Long time asymptotics for solutions of the Short Pulse Equation

Lech Zielinski

The non-linear Schrödinger (NLS) equation is one of the universal integrable models describing the slow modulation of the amplitude of a weakly nonlinear wave packet in a moving medium. However in the case of ultra-short pulses in high-speed fiber-optic communication the NLS model should be replaced by a short pulse (SP) model which can be reduced to Cauchy problem of studying \(u : \mathbb{R}^2 \to \mathbb{R} \) such that

\[
\begin{cases}
 u_{x_1} = u + \frac{1}{6} (u^3)_{x_2} \\
 u(x, 0) = u_0(x)
\end{cases}
\]

We assume that \(u_0(x) \) is rapidly decaying as \(|x| \to \infty \), and we are looking for the solution \(u(x, t) \) which is also rapidly decaying as \(|x| \to \infty \), for any fixed \(t \). Our purpose is to investigate the asymptotic behavior of \(u(x, t) \) for large time \(t \) using an adaptation of the inverse scattering transform method, in the form of a Riemann–Hilbert factorization problem. We explain how to obtain different types of asymptotics: rapidly or slowly decaying solutions, soliton type solutions or wave breaking. The talk is based on a joint work with A. Boutet de Monvel (Institut de Mathématiques de Jussieu) et D. Shepelsky (V. N. Karazin Kharkiv National University, Ukraine).