Existence of traveling waves for the nonlocal Gross–Pitaevskii equation in dimension one

Pierre Mennuni, Université Lille 1

We consider the nonlocal Gross–Pitaevskii equation in dimension one

\[i \partial_t u = \Delta u + u (W * (1 - |u|^2)) , \text{ on } \mathbb{R} \times \mathbb{R}, \]

(NGP)

where \(u \) is a complex-valued function and \(W \) is a tempered distribution. In the Bose–Einstein condensate, \(u \) represents a wave function whereas \(W \) describes the interaction between bosons.

If \(W \) is a real-valued even distribution, (NGP) is a Hamiltonian equation whose energy given by

\[E(u(t)) = \frac{1}{2} \int_{\mathbb{R}} |u'(t)|^2 dx + \frac{1}{4} \int_{\mathbb{R}} (W * (1 - |u(t)|^2))(1 - |u(t)|^2) dx, \]

(1)

is formally conserved. If one considers finite energy solution, then \(u \) should not vanish at infinity and should in some sense tend to 1 when \(|x| \to +\infty \). Thus, we will consider the Cauchy problem for (NGP) with an initial date \(u(0) = u_0 \) verifying \(|u_0(x)| \to 1 \) as \(|x| \to +\infty \). We recall the concept of physical momentum

\[P(u) = \int_{\mathbb{R}} (iu', u) dx, \]

(2)

which is also formally conserved but not always well-defined.

A traveling wave of speed \(c \in \mathbb{R} \) is a solution of (NGP) of the form

\[u_c(t, x) = v(x - ct). \]

Hence, the profile \(v \) satisfies

\[icv' + \Delta v + v (W * (1 - |v|^2)) = 0 \text{ in } \mathbb{R} \]

(NTWc)

and by using complex conjugation, we can restrict ourselves to the case \(c \geq 0 \). Note that any constant complex-valued function \(v \) of modulus one verifies (NTWc), so that we refer to them as the trivial solutions. In the case \(W = \delta \), the explicit formula of finite energy travelling waves is known (see [1]).

We will present a constraint minimization approaches to prove the existence of (non trivial) traveling waves for a wide class of tempered distributions. An important part of the proof is based on the study of the long-wave transonic limit of (NGP) which leads to the Korteweg-de-Vries equation. We will also present a numerical method based on projected gradient descent which will give us an approximation of traveling waves and energy-momentum diagrams.

Références
