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Notations

Assume that we observe X1, . . . , Xn i.i.d from Pθ0 in a model
{Pθ, θ ∈ Θ} dominated by Q: dPθ

dQ = pθ. Prior π on Θ.

The likelihood

Ln(θ) =
n∏

i=1

pθ(Xi )

The posterior

πn(dθ) ∝ Ln(θ)π(dθ).

The tempered posterior - 0 < α < 1

πn,α(dθ) ∝ [Ln(θ)]απ(dθ).
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Classic way to deal with posteriors: Monte Carlo

Monte Carlo algorithms are widely used to deal with posteriors or
tempered posteriors (e.g. MCMC, SMC)

Issues:

Computational complexity
Lack of non asymptotic theory, under investigation for behaviour in
high dimension etc.
Recent research �lling the gap in this direction for log-concave
problems:

Arnak S Dalalyan. Theoretical guarantees for approximate sampling
from smooth and log-concave densities.
Journal of the Royal Statistical Society: Series B (Statistical
Methodology), 79(3):651�676, 2017
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Variational Bayes

Variational Bayes is a deterministic approximation of some probability
measure.

Let F ⊂M+
1 (Θ). We de�ne the VB approximation π̃n,α(dθ|X n

1 ) by

π̃n,α(·|X n
1 ) = argmin

ρ∈F
K(ρ, πn,α(·|X n

1 )).

where the Kullback-Leibler divergence is

K(P,R) =

{ ∫
log
(
dP
dR

)
dP if P � R

+∞ otherwise.
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What family of distribtion F?

Two common choices:

Parametric family:
F = {qϑ(dθ), ϑ ∈ Θ′}

Mean �eld:

Fmf :=

{
ρ(dθ) =

p⊗
i=1

ρi (dθi ) ∈M+
1 (Θ),

∀i = 1, · · · , p ρi ∈M+
1 (Θi ), Θ = Θ1 × · · · ×Θp

}
,
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Previous results

In a previous paper

P. Alquier, J. R., and N. Chopin. On the properties of variational
approximations of Gibbs posterior.
Journal of Machine Learning Research, 17(239):1�41, 2016

We studied variational approximations of Gibbs posteriors with
bounded risk. Fractional posteriors do not fall in this category.

pseudo-posterior of interest are de�ned for a risk rn(θ)

πγ(dθ) ∝ exp (−γrn(θ))π(θ)
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De�nition

The α-Rényi divergence for α ∈ (0, 1)

Dα(P,R) =

{
1

α−1 log
∫ (

dP
dR

)α−1
dP if P � R

+∞ otherwise.

In particular, for 1/2 ≤ α, link with Hellinger and Kullback:

H2(P,R) ≤ Dα(P,R) −−−→
α↗1

K(P,R).
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Concentration of tempered posterior

B(r) =

{
θ ∈ Θ : K(Pθ0 ,Pθ) ≤ r and Var

[
log

pθ(Xi )

pθ0(Xi )

]
≤ r .

}

Theorem A. Bhattacharya, D. Pati, and Y. Yang. Bayesian fractional posteriors.
arXiv preprint arXiv:1611.01125, 2016

For any sequence (rn) such that

− log π[B(rn)] ≤ nrn

we have

P
[∫

Dα(Pθ,Pθ0)πn,α(dθ) ≤ 2(1 + α)

1− α
rn

]
≥ 1− 2

nrn
.
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General result for VB approximation

Theorem (P. Alquier and J R. Concentration of tempered posterior and their variational approximations.

arXiv:1706.09293, pages 1�24, 2017)

Fix F ⊂M+
1 (Θ). Assume that rn > 0 is such that there is distribution

ρn ∈ F such that∫
K(Pθ0 ,Pθ)ρn(dθ) ≤ rn,

∫
E
[
log2

(
pθ(Xi )

pθ0(Xi )

)]
ρn(dθ) ≤ rn (1)

and
K(ρn, π) ≤ nrn. (2)

