Abstract. Spectral theory of a transport equation with elastic and inelastic collision operators .

We are concerned with the time asymptotic behavior of the solution to the following Cauchy problem for partly elastic collisions operators, that is,

$$\frac{\partial \varphi}{\partial t}(x, v, t) = -v \cdot \frac{\partial \varphi}{\partial x}(x, v, t) - \sigma(v)\varphi(x, v, t) + \int_{V} k_{c}(x, v, v')\varphi(x, v', t)dv'$$

$$+ \sum_{j=1}^{l} \int_{\mathbb{S}^{N-1}} k_{d}^{j}(x, \rho_{j}, \omega, \omega')\varphi(x, \rho_{j}\omega', t)d\omega'$$

$$+ \int_{\mathbb{S}^{N-1}} k_{e}(x, \rho, \omega, \omega')\phi(x, \rho\omega', t)d\omega'$$

with the initial distribution

(1)

(2)
$$\varphi(x, v, 0) = \varphi_0(x, v).$$

and we restrict our selves to periodic boundary conditions, that is,

(3)
$$\varphi(x,v,t) \mid_{x_i=-a_i} = \varphi(x,v,t) \mid_{x_i=a_i},$$

where $\Omega = \prod_{i=1}^{N} (-a_i, a_i)$, $a_i > 0$, $i = 1, \dots, N$, is an open paved of \mathbb{R}^N . The set $V \subset \mathbb{R}^N$, is called the space of admissible velocities, $v = \rho \omega \in V =: I \times \mathbb{S}^{N-1}$ with $\omega \in \mathbb{S}^{N-1}$, $\rho \in I := (\rho_{\min}, \rho_{\max})$ and $\mu(\cdot)$ is a positive Radon measure on \mathbb{R}^N , we denote by V the support of μ . The function $\varphi(x, v, t)$ represents the number density of gas particles having the position x and the velocity v at time t. The function $\sigma(\cdot)$ is called the collision frequency and the functions $k_c(\cdot, \cdot, \cdot)$, $k_e(\cdot, \cdot, \cdot, \cdot)$ and $k_d^j(\cdot, \cdot, \cdot, \cdot)$, $j = 1, \dots, l$, denote the scattering kernels of the operators K_c , K_e and $K_d = \sum_{j=1}^l K_d^j$ (called classical, elastic and inelastic collision operators respectively).

The purpose of this work is to extend the results obtained in [1, 2, 3] to periodic boundary conditions.

We shall prove that the second order remainder term, $R_2(t)$ of the Dyson-Philips expansion is compact on L $L^p(\Omega \times V, dxd\mu(v)), (1 \leq p < \infty)$. As an immediate consequence of the result of the compactness, we have

(4)
$$\omega_{ess}\left(e^{t(T_p+K_c+K_e+K_d)}\right) = \omega_{ess}\left(e^{t(T_p+K_e+K_d)}\right).$$

Equality (4) is of fundamental importance to describe the analysis of the asymptotic behaviour $(t \to \infty)$ of the solution.

References

- E. W. Larsen, P. F. Zweifel, On the spectrum of the linear transport operator. J. Mathematical Phys. 15 (1974), 1987-1997.
- [2] M. Sbihi, Spectral theory of neutron transport semigroups with partly elastic collision operators. J. Math. Phys. 47 (2006), 123502 (12 pages).
- [3] M. Sbihi, Analyse Spectrale De Modèles Neutroniques, Thèse de Doctorat de l'université de Franche-Comté, Besançon, 2005.