:

$$
\mathcal{H}^{2}(P, R) \leq D_{\alpha}(P, R) \underset{\alpha \nmid 1}{\longrightarrow} \mathcal{K}(P, R) .
$$

Concentration of tempered posterior

$$
\mathcal{B}(r)=\left\{\theta \in \Theta: \mathcal{K}\left(P_{\theta_{0}}, P_{\theta}\right) \leq r \text { and } \operatorname{Var}\left[\log \frac{p_{\theta}\left(X_{i}\right)}{p_{\theta_{0}}\left(X_{i}\right)}\right] \leq r .\right\}
$$

Theorem A. Bhattacharya, D. Pati, and \mathbf{Y}. Yang. Bayesian fractional posteriors. arXiv preprint arXiv:1611.01125, 2016

For any sequence $\left(r_{n}\right)$ such that

$$
-\log \pi\left[B\left(r_{n}\right)\right] \leq n r_{n}
$$

we have

$$
\mathbb{P}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{o}}\right) \pi_{n, \alpha}(\mathrm{~d} \theta) \leq \frac{2(1+\alpha)}{1-\alpha} r_{n}\right] \geq 1-\frac{2}{n r_{n}} .
$$

General result for VB approximation

Theorem (p. Alquier and J R. Concentration of tempered posterior and their variational approximations. arxiv:1706.09293, pages $1-24$, 2017)

Fix $\mathcal{F} \subset \mathcal{M}_{1}^{+}(\Theta)$. Assume that $r_{n}>0$ is such that there is distribution $\rho_{n} \in \mathcal{F}$ such that

$$
\begin{equation*}
\int \mathcal{K}\left(P_{\theta_{0}}, P_{\theta}\right) \rho_{n}(\mathrm{~d} \theta) \leq r_{n}, \quad \int \mathbb{E}\left[\log ^{2}\left(\frac{p_{\theta}\left(X_{i}\right)}{p_{\theta_{0}}\left(X_{i}\right)}\right)\right] \rho_{n}(\mathrm{~d} \theta) \leq r_{n} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\mathcal{K}\left(\rho_{n}, \pi\right) \leq n r_{n} . \tag{2}
\end{equation*}
$$

Then, for any $\alpha \in(0,1)$, for any $(\varepsilon, \eta) \in(0,1)^{2}$,
$\mathbb{P}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}\left(\mathrm{~d} \theta \mid X_{1}^{n}\right) \leq \frac{(\alpha+1) r_{n}+\alpha \sqrt{\frac{r_{n}}{n \eta}}+\frac{\log \left(\frac{1}{\varepsilon}\right)}{n}}{1-\alpha}\right] \geq 1-\varepsilon-\eta$.

Remark and connection to Bayesian statistics

Put $\mathcal{F}=\mathcal{M}_{1}^{+}$,

- Define $B(r)$, for $r>0$, as

$$
B(r)=\left\{\theta \in \Theta: \mathcal{K}\left(P_{\theta_{0}}, P_{\theta}\right) \leq r, \operatorname{Var}\left[\log \frac{p_{\theta}\left(X_{i}\right)}{p_{\theta_{0}}\left(X_{i}\right)}\right] \leq r\right\} .
$$

- Taking ρ_{n} as π restricted to $B\left(r_{n}\right), \rho_{n}=\pi_{\mid B\left(r_{n}\right)}$:
(1) is satisfied and (2) can be written

$$
-\log \pi\left(B\left(r_{n}\right)\right) \leq r_{n} n
$$

A simpler result in expectation

Theorem
If we only require that there is $\rho_{n} \in \mathcal{F}$ such that

$$
\int \mathcal{K}\left(P_{\theta_{0}}, P_{\theta}\right) \rho_{n}(\mathrm{~d} \theta) \leq r_{n}
$$

and

$$
\mathcal{K}\left(\rho_{n}, \pi\right) \leq n r_{n},
$$

then, for any $\alpha \in(0,1)$,

$$
\mathbb{E}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}(\mathrm{~d} \theta)\right] \leq \frac{1+\alpha}{1-\alpha} r_{n} .
$$