Then, for any α ∈ (0, 1), for any (ε, η) ∈ (0, 1)2,

P

∫ Dα(Pθ,Pθ0)π̃n,α(dθ|X n
1 ) ≤

(α + 1)rn + α
√

rn
nη +

log( 1
ε )

n

1− α

 ≥ 1−ε−η.
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Remark and connection to Bayesian statistics

Put F =M+
1 ,

De�ne B(r), for r > 0, as

B(r) =

{
θ ∈ Θ : K(Pθ0 ,Pθ) ≤ r ,Var

[
log

pθ(Xi )

pθ0(Xi )

]
≤ r

}
.

Taking ρn as π restricted to B(rn), ρn = π|B(rn): (1) is satis�ed and
(2) can be written

− log π(B(rn)) ≤ rnn
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A simpler result in expectation

Theorem

If we only require that there is ρn ∈ F such that∫
K(Pθ0 ,Pθ)ρn(dθ) ≤ rn

and
K(ρn, π) ≤ nrn,

then, for any α ∈ (0, 1),

E
[∫

Dα(Pθ,Pθ0)π̃n,α(dθ)

]
≤ 1 + α

1− α
rn.
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Misspeci�ed case

Assume now that X1, . . . , Xn i.i.d from Q /∈ {Pθ, θ ∈ Θ}. Put:

θ∗ := argmin
θ∈Θ
K(Q,Pθ).

Theorem

Assume that there is ρn ∈ F such that∫
K(Pθ∗ ,Pθ)ρn(dθ) ≤ rn and K(ρn, π) ≤ nrn,

then, for any α ∈ (0, 1),

E
[∫

Dα(Pθ,Pθ0)π̃n,α(dθ)

]
≤ α

1− α
K(Q,Pθ∗) +

1 + α

1− α
rn.
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Gaussian vb

Gaussian VB

Let Θ = Rp.

We start with the family of approximations

FΦ
G :=

{
Φ(dθ;m,Σ), m ∈ Rd ,Σ ∈ G ⊂ Sd+(R)

}
,

We assume that for a model {pθ, θ ∈ Θ} there exists a measurable
real valued function M(·) and p ∈ N? ∪ { 1

2
}

|log pθ(X1)− log pθ′(X1)| ≤ M(X1) ‖θ − θ′‖2p2

Furthermore we assume that
EM(X1) =: B1, EM2(X1) =: B2 <∞.
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Gaussian vb

Application of the result

Theorem

Let the family of approximation be F with FΦ
σ2I ⊂ F as de�ned above.

We put

rn =
B1

n
∨ B2

n2
∨ C

d

n
log n

Then for any α ∈ (0, 1), for any η, ε

P

∫ Dα(Pθ,Pθ0)π̃n,α(dθ|X n
1 ) ≤

(α + 1)rn + α
√

rn
nη +

log( 1
ε )

n

1− α

 ≥ 1−ε−η.
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Gaussian vb

Stochastic Variational Bayes

To implement the idea we write

FΦ
B =

{
Φ(dθ;m,CC t), (m,C ) ∈ B ∩ Rd × Sd+

}
.

F : x = (m,C ) ∈ Rd × Rd×d 7→ E [f (x , ξ)] = K(ρm,C , πn)

where ξ ∼ N (0, Id)

The optimization problem can be written

min
x∈B∩Rd×Sd

+

E [f (x , ξ)] ,

where

f ((m,C ), ξ) := log pm+Cξ(Y n
1 ) + log

dΦm,CC t

dπ
(m + Cξ)
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Gaussian vb

We can use stochastic gradient descent

Algorithm 1 Stochastic VB

Input: x0, X
n
1 , γT

For i ∈ {1, · · · ,T},
a. Sample ξt ∼ N (0, Id)
b. Update xt ← PB (xt−1 − γT∇f (xt−1, ξt))

End For .

Output: x̄T = 1
T

∑T
t=1 xt

where ∇f is the gradient of the integrand in the objective function
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Gaussian vb

Assume that f is convex in its �rst component x and that it has
L-Lipschitz gradients.

