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Notations

Assume that we observe Xy, ..., X, i.i.d from Py, in a model
{Py,0 € ©} dominated by Q: % = pp. Prior 7 on ©.

The likelihood

Lo(©) = [ (%)

References

The posterior

n(dl) o< Ly(0)mw(d6).
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Notations

Assume that we observe Xy, ..., X, i.i.d from Py, in a model
{Py,0 € ©} dominated by Q: % = pp. Prior 7 on ©.

The likelihood

Lo(©) = [ (%)

The posterior

n(dl) o< Ly(0)mw(d6).

The tempered posterior - 0 < o < 1

Tn,o(d0) o [Ly(0)]“7(d6).
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Introduction

Classic way to deal with posteriors: Monte Carlo

@ Monte Carlo algorithms are widely used to deal with posteriors or
tempered posteriors (e.g. MCMC, SMC)
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Introduction

Classic way to deal with posteriors: Monte Carlo

@ Monte Carlo algorithms are widely used to deal with posteriors or
tempered posteriors (e.g. MCMC, SMC)

@ Issues:
o Computational complexity
o Lack of non asymptotic theory, under investigation for behaviour in
high dimension etc.
Recent research filling the gap in this direction for log-concave
problems:

Arnak S Dalalyan. Theoretical guarantees for approximate sampling
from smooth and log-concave densities.

Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(3):651-676, 2017
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Variational aproach

Variational Bayes

Variational Bayes is a deterministic approximation of some probability
measure.

Let F C M (©). We define the VB approximation 7, ,(d6|X{") by
7tn,a (| X{') = arg min K(p, a0 (-|X7))-
pEF
where the Kullback-Leibler divergence is

K(P.R) [log (4£)dPif P< R
7| +oo otherwise.
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Variational Bayes

Variational Bayes is a deterministic approximation of some probability
measure.

Let F C M (©). We define the VB approximation 7, ,(d6|X{") by
7tn,a (| X{') = arg min K(p, a0 (-|X7))-
pEF
where the Kullback-Leibler divergence is
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What family of distribtion F7

Two common choices:

@ Parametric family:

F ={qy(d0),9 € ©'}

J. Ridgway Concentration of tempered posteriors and their variational appro:



Variational aproach

What family of distribtion F7

Two common choices:

@ Parametric family:

F ={qy(d0),9 € ©'}
@ Mean field:

Fmf= {p(dﬁ) = ®pf(d9f) € M (),

Vi=1---,p p,'€M-1i_(e;), @—elxmx@p},
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Previous results

In a previous paper

P. Alquier, J. R., and N. Chopin. On the properties of variational

approximations of Gibbs posterior.
Journal of Machine Learning Research, 17(239):1-41, 2016

o We studied variational approximations of Gibbs posteriors with
bounded risk. Fractional posteriors do not fall in this category.

@ pseudo-posterior of interest are defined for a risk r,(0)

7,(d0) o< exp (—yra(0)) 7(0)
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Definition

The a-Rényi divergence for « € (0,1)

L_log [ (2£)* 1 dPif P < R

D,(P,R) = ;
( ) 400 otherwise.
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Main results

Definition

The a-Rényi divergence for « € (0,1)

a—1 .
400 otherwise.

In particular, for 1/2 < «, link with Hellinger and Kullback:

Hz(Pa R) S Da(’Da R) 7 ]C(Pa R)
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Main results

Concentration of tempered posterior

B(r) = {0 € © : K(Pgy, Py) < r and Var [Iog SZ,(();,-))} < r.}

Theorem A. Bhattacharya, D. Pati, and Y. Yang. Bayesian fractional posteriors.
arXiv preprint arXiv:1611.01125, 2016

For any sequence (r,) such that
—log w[B(r,)] < nry

we have

P {/ Da(Poy, Poo)mn,a(df) < Mrn >1- i
-«

nrp
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General result for VB approximation

Theorem (P. Alquier and J R. Concentration of tempered posterior and their variational approximations.
arXiv:1706.09293, pages 1-24, 2017)

Fix F C M{(®©). Assume that r, > 0 is such that there is distribution
pn € F such that

/iC(Pao, Po)pn(d0) < ra, /]E [|0g2 (Z(();’_))ﬂ pn(d0) < rp (1)

and
K(pn,m) < nr,. (2)

Then, for any o € (0,1), for any (g,n) € (0,1)2,

(a4 1), + a\/T—;]+ AOgI(})
P | [ DalPa. Pr)ina(dblX)) < > 1en

11—«
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Remark and connection to Bayesian statistics

Put F = M{,
@ Define B(r), for r > 0, as

B(r) = {9 €0 : K(Pg,, Py) < r, Var [|og ;i(();i))] < r}.

o Taking p, as 7 restricted to B(r,), pn = 7|p(r,): (1) is satisfied and
(2) can be written
—logm(B(rs)) < rpn
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A simpler result in expectation

Theorem
If we only require that there is p, € F such that

[ KPan. Pa)oult) <
and
K(pn, ) < nry,
then, for any « € (0,1),

1
E [/ Da(Pg,Peo)frn,a(de)] < 1+ar,,.
—
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Misspecified case

Assume now that Xi, ..., X, i.i.d from Q ¢ {Py,0 € ©}. Put:

0" :=arg g)eig K(Q, Py).

Theorem
Assume that there is p, € F such that

/ K(Po-, Po)pn(db) < rn and K(pn, ) < nra,

then, for any a € (0, 1),

l+ao
l—«

p.