Misspecified case

Assume now that X_{1}, \ldots, X_{n} i.i.d from $Q \notin\left\{P_{\theta}, \theta \in \Theta\right\}$. Put:

$$
\theta^{*}:=\arg \min _{\theta \in \Theta} \mathcal{K}\left(Q, P_{\theta}\right) .
$$

Theorem

Assume that there is $\rho_{n} \in \mathcal{F}$ such that

$$
\int \mathcal{K}\left(P_{\theta^{*}}, P_{\theta}\right) \rho_{n}(\mathrm{~d} \theta) \leq r_{n} \text { and } \mathcal{K}\left(\rho_{n}, \pi\right) \leq n r_{n},
$$

then, for any $\alpha \in(0,1)$,

$$
\mathbb{E}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}(\mathrm{~d} \theta)\right] \leq \frac{\alpha}{1-\alpha} \mathcal{K}\left(Q, P_{\theta^{*}}\right)+\frac{1+\alpha}{1-\alpha} r_{n} .
$$

2 Variational aproach

(3) Main results
(4) Examples

- Gaussian vb
- Matrix completion

Gaussian vb

Gaussian VB

- Let $\Theta=\mathbb{R}^{p}$.

Gaussian vb

Gaussian VB

- Let $\Theta=\mathbb{R}^{p}$.
- We start with the family of approximations

$$
\mathcal{F}_{\mathcal{G}}^{\Phi}:=\left\{\Phi(d \theta ; m, \Sigma), \quad m \in \mathbb{R}^{d}, \Sigma \in \mathcal{G} \subset \mathcal{S}_{+}^{d}(\mathbb{R})\right\}
$$

Gaussian VB

- Let $\Theta=\mathbb{R}^{p}$.
- We start with the family of approximations

$$
\mathcal{F}_{\mathcal{G}}^{\Phi}:=\left\{\Phi(d \theta ; m, \Sigma), \quad m \in \mathbb{R}^{d}, \Sigma \in \mathcal{G} \subset \mathcal{S}_{+}^{d}(\mathbb{R})\right\}
$$

- We assume that for a model $\left\{p_{\theta}, \theta \in \Theta\right\}$ there exists a measurable real valued function $M(\cdot)$ and $p \in \mathbb{N}^{\star} \cup\left\{\frac{1}{2}\right\}$

$$
\left|\log p_{\theta}\left(X_{1}\right)-\log p_{\theta^{\prime}}\left(X_{1}\right)\right| \leq M\left(X_{1}\right)\left\|\theta-\theta^{\prime}\right\|_{2}^{2 p}
$$

Furthermore we assume that
$\mathbb{E} M\left(X_{1}\right)=: B_{1}, \quad \mathbb{E} M^{2}\left(X_{1}\right)=: B_{2}<\infty$.

Application of the result

Theorem

Let the family of approximation be \mathcal{F} with $\mathcal{F}_{\sigma^{2} I}^{\Phi} \subset \mathcal{F}$ as defined above. We put

$$
r_{n}=\frac{B_{1}}{n} \vee \frac{B_{2}}{n^{2}} \vee C \frac{d}{n} \log n
$$

Then for any $\alpha \in(0,1)$, for any η, ϵ
$\mathbb{P}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}\left(\mathrm{~d} \theta \mid X_{1}^{n}\right) \leq \frac{(\alpha+1) r_{n}+\alpha \sqrt{\frac{r_{n}}{n \eta}}+\frac{\log \left(\frac{1}{\varepsilon}\right)}{n}}{1-\alpha}\right] \geq 1-\varepsilon-\eta$.