De�ne π̃k
n,α(dθ|X n

1 ) to be the k-th iterate of the algorithm

Theorem

For some C ,

rn =
B1

n
∨ B2

n2
∨
{
d

n

[
1

2
log
(
ϑ2n2C

)
+

1

nϑ2

]
+
‖θ0‖2

nϑ2
− d

2n

}
with γk = B

L
√
2k
, we get

E
[∫

Dα(Pθ,Pθ0)π̃k
n,α(dθ|X n

1 )

]
≤ 1 + α

1− α
rn +

1

n(1− α)

√
2BL

k
.
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Matrix completion

Matrix completion: notations

The parameter θ is a matrix M ∈ Rm×p, with m, p ≥ 1.

Under PM ,
Yk = Mik ,jk + εk

where the (ik , jk) are i.i.d U({1, . . . ,m} × {1, . . . , p}). The noise εk
is i.i.d N (0, σ2), σ2 known.

Usual assumption: M is low-rank.
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Matrix completion

Prior speci�cation - main idea

De�ne:

M︸︷︷︸
p×m

= U︸︷︷︸
p×k

V T︸︷︷︸
k×m

.

M =
k∑
`=1

U·,`(V·,`)
T

with k large - e.g. k = min(p,m).
De�nition of π:

U·,`,V·,` ∼ N (0, γ`I ),

γ` is itself random, such that most of the γ` ' 0

1

γ`
∼ Gamma(a, b).
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Matrix completion

Variational approximation

Y. J. Lim and Y. W. Teh. Variational Bayesian approach to movie rating
prediction.
In Proceedings of KDD Cup and Workshop, 2007 Mean-�eld

approximation, F given by:

ρ(dU, dV , dγ) =
m⊗
i=1

ρUi (dUi,·)

p⊗
j=1

ρVj (dVj,·)
K⊗

k=1

ργk (γk).

It can be shown that

1 ρUi is N (mT
i,·,Vi ),

2 ρVj is N (nTj,·,Wj),

3 ργk is Γ(a + (m1 + m2)/2, βk),

for some m × K matrix m whose rows are denoted by mi,·, some p × K
matrix n and some vector β = (β1, . . . , βK ).
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Matrix completion

The VB algorithm

The parameters are updated iteratively through the formulae
1 moments of U:

m
T
i,· :=

2α

n
Vi

∑
k:ik=i

Yik ,jk
n
T
jk ,·

V−1
i

:=
2α

n

∑
k:ik=i

[
Wjk

+ njk ,·
n
T
jk ,·

]
+

(
a +

m1 + m2

2

)
diag(β)−1

2 moments of V :

n
T
j,· :=

2α

n
Wj

∑
k:jk=j

Yik ,jk
m
T
ik ,·

W−1
j

:=
2α

n

∑
k:jk=j

[
Vik

+ mik ,·
m
T
ik ,·

]
+

(
a +

m1 + m2

2

)
diag(β)−1

3 moments of γ:

βk :=
1

2

m1∑
i=1

(
m
2
i,k + (Vi )k,k

)
+

m2∑
j=1

(
n
2
j,k + (Vj )k,k

) .
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Matrix completion

Application of our theorem

Theorem

Assume M = ŪV̄ T where

Ū = (Ū1,·|. . . |Ūr ,·|0|. . . |0) and V̄ = (V̄1,·|. . . |V̄r ,·|0|. . . |0)

and supi,k |Ui,k |, supj,k |Vj,k |≤ B. Take a > 0 as any constant and

b = B2

512(nmp)4[(m∨p)K ]2 . Then

P
[∫

Dα(Pθ,Pθ0)π̃n,α(dθ|X n
1 ) ≤ 2(α + 1)

1− α
rn

]
≥ 1− 2

nrn

where rn =
C(a, σ2,B)r max(m, p) log(nmp)

n
.
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Matrix completion

Thank you!
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Matrix completion
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