E V Da(Pa, Py )ina(d8)| < —2—K(Q, Po-) +

T l-«
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@ Examples
@ Gaussian vb

@ Matrix completion
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Gaussian VB

o Let © =RP,
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Gaussian VB

o Let © = RP.
@ We start with the family of approximations

Fg ={®(ds;m¥), meR! T egcCSIR)},
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Gaussian VB

o Let © = RP.
@ We start with the family of approximations

Fg ={®(ds;m¥), meR! T egcCSIR)},
o We assume that for a model {py, 0 € ©} there exists a measurable
real valued function M(-) and p € N* U {3}

llog pa(X1) — log par (X0)| < M(X1) |0 — 6/ 157

Furthermore we assume that
]EM(Xl) = B;l, EMZ(Xl) =: B, < 0.
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Application of the result

Theorem

Let the family of approximation be F with .7-";’2, C F as defined above.

We put

Examples
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Stochastic Variational Bayes

@ To implement the idea we write
Fg = {(do; m,CC*), (m,C)eBNR? xS} .

F:x=(m,C)eR? xR 5 E[f(x,&)] = K(pm.c,Tn)
where & ~ N(0, Iy)
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Stochastic Variational Bayes

@ To implement the idea we write
Fg = {(do; m,CC*), (m,C)eBNR? xS} .

F:x=(m,C)eR? xR 5 E[f(x,&)] = K(pm.c,Tn)
where & ~ N(0, Iy)

@ The optimization problem can be written

min  E[f(x,&)],

xEBNRI xS

where

dd,, cc:
F((m. €).8) = log prvsce(¥7) + log 22" (m 1 Ce)
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We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input: xo, X{', v7
For ie{l,---, T},
a. Sample & ~ N(0, Iy)
b. Update x; + Py (x¢—1 — 77 VF(xt—1,&t))
End For .
Output: X7 = % E;l Xt

where V£ is the gradient of the integrand in the objective function
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@ Assume that f is convex in its first component x and that it has
L—Lipschitz gradients.

o Define i} ,(d|X]") to be the k-th iterate of the algorithm

Theorem
For some C,
B B [d 2 2 [6olI> d
r"_nvn2v{n[ B3(E4 ) < 192 +m92 2n

with v, = L—\/Bﬂ, we get

1+« 1 2BL

1—ar"+n(1—oz) Tk

E [/D (Po, Pog )75 o (6] X )}
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@ Examples
@ Gaussian vb

@ Matrix completion
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Matrix completion: notations

@ The parameter 0 is a matrix M € R™*P with m,p > 1.

@ Under Py,
Yi =M, j + ¢«

where the (ik, jk) are i.i.d U({1,...,m} x {1,...,p}). The noise
is i.i.d NV(0,0?), 02 known.
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Matrix completion: notations

@ The parameter 0 is a matrix M € R™*P with m,p > 1.

@ Under Py,
Yi =M, j + ¢«

where the (ik, jk) are i.i.d U({1,...,m} x {1,...,p}). The noise
is i.i.d NV(0,0?), 02 known.

@ Usual assumption: M is low-rank.
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Matrix completion

Prior specification - main idea
Define:

M =_U VT
~
pxm pxk kxm
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Matrix completion

Prior specification - main idea

Define:

M= U VT

~— ==

pxm pxk kxm
k

M= U,V,)T
=1

with k large - e.g. k = min(p, m).
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Prior specification - main idea

Define:
M=uU VT J
—~ O~
pxXm pXxXk kxm
k
M=% UV.,)"
=1

with k large - e.g. k = min(p, m).
Definition of :
o U g, Vg~ N(0,7),
@ ~y, is itself random, such that most of the v, ~ 0

1
— ~ Gamma(a, b).
e
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Variational approximation

Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating
prediction.

In Proceedings of KDD Cup and Workshop, 2007 Mean-field
approximation, F given by:

m P K
p(dU,dV,dy) = @) pu(dUi.) Q) pv,(dV;.) Q) o (1)-
i=1 =1 k=1
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Variational approximation

Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating
prediction.
In Proceedings of KDD Cup and Workshop, 2007 Mean-field

approximation, F given by:

m P K
p(dU,dV, dv) = Q) pu(dU:.) Q) pv,(AV5.) &) o ().
i=1 j=1 k=1

It can be shown that
Q pu; is N(m/ V),
Q pv is N(n] W),
Q p isT(a+ (m + m2)/2, B),

for some m x K matrix m whose rows are denoted by m; ., some p x K
matrix n and some vector 8 = (B4, ..., Bk)-
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Matrix completion

The VB algorithm

The parameters are updated iteratively through the formulae
o moments of U:

—v Z koK Jka
Ik =i
2 my + m,
-1 _ . . T 1 2 . —1
v, e Z,I:Wlk+"1k""jkv']+(a+ f) diag(3)
keiy =i
e moments of V: 5
T ._ % T
M= WD Y™,
kijk=i
2« my + m;
1 T 1t m2 L —1
Wit 225 vy amy ol ] (o f) diag(8)
" k=i
e moments of ~
m: m;
BN RN 22 -
B=5 |12 (m? s+ i) + 2 (07 4+ Vi) | -
i=1 Jj=1

References
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Application of our theorem

Theorem

Assume M = UV where
0= (Gr]...|0,.]0]...10) and V = (Va_|....|V,.[0]. .. |0)

and sup; | U; k|,sup; «|V; k|< B. Take a > 0 as any constant and

B
b= statmpplmpRE- T hen
~ n 2(05 + 1) 2
2
where r, = C(a, 0%, B)rmax(m, p) |0g(nmp).

n
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Thank you!
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