Gaussian vb

Stochastic Variational Bayes

- To implement the idea we write

$$
\begin{gathered}
\mathcal{F}_{B}^{\Phi}=\left\{\Phi\left(d \theta ; m, C C^{t}\right), \quad(m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d}\right\} . \\
F: x=(m, C) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}[f(x, \xi)]=\mathcal{K}\left(\rho_{m, c}, \pi_{n}\right)
\end{gathered}
$$

where $\xi \sim \mathcal{N}\left(0, I_{d}\right)$

Stochastic Variational Bayes

- To implement the idea we write

$$
\begin{gathered}
\mathcal{F}_{B}^{\Phi}=\left\{\Phi\left(d \theta ; m, C C^{t}\right), \quad(m, C) \in \mathbb{B} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d}\right\} . \\
F: x=(m, C) \in \mathbb{R}^{d} \times \mathbb{R}^{d \times d} \mapsto \mathbb{E}[f(x, \xi)]=\mathcal{K}\left(\rho_{m, c}, \pi_{n}\right)
\end{gathered}
$$

where $\xi \sim \mathcal{N}\left(0, I_{d}\right)$

- The optimization problem can be written

$$
\min _{x \in \mathbb{B}^{d} \cap \mathbb{R}^{d} \times \mathcal{S}_{+}^{d}} \mathbb{E}[f(x, \xi)],
$$

where

$$
f((m, C), \xi):=\log p_{m+C \xi}\left(Y_{1}^{n}\right)+\log \frac{\mathrm{d} \Phi_{m, C C^{t}}}{\mathrm{~d} \pi}(m+C \xi)
$$

We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input: $\chi_{0}, X_{1}^{n}, \gamma_{T}$
For $i \in\{1, \cdots, T\}$,
a. Sample $\xi_{t} \sim \mathcal{N}\left(0, I_{d}\right)$
b. Update $x_{t} \leftarrow \mathcal{P}_{\mathbb{B}}\left(x_{t-1}-\gamma_{T} \nabla f\left(x_{t-1}, \xi_{t}\right)\right)$

End For .
Output: $\bar{x}_{T}=\frac{1}{T} \sum_{t=1}^{T} x_{t}$
where ∇f is the gradient of the integrand in the objective function

- Assume that f is convex in its first component x and that it has L-Lipschitz gradients.
- Define $\tilde{\pi}_{n, \alpha}^{k}\left(\mathrm{~d} \theta \mid X_{1}^{n}\right)$ to be the k-th iterate of the algorithm

Theorem

For some C,

$$
r_{n}=\frac{B_{1}}{n} \vee \frac{B_{2}}{n^{2}} \vee\left\{\frac{d}{n}\left[\frac{1}{2} \log \left(\vartheta^{2} n^{2} C\right)+\frac{1}{n \vartheta^{2}}\right]+\frac{\left\|\theta_{0}\right\|^{2}}{n \vartheta^{2}}-\frac{d}{2 n}\right\}
$$

with $\gamma_{k}=\frac{B}{L \sqrt{2 k}}$, we get

$$
\mathbb{E}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}^{k}\left(\mathrm{~d} \theta \mid X_{1}^{n}\right)\right] \leq \frac{1+\alpha}{1-\alpha} r_{n}+\frac{1}{n(1-\alpha)} \sqrt{\frac{2 B L}{k}} .
$$

(2) Variational aproach
(3) Main results
(4) Examples

- Gaussian vb
- Matrix completion

Matrix completion: notations

- The parameter θ is a matrix $M \in \mathbb{R}^{m \times p}$, with $m, p \geq 1$.
- Under P_{M},

$$
Y_{k}=M_{i_{k}, j_{k}}+\varepsilon_{k}
$$

where the $\left(i_{k}, j_{k}\right)$ are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times\{1, \ldots, p\})$. The noise ε_{k} is i.i.d $\mathcal{N}\left(0, \sigma^{2}\right), \sigma^{2}$ known.

Matrix completion: notations

- The parameter θ is a matrix $M \in \mathbb{R}^{m \times p}$, with $m, p \geq 1$.
- Under P_{M},

$$
Y_{k}=M_{i_{k}, j_{k}}+\varepsilon_{k}
$$

where the $\left(i_{k}, j_{k}\right)$ are i.i.d $\mathcal{U}(\{1, \ldots, m\} \times\{1, \ldots, p\})$. The noise ε_{k} is i.i.d $\mathcal{N}\left(0, \sigma^{2}\right), \sigma^{2}$ known.

- Usual assumption: M is low-rank.

Prior specification - main idea

Define:

$$
\underbrace{M}_{p \times m}=\underbrace{U}_{p \times k} \underbrace{V^{T}}_{k \times m}
$$

Prior specification - main idea

Define:

$$
\underbrace{M}_{p \times m}=\underbrace{U}_{p \times k} \underbrace{V^{T}}_{k \times m}
$$

$$
M=\sum_{\ell=1}^{k} U_{\cdot, \ell}\left(V_{\cdot, \ell}\right)^{T}
$$

with k large - e.g. $k=\min (p, m)$.

Prior specification - main idea

Define:

$$
\underbrace{M}_{p \times m}=\underbrace{U}_{p \times k} \underbrace{V^{T}}_{k \times m}
$$

$$
M=\sum_{\ell=1}^{k} U_{\cdot, \ell}\left(V_{\cdot, \ell}\right)^{T}
$$

with k large - e.g. $k=\min (p, m)$.
Definition of π :

- $U_{\cdot, \ell}, V_{\cdot, \ell} \sim \mathcal{N}\left(0, \gamma_{\ell} I\right)$,
- γ_{ℓ} is itself random, such that most of the $\gamma_{\ell} \simeq 0$

$$
\frac{1}{\gamma_{\ell}} \sim \operatorname{Gamma}(a, b) .
$$

Variational approximation

Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating prediction.
In Proceedings of KDD Cup and Workshop, 2007 Mean-field approximation, \mathcal{F} given by:

$$
\rho(\mathrm{d} U, \mathrm{~d} V, \mathrm{~d} \gamma)=\bigotimes_{i=1}^{m} \rho_{U_{i}}\left(\mathrm{~d} U_{i, \cdot}\right) \bigotimes_{j=1}^{p} \rho_{V_{j}}\left(\mathrm{~d} V_{j, \cdot}\right) \bigotimes_{k=1}^{K} \rho_{\gamma_{k}}\left(\gamma_{k}\right) .
$$

Variational approximation

Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating prediction.
In Proceedings of KDD Cup and Workshop, 2007 Mean-field approximation, \mathcal{F} given by:

$$
\rho(\mathrm{d} U, \mathrm{~d} V, \mathrm{~d} \gamma)=\bigotimes_{i=1}^{m} \rho_{U_{i}}\left(\mathrm{~d} U_{i, \cdot}\right) \bigotimes_{j=1}^{p} \rho_{V_{j}}\left(\mathrm{~d} V_{j, .}\right) \bigotimes_{k=1}^{K} \rho_{\gamma_{k}}\left(\gamma_{k}\right)
$$

It can be shown that
(1) $\rho_{U_{i}}$ is $\mathcal{N}\left(\mathbf{m}_{i,}^{T}, \mathcal{V}_{i}\right)$,
(0) ρV_{j} is $\mathcal{N}\left(\mathbf{n}_{j,}^{T}, \mathcal{W}_{j}\right)$,
(0) $\rho_{\gamma_{k}}$ is $\Gamma\left(a+\left(m_{1}+m_{2}\right) / 2, \beta_{k}\right)$,
for some $m \times K$ matrix \mathbf{m} whose rows are denoted by $\mathbf{m}_{i, \text {, }}$, some $p \times K$ matrix \mathbf{n} and some vector $\beta=\left(\beta_{1}, \ldots, \beta_{K}\right)$.

The VB algorithm

The parameters are updated iteratively through the formulae
(1) moments of U :

$$
\begin{gathered}
\mathbf{m}_{i, \cdot}^{T}:=\frac{\mathbf{2} \alpha}{n} \mathcal{V}_{i} \sum_{k: i_{k}=i} Y_{i_{k}, j_{k}} \mathbf{n}_{j_{k}, \cdot}^{T} \\
\mathcal{V}_{i}^{-\mathbf{1}}:=\frac{\mathbf{2} \alpha}{n} \sum_{k: i_{k}=i}\left[\mathcal{W}_{j_{k}}+\mathbf{n}_{j_{k}, \cdot}, \mathbf{n}_{j_{k}}^{T}, \cdot\right]+\left(a+\frac{m_{\mathbf{1}}+m_{\mathbf{2}}}{\mathbf{2}}\right) \operatorname{diag}(\beta)^{-\mathbf{1}}
\end{gathered}
$$

(2) moments of V :

$$
\begin{gathered}
\mathbf{n}_{j, \cdot}^{T}:=\frac{\mathbf{2} \alpha}{n} \mathcal{W}_{j} \sum_{k: j_{k}=j} Y_{i_{k}, j_{k}} \mathbf{m}_{i_{k}}^{T}, \cdot \\
\mathcal{W}_{j}^{-\mathbf{1}}:=\frac{\mathbf{2} \alpha}{n} \sum_{k: j_{k}=j}\left[\mathcal{V}_{i_{k}}+\mathbf{m}_{i_{k}}, \cdot \mathbf{m}_{i_{k}}^{T}, \cdot\right]+\left(a+\frac{m_{\mathbf{1}}+m_{\mathbf{2}}}{\mathbf{2}}\right) \operatorname{diag}(\beta)^{-\mathbf{1}}
\end{gathered}
$$

(3) moments of γ :

$$
\beta_{k}:=\frac{\mathbf{1}}{\mathbf{2}}\left[\sum_{i=\mathbf{1}}^{m_{\mathbf{1}}}\left(\mathbf{m}_{i, k}^{\mathbf{2}}+\left(\mathcal{V}_{i}\right)_{k, k}\right)+\sum_{j=\mathbf{1}}^{m_{\mathbf{2}}}\left(\mathbf{n}_{j, k}^{\mathbf{2}}+\left(\mathcal{V}_{j}\right)_{k, k}\right)\right] .
$$

Application of our theorem

Theorem
Assume $M=\bar{U} \bar{V}^{T}$ where

$$
\bar{U}=\left(\bar{U}_{1, \cdot}|\ldots| \bar{U}_{r, \cdot}|0| \ldots \mid 0\right) \text { and } \bar{V}=\left(\bar{V}_{1, \cdot}|\ldots| \bar{V}_{r, \cdot}|0| \ldots \mid 0\right)
$$

and $\sup _{i, k}\left|U_{i, k}\right|, \sup _{j, k}\left|V_{j, k}\right| \leq B$. Take $a>0$ as any constant and $b=\frac{B^{2}}{512(n m p)^{4}[(m \vee p) K]^{2}}$. Then

$$
\begin{gathered}
\mathbb{P}\left[\int D_{\alpha}\left(P_{\theta}, P_{\theta_{0}}\right) \tilde{\pi}_{n, \alpha}\left(\mathrm{~d} \theta \mid X_{1}^{n}\right) \leq \frac{2(\alpha+1)}{1-\alpha} r_{n}\right] \geq 1-\frac{2}{n r_{n}} \\
\text { where } r_{n}=\frac{\mathcal{C}\left(a, \sigma^{2}, B\right) r \max (m, p) \log (n m p)}{n}
\end{gathered}
$$

Thank you!

P. Alquier and J R. Concentration of tempered posterior and their variational approximations. arXiv:1706.09293, pages 1-24, 2017.
P. Alquier, J. R., and N. Chopin. On the properties of variational approximations of Gibbs posterior. Journal of Machine Learning Research, 17(239):1-41, 2016.
A. Bhattacharya, D. Pati, and Y. Yang. Bayesian fractional posteriors. arXiv preprint arXiv:1611.01125, 2016.
Arnak S Dalalyan. Theoretical guarantees for approximate sampling from smooth and log-concave densities. Journal of the Royal Statistical Society: Series B (Statistical Methodology), 79(3):651-676, 2017.
Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating prediction. In Proceedings of KDD Cup and Workshop, 2007.

